用户名: 密码: 验证码:
铁路车辆结构多层面优化设计研究及典型应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着我国铁路运输的高速、重载化,铁道车辆行业获得了前所未有的发展机遇,同时对车辆的结构设计提出了更高的要求、带来了更大的挑战。铁路车辆是多学科、多领域交叉耦合的复杂产品,尤其对于时速200 km/h以上的高速动车组,其要求性能更高、耦合因素更多。我国的高速车辆在其研制过程中,尽管借鉴了国外许多先进技术,也采纳了铁路大提速以来车辆行业积累下来的许多成熟技术,但是在整体性能上,与国外仍有明显差距;在设计方法上,主要是采用“试算—验证—修改”的传统设计方法,还没有将结构优化设计的理念贯穿于整个设计过程中。因此,本文从不同层面上对铁路车辆结构优化设计的方法及应用进行了详细研究,由概念设计的拓扑优化、详细设计的形状(尺寸)优化到整体设计的多学科优化,将结构优化的设计方法应用到铁道车辆结构设计过程的不同层面上。采用现代优化理论进行结构优化设计,是现代铁路车辆产品设计手段的升华,必将为提升产品质量、缩短开发周期、减少设计盲目性起到重要的推动作用。
     在对国内外铁路车辆结构优化设计的现状及结构优化发展概况综述的基础上,采用分层次的研究策略,以铁路车辆结构优化设计为研究目标,从概念设计的拓扑优化、详细设计的形状(尺寸)优化到整体设计的多学科优化,分别从优化方法、优化策略、实例验证到典型工程应用,进行了一系列深入研究。归纳起来,本文的主要研究工作如下:
     (1)系统阐述了结构优化的基本理论,概述了结构优化算法的类型和特点,对常用工程优化算法及多学科优化的方法原理进行了详细分析。
     (2)针对复杂结构优化设计的效率问题,研究了基于近似模型的优化策略。介绍了试验设计常用的方法和原理;分析了响应面近似模型、kriging近似模型、RBF近似模型及泰勒序列近似的原理和建模要求;给出了近似模型精度的评价标准,并采用算例对RSM、kriging及RBF模型进行了比较。
     (3)采用变密度法对转向架轴箱转臂进行了拓扑优化设计;针对应力约束问题,并结合实际工程复杂结构的可操作性,采用考虑接触关系的详细有限元模型进行强度验证,保证拓扑优化的实用性。该研究为铁路机车车辆结构概念设计阶段优化设计的开展提供了技术范例。
     (4)分析了位移敏度和应力敏度的求解原理;建立了高速铝合金车体的有限元模型,按规范进行有限元分析;以板厚为设计变量,在有限元分析基础上计算了车体结构对设计变量的位移敏度和应力敏度;基于敏度的知识信息,给出了结构轻量化的优化方案。为复杂结构基于敏度信息的快速优化设计提供了可操作的实用方案。
     (5)对内燃动车组废气涡轮增压器压气机叶片进行了多学科优化研究。建立了叶片三维参数化模型,在保证叶片的气动性能基础上,以叶片不同位置截面的分布厚度为设计变量,对结构、振动频率进行了多学科可行一体化优化设计,取得了满足条件的最优结果,这一结果亦有典型示范作用。
     (6)对铁路车辆主型焊接结构,考虑疲劳损伤约束的多学科优化进行了研究。分析了Goodman疲劳安全系数、线性累积损伤理论以及国外焊接接头的疲劳评估标准(IIW、BS);提出了虚拟疲劳试验的技术路线,在虚拟样机上实施疲劳试验,预测产品的设计疲劳寿命;对焊接结构多学科优化进行研究,提出基于近似模型、提高优化效率的多学科可行法;建立了焊接构架疲劳损伤、结构一体化优化模型;开发了Goodman疲劳安全系数、虚拟疲劳试验损伤计算程序;实现了焊接构架疲劳损伤、结构分析的多软件集成、自动优化技术;并采用基于近似模型的多学科可行方法对焊接构架进行了疲劳损伤结构多学科优化,在满足应力、疲劳安全系数及焊接接头累积损伤约束下,构架质量减轻11.6%,这对车辆轻量化要求下焊接结构的可靠性设计提供了实用参考。
     本课题得到国家“863”高技术研究发展计划项目:《复杂产品协同设计、仿真、优化一体化平台研究开发及其应用》(项目编号:2006AA04Z160)的资助。
China’s railway system is being challenged by higher speed and heavier load which brings great opportunities to the locomotive and rolling stock industry. The structural design of the railway vehicles has become one of the key technology development areas. Railway vehicles are products of multi-disciplinary technologies with lots of coupling, it is particular more complex for those EMUs at speed 200 km/h and higher. The development of China's high-speed railway vehicles not only benefited from the experience gained from China’s railway speed increases over the years but also the technology advancements throughout the world, however, lots of improvement opportunities remain. The traditional trial and error approach is still practiced widely in design processes, and the concept of structural optimization design is only in its early adoption. This thesis studied in detail the railway vehicle’s structural optimization design and its applications. Structural optimization design is applied to various stages of the design process such as the topological optimization in conceptual design, the shape optimization in detailed design, and the multidisciplinary optimization in the integration design. Multi-level optimization is applied in complex engineering design and the overall performance of the complex engineering products is optimized. With its product quality enhancement, short development cycle, and design efficiency improvement, multi-level, multi-disciplinary structural optimization design is the future of railway vehicle design.
     This thesis reviewed railway vehicle’s structural optimization design and discussed its recent developments throughout the world. The research work took a multi-level approach, targeted railway vehicle’s structural optimization design, covered topological optimization of conceptual design, shape (size) optimization of detailed design and multidisciplinary optimization of integration design. The thesis also discussed in detail the optimization methodology and strategy, and provided examples and typical applications. The main research areas of the thesis are
