用户名: 密码: 验证码:
整流翼型均速管流量传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均速管流量传感器具有压损小,结构简单,可靠性高等诸多优点,被广泛应用于冶金、石油、化工等行业中。但是,自从均速管流量传感器问世以来,其测量性能就一直受截面形状及前后直管段影响,因此,本文通过CFD仿真与实流实验相结合的方法,对均速管截面形状进行优化设计,以提高其测量精度和对不同流场的适应能力。
     本文主要完成以下工作:
     提出了整流翼型均速管流量传感器检测杆截面形状。计算流体力学(CFD)仿真与理论分析相结合,从流场发展机理角度对以下问题进行了详细研究。截面形状对均速管总压、静压的影响;阻塞比与均速管仪表系数的关系;分离角大小、分离点位置与均速管线性度的关系;尾迹区大小与均速管重复性的关系。研究表明:与圆形、菱形、子弹头形等形状相比,由于整流翼的整流作用,整流翼型均速管检测杆后方的流体漩涡尺度变大、频率变低、中心位置离静压孔更远,对静压的影响变小,输出差压信号稳定性增强,提高了均速管流量计的线性度和测量重复性;同样由于整流翼的阻塞比及阻塞比变化率作用,流体在流过均速管时,平均流速增大,静压降低,从而提高了输出差压。在直管段长度不足,流体流动不稳定、速度分布紊乱的情况下,整流翼的整流作用明显,可以保证较高的测量精度。通过CFD仿真,对整流翼型均速管及圆形、菱形、子弹头形截面均速管测量性能进行的定量分析表明:DN50口径整流翼Ⅱ型、Ⅲ型均速管的线性度分别为0.45%和1.54%,优于圆形、菱形、子弹头形截面均速管。流场发展机理及性能定量分析均表明,整流翼型均速管具有更好的性能。
     均速管流量传感器二维CFD仿真方法研究。以均速管工作原理、取压孔位置选取方法等理论为基础,通过分析及计算,研究了将均速管流量测量系统三维流场简化为二维流场方法,得到5种二维模型。理论分析表明,过平均流速点的二维简化模型最具代表性,能够反映均速管内部及其所在管道流场特点。采用这5种模型对菱形均速管进行仿真与实验对比研究,发现过平均流速点的管道截面二维仿真,所得差压与实验结果的误差优于其它4种模型。通过理论分析及仿真与实验对比,找到了均速管仿真过程中,将三维模型简化为二维模型的最优方法。在保证CFD仿真精度的前提下,简化了研究过程,提高了研究效率,节约了研究成本。
     整流翼型均速管流量传感器测量性能实验研究。对DN50、DN200口径整流翼Ⅱ型均速管的测量性能进行了实验研究,并与目前流行的圆形、菱形、Delta形均速管进行了对比。结果表明:整流翼型均速管测量性能明显优于其它截面形状的均速管。从实验角度验证了整流翼的设计达到了理论与仿真分析的整流作用,提高了均速管的测量性能。
     整流翼型均速管流量传感器安装影响实验研究与流场分析。实验研究了圆形、菱形、整流翼型截面均速管,在90°弯头下游不同安装方式(与弯头垂直、与弯头在同一平面)及不同前直管段长度等情况下的测量性能。实验结果表明:由于整流翼的整流作用,相同安装条件下,整流翼型均速管对弯头下游紊乱流场的适应能力优于圆形、菱形截面均速管;相同均速管在垂直于弯头平面安装时测量性能优于与弯头在同一平面内安装。通过流场仿真,研究了弯头后均速管流场变化特点,从流场变化特点角度揭示了均速管在不同安装方式下性能不同的原因。
Averaging Pitot tube(APT) is a kind of sampling flowmeter with advantages of low pressure loss, simple construction and good reliability. It is widely used in petroleum, metallurgy, chemical industry, light industry, food industry and other flow industry. But its performances are usually influenced seriously by its cross-section and the harsh industry field conditions. So, the paper deals with the APT’s cross-section optimization to improve its performances.