     (1) Detailed discussion of the structural optimization theory, summary of the main structural design algorithms. Detailed discussion of the methodologies and principles for those commonly used engineering optimization algorithms and multidisciplinary optimization.
     (2) Discussion of the optimization strategy using approximate model for efficiency improvement of complex structural designs. Introduction of Design of Experiment (DOE), response surface approximate model, Kriging approximate model, RBF approximate model, and the Taylor sequence model. Analysis of evaluation criteria for approximate model accuracy and comparison of RSM, Kriging and RBF models through examples.
     (3) Topological optimization design of the bogie pivoted arm using variable densities. Topological optimization results were ensured by strength test using detailed finite element model with contact relationships accounted, taking into consideration of stress constraint issues and convenience of operation for a real complex structure. The optimization of the structural conceptual design for railway vehicle is made possible.
     (4) Discussion of the principles of displacement sensitivity and stress sensitivity. Finite element model of a high-speed aluminum alloy body. Finite element analysis using specifications; Using plate thickness as design variables, calculation of vehicle body structure’s displacement sensitivity and stress sensitivity to the design variables in an finite element analysis. The structure weight lightening is achieved using the calculated sensitivities. This chapter provides a good example of fast and optimized design of complex structure using sensitivity information.
     (5) Multidisciplinary optimization study of the blades of the locomotive diesel engine turbocharger compressor. Three-dimensional parametric model was built for the blades. The most optimized results were obtained by multidisciplinary integrated design on structure and vibration frequency, using blade thickness at different cross-section as design variables, without sacrificing aerodynamic performance of the blades. This result also has typical model role。
     (6) Multidisciplinary optimization study of welded structure’s reliability upon fatigue. Discussion of Goodman fatigue’s safety coefficient, linear cumulative damage theory, and the international welded joint fatigue evaluation criteria (IIW, BS). Virtual Fatigue Test(VFT) technique is outlined, fatigue test on a Virtual Prototype, predicting designed fatigue life for the products; Multidisciplinary Feasible(MDF) method based on approximation model is proposed, with which optimization efficiency is greatly improved. Optimization model of welded bogie frame is created with considering welded joints fatigue damage and stress constrains. Developed program to calculate Goodman fatigue safety coefficient and welded joints fatigue damage. Integration of multiple programs and automatic optimization are achieved for welded frame fatigue damage and structural analysis. The weight of the welded frame was reduced by 11.6%, using Multidisciplinary Feasible (MDF) method based on approximation model, while satisfying the requirements of stress, fatigue safety coefficient and welded joint cumulative damage. This method provides a useful reference for the reliability design of the lightweight welded vehicle structures.
     This research is funded by the State "863" high-tech research and development project: "Coordinated design of complex product, simulation and optimization----integrated platform research, development and application" (Project Number: 2006 AA04Z160).
引文
[1]钱立新主编.世界高速铁路技术[M].北京:中国铁道出版社,2003
    [2]李世斌.世界高速铁路技术的发展动向.世界轨道交通.2007,(6):48-49
    [3]顿小红.从世界高速铁路发展看我国高速铁路建设.现代商贸工业.2007, 19(6):22-23
    [4]李蒂,安琪.国内外高速动车组的发展.电力机车与城轨车辆.2007, 30(5):1-5
    [5]陈伯施.货车技术发展及其存在的问题.铁道车辆.2007, 45(8):1-5
    [6]钱令希.工程结构优化设计.北京:水利电力出版社,1983
    [7]程耿东.工程结构优化设计基础.北京:水利电力出版社,1984
    [8]隋允康.建模·变换·优化——结构综合方法新进展.大连:大连理工大学出版社,1995
    [9] Sobieszczanski-Sobieski, J. Multidisciplinary Design Optimization: an Emerging, New Engineering Discipline, Advances in Structural Optimization; J. Herskovits (Ed.); Kluwer Academic Publishers, 1995
    [10]严隽耄.车辆工程(第二版).中国铁道出版社,1999
    [11]张国力.国外高速铁路机车车辆关键技术的研究.中国铁路.2006,(1):29-32
    [12]铁路“十一五"规划.铁道知识. 2007, (1): 22-33
    [13]钱立新.世界高速列车技术的最新进展.中国铁道科学.2003,24(4):1-11
    [14]张曙光.构建动车组自主创新体系,推动铁路技术装备现代化快速发展.中国铁路.2007, (9): 35-38
    [15]吴昌华,顾元宪.五千马力内燃机车车体结构优化设计.铁道学报.1990,12(4):1-6.
    [16]李先全.准高速双层客车车体轻量化的研究.铁道车辆. 1993, (2):32-35
    [17]乔务本,孙丽萍,欧锐容等.准高速客车车体的结构分析与优化研究.大连铁道学院学报.1995,16(3):41-47
    [18]肖守讷,周本宽等.高速动力车车体结构参数的优化.西南交通大学学报.1995,30 (1):14-19.
    [19]周亚平.东风11型准高速内燃机车车体优化设计.铁道机车车辆. 1997(2):20-23
    [20]李世亮,徐荣华.C64型敞车车体优化计算分析.铁道车辆. 1997, 35(4):12-15
    [21]赵洪伦,李玉家,周劲松等.铰接式高速客车车体承载结构优化研究.铁道学报.1997,19(S0):22-28.
    [22]李玉家,赵洪伦.铰接式高速客车车体承载结构轻量化设计.铁道车辆. 1998,36(1):5-9
    [23]李玉家.赵洪伦.基于频率约束的高速客车车体承载结构优化.铁道车辆. 2000,38(1):9-11
    [24]郁志城,余建军.结构优化及其在铁道车辆设计中的应用.中国铁道科学.1999, 20(2):79-85
    [25]陈喜红,辛成瑶.200 km/h高速动力车车体结构轻量化设计和静、动强度计算.铁道学报. 2002,2,(1):25-30
    [26]王剑,刘敬辉,顾元宪,王成国.新型铁道双层集装箱运输车的车体结构优化.铁道机车车辆. 2004,24(2):30-34
    [27]肖守讷,张开林,王松.摆式列车动力车车体结构优化.内燃机车. 2004,(7):1-3
    [28]佟维,吴昌华,邓澄文.底架承载机车车体结构优化设计.大连铁道学院学报.2003,24(2):22-25
    [29]王文斌,赵洪伦.高速客车轻量化车体耐碰撞结构的优化设计.同济大学学报(自然科学版). 2004, 32 (11):1499-1503
    [30]陈汉珍,马武福,隆孝军.装空气滤清器的DF8B型机车车体结构改进及减重优化.内燃机车. 2005, (6):4-10
    [31]马纪军.车体钢结构的轻量化研究.铁道车辆. 2005,43(4):7-10
    [32]刘美衡,罗意平. 120 km/h机械冷板冷藏车车体钢结构优化探讨.铁道车辆. 2006,44(8):22-26
    [33]赵洪伦,俞程亮,王文斌.高速磁浮列车车体承载结构优化设计研究.铁道学报. 2007, 29(4): 43-47
    [34]朱彦恒,孙守光,缪龙秀等.铰接式高速客车减振器参数优化研究.铁道学报.1996,18(6):90-94
    [35]陆正刚,胡用生.货车转向架动力学性能与悬挂结构设计和参数优化的综合研究.铁道车辆. 2001, 39(1):1-5
    [36]廖亚曦,王成国,刘金朝.应用响应面方法进行200 km/h转向架阻尼器参数的优化研究.铁道机车车辆. 2004, 24(5): 8-11
    [37]郝建华,曾京,邬平波.铁道客车垂向随机减振及悬挂参数优化.铁道学报.2006, 28(6):35-40
    [38]常崇义,王成国,王永菲等.基于响应面方法的车钩缓冲器特性曲线优化分析.中国铁道科学. 2007, 28(6):84-90
    [39]于慧,王文斌,虞丽娟等.基于疲劳设计的高速客车转向架构架优化设计.铁道车辆. 2001, 39 (8):9-13
    [40]宋晓文,李言义,刘诚波. SYD160型转向架构架强度的优化设计.铁道车辆. 2003, 41(4):27-30
    [41]胡振亚,黄成荣,陈厚嫦. X型转向架焊接构架的强度分析及结构优化.铁道机车车辆. 2003, 23 (6) :11-14
    [42]崔晓芳,林健,兆文忠.高速动力车构架侧梁焊接结构优化研究.材料科学与工艺.2004, 12 (6): 606-610
    [43]米彩盈,李芾.高速动力车转向架焊接构架优化设计.机车电传动. 2005, (1):46-49
    [44]罗华军,孙永鹏,彭福盈.新型3轴转向架构架结构优化设计.电力机车与城轨车辆. 2007, 30 (2): 26-30
    [45]李涛,肖守讷,陈喜红,张卫华.基于APDL的高速电力机车转向架构架有限元优化.机车电传动. 2007, (2):16-20