     The main researches of the dissertation are as the following:
     Three kinds of APT with flow conditioning wing(APTFCW) are designed. Through numerical computation and theoretic analysis,the following problems are discussed: the influence of the APT cross-section to the total pressure and static pressure; the relation between the blockage ratio and the coefficient; the relation of the separating angle, the separating position and the linearity of the APT; the relation between the wake region and the repeatability of the APT. Research shows that the scale of the swirl, after the APTFCW, is larger than that of the other cross-section APTs, and its frequency is lower, the distance between its center and the static pressure hole is larger. So, the swirl’s influence to the static pressure is lower and the output difference pressure is more stable. The linearity and repeatability of the APTFCW are better than those of the other cross-section APTs. The fluid velocity is larger than that of other cross-section APT when it flows through the APT, so the static pressure is lower and its difference pressure is larger. At the conditions of straight pipe not enough, the effect of the flow conditioning wing are obvious. So, its accuracy is better than other cross-section APTs. Through numerical computation, the performances of APTs in DN50 pipe are reasearched in quantitative. The linearity of the APTFCWⅡandⅢare 0.45% and 1.54% respectively, better than that of the others. The qualitative and quantitative researches show that the performances of the APTFCWⅡandⅢare better than the others.
     The method how to simplize three-dimensional entity into two-dimensional model in CFD is researched. Through theoretical anlysis, five two-dimensional models are acquired. Theoretical analysis shows that the model at the position of averaging velocity(MPAV) is the most representative. It could reflect the flow field characters. Numerical computation is done using the five models. It shows that the deviation between the data of numerical computation using the MPAV and the experiment data is least. Thtrough theoretical analysis and numerical computation, the optimal two-dimensional numerical computation model is accquired.
     Based on numerical computation, the APTFCWⅡ, circle and dianmond cross-section APT are chosed to process prototype of DN50 and DN200. Then, the prototypes are tested in gas flow standard facilities. Experimental researches indicate that the perfoemances of the APTFCW are better than the others. Through experiment, it’s proved that the flow conditioning wing works better.