    [46] A.M.Harte等(爱尔兰).复合轻轨车体的多级优化法.国外铁道车辆. 2005,42(4):18-22
    [47] I. Y. Shevtsov等(荷).铁道车辆车轮外形的优化设计.国外铁道车辆. 2007, 44 (4):24-29
    [48] Y. He , J. McPhee. Optimization of lateral stability of rail vehicles. Vehicle system dynamics. 2002, 38(5):361-390
    [49] Yuping He , John Mcphee. Multidisciplinary Optimization of Multibody Systems with Application to the Design of Rail Vehicles. Multibody System Dynamics. 2005,14(2):111-135
    [50] Y. He, J. McPhee. Optimization of curving performance of rail vehicles. Vehicle system Dynamics. 2006, 43(12):895-923
    [51] N.C. Shieh, C.L. Lin, Y.C. Lin , K.Z. Liang. Optimal design for passive suspension of a light rail vehicle using constrained multiobjective evolutionary search. Journal of sound and vibration. 2005, 28(5): 407-424
    [52] S Datoussa?d, R Hadjit, O Verlinden, C Conti. Optimization design of multibody systems by using genetic algorithms. Vehicle System Dynamics. 1998,29(S1):704-710
    [53] T X Mei, R M Goodall. Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2002,216(1):53-63
    [54] Peter Eberhard, Florian Dignath, Lars Kübler. Parallel Evolutionary Optimization of Multibody Systems with Application to Railway Dynamics. Multibody System Dynamics. 2003,9(2):143-164
    [55] Per Wennhage. Weight Optimization of Large Scale Sandwich Structures with Acoustic and Mechanical Constraints. Journal of Sandwich Structures and Materials. 2003,5(3):253-266
    [56] Tatsuya Koyama,Hiroshi Yamakawa,Kohji Funatsu. Structural Optimization for Improvement of Train Crashworthiness. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. September 2004, Albany, New York , AIAA 2004-4353
    [57] J. F. Milho, J. A. C. Ambrósio, M. F. O. S. Pereira. Design of train crash experimental tests by optimization procedures. International Journal of Crashworthiness, Volume 9, Issue 5 September 2004 , pages 483 - 493
    [58] Shirotori Takeo, Shimomura Takayuki. Optimization for Spring Rate and Dumping Coefficient of Railway Vehicle Bogie Considering Trade-off between Hunting Speed Limit and Side Thrust. RTRI Report (Railway Technical Research Institute). 2004,18(5):17-22
    [59] Nishimura K, Perkins N.C, Weiming Zhang. Suspension dynamics and design optimization of a high speed railway vehicle. Rail Conference, 2004. Proceedings of the 2004 ASME/IEEE Joint. 2004.4:129-139
    [60] R Enblom . Two-level numerical optimization of ride comfort in railway vehicles. Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit. 2006,220(1):1-11
    [61] J Lee, J Kim. Kriging-based approximate optimization of high-speed train nose shape for reducing micropressure wave. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2007,221(2):263-270
    [62] B H Park, K Y Lee. Bogie frame design in consideration of fatigue strength and weight reduction. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2006,220(3):201-206