     Experiments are done to test the performances of the APT when they are installed after the 90°elbow in different type(vertical to the elbow or in the same plane with the elbow) and in different straight pipe length(2D, 4D, 7D, 12D) before the APT. The performances and the adaptability of the three kinds of cross-section APTs are acquired in those conditions. It shows that at the same conditions, the adaptability of the APTFCW is better than the others, because of the effect of the flow conditioning wing. The performances, when the APTFCW are installed vertical to the elbow, are better than those when they are installed in the same plane with the elbow. Through numerical computation, the flow field characters after the 90°elbow is reasearched. The reason why the performances are different when the APT is installed in different type is explained from the point of flow field changing.
引文
[1]蔡武昌,回顾和展望中国流量检测仪表的发展,航空计测技术,2003,23(3):1-5
    [2]杜金榜,王跃科,仪器仪表技术的发展趋向,仪器仪表学报,2002,23(5):228-236
    [3]刘霁,入世后我国仪器仪表工业的发展对策,自动化与仪表,2002,(1):38-40
    [4]蔡武昌,流量仪表制造业若干情况,工业仪表与自动化学术会议论文集,上海,1999
    [5]蔡武昌,流量仪表若干发展趋势和应用进展,中国仪器仪表,2002,(2):46-48
    [6]贾玉伟,张晓琴,自动化仪表发展趋势,中外技术情报,1995,(9):5-6
    [7]毛新业,流量仪表的发展趋势及热点,世界仪表及自动化,2006,10(8):59-61
    [8] R.W. Miller,Flow measurement engineering handbook,McGraw-Hill Publishing Company,New York,1989
    [9]毛新业,均速管流量计,北京:计量出版社,1984
    [10] Guide to the selection and application of flowmeters,London: Draft British Standard (British Standards Institution),1987
    [11]苏彦勋,梁国伟,盛建,流量计量与测试,北京:中国计量出版社,2007
    [12]杨宝清,现代传感器技术基础,北京:中国铁道出版社,2001
    [13]毛新业,什么是影响均速管流量计精确度的主要因素?——探寻插入式流量计精确度之二,世界仪表及自动化,2004,8(7):42-44,62
    [14]毛新业,探寻插入式流量计的精确度,世界仪表与自动化,2002,6(10):43-46
    [15]毛新业,均速管流量计——一种简便、价廉、节能的流量仪表,自动化信息,2005,47(3),14-17
    [16]毛新业,李伟建,大管道气体流量检测仪表,电力设备,2008,9(12):8-11
    [17]毛新业,插入式流量检测装置——基于取样原理的大管道流量检测仪表,自动化信息,2006,11:54-57
    [18]蔡武昌,流量仪表应用和发展若干动态,自动化仪表,2006,27(7):1-7
    [19]钱晓雪,浅谈流量仪表的应用与发展,石油化工自动化,2005,(4):51-54
    [20]苏艳勋,李金海,流量计量,北京:中国计量出版社,1992
    [21]左湘宁,一体化智能均速管质量流量计,实用新型专利,专利号:ZL 00210771.6,2000,中华人民共和国知识产权局
    [22]项家从,高温型一体化均速管流量计,实用新型专利,专利号:ZL 03249609.5,2004,中华人民共和国知识产权局
    [23]项家从,高强度均速管流量传感器,实用新型专利,专利号:ZL 03249613.3,2004,中华人民共和国知识产权局
    [24]陈光会,托巴均速管流量传感器,实用新型专利,专利号:ZL 03262661.4,2005,中华人民共和国知识产权局
    [25]黄素华,王忠元,柯建新,多孔均速风量测量装置,实用新型专利,专利号:ZL 200420019472.3,2005,中华人民共和国知识产权局
    [26]刘勇,王晟,一种新型差压式流量测量装置,实用新型专利,专利号:ZL 200720169614.8,2008,中华人民共和国国家知识产权局
    [27]王宗科,王磊,储胜义,张梦熊,插入式多点均速流量测量装置,实用新型专利,专利号:ZL 200720031066.2,2008,中华人民共和国国家知识产权局
    [28]张洪军,苏中地,田亚农,谢文,一种大流量气体管道均速管流量计风洞校验装置,实用新型专利,专利号:ZL 200710066736.9,2007,中华人民共和国国家知识产权局
    [29]毛新业,均速环流量计,实用新型专利,专利号:200420061027.3,2005,中华人民共和国国家知识产权局
    [30] Kabaciński M,Pospolita P,Numerical and experimental research on new cross-sections of averaging Pitot tubes,Flow Measurement and Instrumentation, 2008,19:17-27
    [31] A. Petunin,Methods and technique of gas flow parameters measurement,Central Aerohydrodynamic Institute,CWA 22 Corporation,2002
    [32] R.C. Baker,An introductory guide to flow measurement, Alden Press,Oxford,1989
    [33] De Carlo JP,Fundamentals of flow measurement Instrument Society of America,Research Triangle Park,1984
    [34] T.J. Hayward,Flowmeters A basic guide and source book for users,acmillan Basingstoke,1979
    [35] R.S. Medlock,The techniques of flow measurement,Measurement and Control, 1983,15:458–463
    [36] PN-EN ISO 5167-1,Fluid flow measurement by means of measuring reducers, Orifices, nozzles and venturi tubes built in inside all-filled circle shaped sections pipelines,2000