    [63] Byung Hwa Park, Nam Po Kim b, Jung Seok Kim b, Kang Yong Lee. Optimum design of tilting bogie frame in consideration of fatigue strength and weight. Vehicle System Dynamics. 2006, 44(12 ):887 -901
    [64] Dietz Stefan, Netter Helmuth, Sachau Delf. Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle System Dynamics. 1998, 29( 6): 385-402
    [65] Goo B C, Seo J W. Probabilistic estimation of the fatigue life of an electric car bogie frame. Key Engineering Materials. 2004, 261-263(Part 2):1281-1286
    [66] P H?ussler, A Albers. Shape optimization of structural parts in dynamic mechanical systems based on fatigue calculations. Structural and Multidisciplinary Optimization. 2005,29(5):361-373
    [67] Schmit L A. Structural design by systematic synthesis. Proc. Conf . Electronic comp. ASCE , New York , 1960 : 105- 122
    [68] Schmit L A. Farshi B. Some approximation concepts for efficient structural synthesis. AIAA J. , 1974,12(5): 56- 62
    [69] Schmit L A. Miura H. Approximation concepts for efficient structural synthesis. NASA CR 2552,1976
    [70] Schmit L A. Structural optimization - some ideas and insights. in : Atrek E , et al ( Eds) . New Direction in Optimum Design. New York : Wileg , 1984
    [71] Vanderplaats G N. Structural optimization-past, present and future [J ]. AIAA Journal, 1982, 20(7) : 992- 999.
    [72] Vanderplaats G N. Salajegheh E. A new Approximation method for stress constraints in structural synthesis. AIAA Journal, 1989, 27(3) : 1165-1181
    [73] Sepulveda A E, Schmit L A. Farshi B. Approximation-based global optimization strategy for structural synthesis. AIAA J. , 1993,31(1): 235- 256
    [74] Venkayya V B , Khot N S , Reddy V S. Optimization of structure based on the study of stain energy distribution. AFFDL-TR- 68-150 , 1968 : 111 - 153
    [75] Kuisalaas J . Minimum weight design of structure via optimality criteria. NASA TN D-7115 , 1972
    [76] Berke L, Khot N S. Use of optimality criteria methods for large scale systems. AGARD Lecture SEVIES, No. 70, On structural optimization, 1974
    [77] Rozvany GIN. Structural design via optimality criteria. Iaordrecht: Kluwer, The Netherlands, 1989
    [78] Cornell C A. Example of optimization design. An Introduction to Structural Optimization,1968(1), Solid Mechanics Division, Univ. of Waterloo, Canada
    [79] Pederson P. On the minimum mass layout of trusses. Conf. Proc. No.36, Symposiurn on structural Optimization, AGARD-CP-36-70, 1970
    [80] Pederson P. Optimal joint positions for Space trusses. J.Struct. Div., ASCE,99(ST10),1973
    [81] Zienkiewicz C O. Cambell J.S.,Shape optimization and sequential linear Programming,Optimal Structural Design, John Wiley, New York, 1973
    [82] Kirsh U. Synthesis of structural geometry using approximation concepts. Comp. Struct.,1982, 15 (3): 358-365
    [83] Topping B H V. Shape Optimization of skeletal structures,a review. J. Struct Enger,1983, ASCE,109(8):53-69
    [84]王希诚,钱令希.多层次联合的结构优化设计.计算结构力学及其应用. 1988,7(4):2-8