    [37] Chwastek C., Kabaciński M, Pospolita J XII,Measuring properties and application of possibilities of averaging pitot tubes and Venturi micro-tubes,Pomiary Aparatura Kontrola,2004
    [38] J. Bouhy,Evolution of the Pitot tube sensor,Flow Metering Equipment,Preso,Ottawa,1997
    [41] Wecel D , Chmielniak T , Kotowicz J , Experimental and numerical investigations of the averaging Pitot tube and analysis of installation effects on the flow coefficient,Flow Measurement and Instrumentation,2008,19:301-306
    [40] K. Schr?der,H. Gelbe,Two- and three-dimensional CFD-simulation of flow-induced vibration excitation in tube bundles,Chemical Engineering and Processing,1999,38:621–629
    [41] Dobrowolski B, Kabaciński M, Pospolita J,A mathematical model of the self-averaging Pitot tube A mathematical model of a flow sensor,Flow Measurement and Instrumentation,2005,16:251-265
    [42] Dieterich , Standard Annubar–Flow Turndown and Differential Pressure Requirements–company publication,V,1997
    [43] Fluent 6.0.20,Fluid Dynamics Analysis Package,Fluid Dynamics International,Inc., 2002
    [44] Gambit 2.0.4,Fluid Dynamics Analysis Package,Fluid Dynamics International,Inc.,2002
    [45] W.P. Graebel,Engineering Fluid Mechanics,Taylor & Francis Publishers,New York,London,2001
    [46] W.H. Hickman,Annubar properties investigation,Proceedings of ISA’s Industry Oriented Conference and Exhibit vol. 30, Milwauke,1975,708:1–14
    [47] Seshadri V,Gandhi B K,Singh S N,et al. Analysis of the effect of body shapeon annubar factor using CFD,Measurement,2004,35:25-32
    [48] R.C. Baker,Flow Measurement Handbook,Cambridge University Press,London,1987
    [49] D.W. Spitzer,Flow Measurement: Practical Guides for Measurement and Control,Instrument Society of America,North California,USA,1991
    [50] S.N. Singh,V. Seshadri,A.K. Agrawal,Characteristics of a self-averaging pitot type probe, Indian Journal of Engineering and Material Sciences,1994,6:153–157
    [51] B.G. Liptak,Flow Measurement,Chilton Book Company,Randor,PA,1993
    [52] H. Schlichting,Boundary Layer Theory,Mcgraw Hill Book Company,New York,1998
    [53] S.V. Spalding,D.B. Patankar,A complete Model for Three Dimensional Flow in Furnaces,Proc. 14th Symp. (Int.) on Combustion,The Combustion Int.,1972,605
    [54]张维一,龚家彪,圆管中充分发展紊流的流速分布与平均流速位置的研究,计量学报,1983,4(1):1-5
    [55]龚家彪,用选点法确定圆管流的截面平均流速,东南大学学报(自然科学版),1979,2:7-20
    [56]薛银春,龚家彪,充分发展圆管流流速分布统一模型及其平均流速位置的研究,计量学报,1985,4:274-278
    [57]龚家彪,大直径管道中流量测量的可能方法,自动化仪表,1987,12:13-17
    [58]高志辉,圆管流测速点确定方法及其分析,自动化仪表,1984,4:4-8
    [59]张东飞,苏中地,何馨雨,一种适用于均速管测量的管内统一速度分布式,中国计量学院学报,2007,18(3):200-203,207
    [60]闻建龙,均速管流量计选点位置的研究,排灌机械,1994,12(3):52-53
    [61] W.Rahmeyer,Development of an averaging type pitot-probe for discharge measurements,Instrumentation in the Aerospace Industry,1981,27:545-549
    [62] Mel'nik S V. , Minimum length of straight pipe upstream of the flowmeter. Flow-averaging Pitot tube, Fluid Mechanics Research,1992,21(2):138-142
    [63]郭明,均速管流量计的校验与误差分析,工业计量,2008,18(3):29-32
    [64]闻建龙,用风洞进行均速管流量计标定的可行性探讨,排灌机械,1996,14(4):33-34
    [65]毛新业,大管道气体流量检测仪表与校验,软件,2006,9:42-45
    [66]周光坰,严宗义,许世雄等,流体力学,北京:高等教育出版社,2000
    [67]王福军,计算流体动力学分析,北京:清华大学出版社,2004
    [68] J.D.Anderson,Computational Fluid Dynamics:The Basics with Applications,McGrawHill,1995,清华大学出版社,2002
    [69] H.K.Versteeg,W.Malalasekera,An Introduction to Computational Fluid Dynamics:The Finite Volume Method,Wiley,New York,1995
    [70] M.B.Abbortt,D.R.Basco,Computational Fluid Dynamics-An Introduction for Engineers,Longman Scinetific & Technical,Harlow,England,1989
    [71]王瑞金,张凯,王刚,Fluent技术基础与应用实例,北京:清华大学出版社,2007
    [72]张东飞,苏中地,何馨雨,单孔堵塞对均速管流量计测量精度的影响,浙江科技学院学报,2007,19(4):265-268,284
    [73]张东飞,苏中地,史晓妍等,不同雷诺数下均速管流量计流量系数的确定,中国计量学院学报,2007,18(1):18-21
    [74]张东飞,苏中地,张成建,关于均速管流量计测量精度的仿真与实验研究,计量与测试技术,2008,35(6):36-38
    [75]史晓妍,张洪军,张东飞等,弯管后均速管流量计输出特性数值模拟,中国计量学院学报,2007,18(4):285-290
    [76]苏艳勋,范砧,液体流量标准装置,北京:中国计量出版社,1994
    [77]苏艳勋,范砧,气体流量标准装置,北京:中国计量出版社,1994
    [78] JJG643-2003,标准表法流量标准装置,国家质量监督检验检疫总局,2003
    [79]黄立中,采用音速喷嘴的气体流量标准装置,中国测试技术,2005,31(3):50~52
    [80]华陈权,郑金吾,音速喷嘴气体流量标准装置的误差分析,自动化仪表,2003,24(l0):44~46
    [81]王池,李芳,王东伟,音速喷嘴检定过程中几个问题的分析,现代计量测试, 2002,(1):24~26
    [82] ISO9300-1990, Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles,1990
    [83] ISO 5167:Measurement of fluid flow by means of pressure differential devices–1: Orifice plates, nozzles and Venturi tubes inserted in circular cross-section conducts running flow, 1991
    [84] Bignell N, Choi Y.M,Thermal effects in small sonic nozzles,Flow Measurement and Instrumentation, 2002, 13(1–2) :17~22
    [85] Masahiro Ishibashi, Toshihiro Morioka,The renewed airflow standard system inJapan for 5~1000m3/h,Flow Measurement and Instrumentation,2006, 17(3):153~161
    [86]王化祥,自动检测技术,北京:化学工业出版社,2004,1~4
    [87]杜维,张宏建,乐嘉华,过程检测技术及仪表,北京:化学工业出版社,1999,1~3
    [88]严家禄,王永青,工程热力学,北京:中国电力出版社,2007
    [89]沈维道,蒋智敏,童钧耕,工程热力学,北京:高等教育出版社,2001
    [90]周雪漪,计算力学,北京:清华大学出版社,1995
    [91]陶文铨,数值传热学(第二版),西安:西安交通大学出版社,2001
    [92]郭鸿志,传输过程数值模拟,北京:冶金工业出版社,1998
    [93]曾丹苓,敖越,朱克雄等,工程热力学,北京:高等教育出版社,2002
    [94]朱爱民,流体力学基础,北京:中国计量出版社,2004
    [95]华自强,张忠进,工程热力学,北京:高等教育出版社,2000
    [96]《石油化工仪表自动培训教材》编写组,调节阀与阀门定位器,北京:中国石化出版社,2009
    [97]付敬奇,执行器及其应用,北京:机械工业出版社,2009
    [98]向婉成,控制仪表与装置,北京:机械工业出版社,2003
    [99]卢培文,阀门选用手册,北京:机械工业出版社,2009
    [100]王池,流量测量不确定度分析,北京:中国计量出版社,2002
    [101]倪育才,实用测量不确定度评定,北京:中国计量出版社,2004
    [102]李慎安,钱钟泰,刘志敏,测量误差及数据处理技术规范解说,北京,中国计量出版社,1993
    [103]梁国伟,蔡武昌,流量测量技术及仪表,北京:机械工业出版社,2002,6~13
    [104] Anon,New flow sensor offers accurate measurement,low pressure loss,ENG MIN J,1982,183(11):139
    [105] Lavante E. V., Thomas H., Schieber W. M., Numerical investigation of the flow field in a 2-stage turbine flowmeter, In: Proc. of the 9th International Conference on Flow Measurement, 2001
    [106] Lavante E. V., Kettner T., Lazaroski N., et al, Numerical simulation unsteady three-dimensional flow fields turbine flowmeter, In: Proc. of the 1lth International conference on Flow Measurement, 2003
    [107] Lavante E. V., Banaszak U., Kettner T., Numerical simulation of Reynolds number effects in a turbine flowmeter,In: Proc. of the 12th International Conference on Flow Measurement, 2004: 575~582
    [108] Antoni G,Beata N Z,Jerzy Z,Simulation research for modelling the calibration of the flow meter with averaging Pitot tube , Inzynieria Chemiczna i Procesowa,2002,22(4):633-644
    [109] R.S. Ransau,Simulation of flow around a three-dimensional circular cylinder utilizing computational mechanics software—ForcePAD,15th Nordic Seminar of Computational Mechanics,2002
    [110] P.R. Spalart,Strategies for turbulence modeling and simulations,International Journal of Heat and Fluid Flow II,2000
    [111] T.M. Liou,Y.H. Hwang,L. Chen,Prediction of confined three-dimensional impinging flows with various turbulence models , Journal of Fluids Engineering,1992,114:220–230
    [112] Wang M,Catalano P,Iaccarino G., Prediction of high Reynolds number flow over a circular cylinder using LES with wall modelling,Center of Turbulence Research,Annual Research Briefs,2001
    [113] R.W.C.P. Verstappen,A.E.P. Veldman,Numerical computation of a viscous flow around a circular cylinder on a Cartesian grid , European congress on computational methods in applied sciences and engineering,2000
    [114]姜仲霞,姜川涛,刘桂芳,涡街流量计,北京:中国石化出版社,2006
    [115]蔡武昌,孙淮清,纪纲,流量测量方法和仪表的选用,北京:化学工业出版社,2001,1~2
    [116]纪纲,流量测量仪表应用技巧,北京:化学工业出版社工业装备与信息工程出版中心,2003,1~2
    [117]李启贸,张以民,温度、压力、流量、液位常用测量仪表实用指南,北京:中国计量出版社,1988
    [118] T Solberg and KJ Eidsvik XII,Flow over a cylinder at a plane boundary-A model based upon (k-ε) turbulence,Journal of Fluids Engineering,1989,111
    [119] Turbulence Modelling: Part 2: Limitations of k–epsilon model , QNET CFD–LUZERN V,2002
    [120] J.C.S. Lai,C.S. Yang,Numerical simulation of turbulence suppression: Comparisons of the performance of four k–εturbulence models,International Journal of Heat and Fluid Flow,1997,18:575–584
    [121] Fluent 6.1.22,Fluid dynamics analysis package,Fluid Dynamics International Inc,2005
    [122] Gambit 2 2 30,Fluid dynamics analysis package,Fluid Dynamics International,Inc. 2005
    [123] G. Mompean,Numerical simulation of a turbulent flow near a right-angled corner using the speziale non-linear model with RNG k-εequations,Computers & Fluids,1998,27
    [124] M. Kabaciński,J. Pospolita,Applicability of the chosen turbulence models in numerical investigations of flows around the body with stream separation,Chemical and Process Engineering,2006,28,3
    [125] Dobrowolski B,Kabza Z,Application of mathematical modelling and numerical simulation in an analysis of a flow through orifices,Post?py Technologii Maszyn i Urz?dzeń2,1983
    [126] S. Murakami,Overview of turbulence models applied in CWE–1997,Journal of Wind Engineering and Industrial Aerodynamics,1998
    [127] C. Norberg,Flow around circular cylinder: aspects of fluctuating lift,Journal of Fluids and Structures,2001,15
    [128] S. Rouvreau and L.V. Perault,Two-dimensional viscous vortex flow around a circular cylinder,Aerospace Science Technology,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700