    [85]隋允康,由衷.具有两类变量的空间桁架分层优化方法.计算结构力学及其应用.1990,5(4):82-93
    [86]程耿东,结构优化新方法及其计算机实现.力学与实践. 1992, 14(1): 1-6
    [87] Bendsoe M P, Kikuchi N. Generating optimal topology in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 69: 197-224
    [88] Guedes J M, Kikuchi N. Preprocessing and post processing for materials based on the homogenization method with adaptive finite element method. Computer Methods in Applied Mechanics and Engineering, 1990, 83: 143-198
    [89] Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization method. Computer Methods in Applied Mechanics and Engineering, 1991, 93: 291-318
    [90] Yang R J, Chuang C H, Optimal topology design using linear programming. Computers and Structures, 1994, 52(2): 265-275
    [91]Yang R J. Topology Optimization Analysis with Multiple Constrains. American Society of Mechanical Engineers, Design Engineering Division. 1995, 147: 393-398
    [92]程耿东,张东旭.受应力约束的半间弹性体的拓扑优化.大连理工大学学报. 1995, 35(1): 317-322
    [93]周克民,胡云昌.结构拓扑优化过程中的拓扑分析.天津大学学报. 2001, 34(3): 340-345
    [94]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化ICM理论与方法.计算力学学报. 2000, 17(1): 28-33
    [95] Xie Y M, Steven G P, A simple evolutionary procedure for structures optimization. Computers and Structures, 1993, 49(5): 885-896
    [96] Querin Q M, Steven G P, Xie Y M. Evolutionary structural optimization (ESO) using bi-directional algorithm. Engineering Computations 1998, 49(15): 1031-1048
    [97]陈卫东,蔡萌林,于诗源.工程优化方法.哈尔滨:哈尔滨工程大学出版社. 2006:325-362
    [98] Goldberg D E, Samtani M P. Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computations. ASCE, Birmingham, Alabama, 1986:471-482
    [99] Rajeev S, Krishnamoorthy C S. Discrete optimization of structures using genetic algorithms. J. Struct.Eng. 1992, 118 (5):1233一1250
    [100] Coello C A, Ghristiansen A D. Multiobjective optimization of trusses using genetic algorithms. Computers and Structures, 2000,75:647-660
    [101] Topping B H V, et al. Topological design of truss structures using simulated annealing. Structural Engineering Review, 1996, 8 (2/3):301-314
    [102]蔡文学,程耿东.桁架结构拓扑优化设计的模拟退火算法.华南理工大学学报(自然科学版). 1998, 2b (9):78-84
    [103] Li X S, Templeman A B. Entropy-based optimum sizing of truss. Civil Engineering System I988, 5(3):158-169
    [104] Templeman A B. Entropy-based optimization methods for engineering design. Department of Civil Engineering, Liverpool University, UK, 1991
    [105]李芳,凌道盛.工程结构优化设计发展综述.工程设计学报. 2002, 9 (5):229-235
    [106]周克民,李俊峰,李霞.结构拓扑优化研究方法综述.力学进展. 2005,35(1):69-76
    [107] Giesing J, Barthelemy J F. A Summary of Industry MDO Applications and Needs. AIAA Paper 98-4737, 7thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Optimization and Analysis, St. Louis, MO, USA, September, 1998.
    [108]钟毅芳,陈柏鸿,王周宏.多学科综合优化设计原理与方法.武汉:华中科技大学出版社,2006
    [109]余雄庆.飞机设计新技术——多学科设计优化.航空科学技术. 1999,(1):19-21
    [110] Sobieszczanski-Sobieski J. A linear decomposition method for optimization problems. blueprint for development. NASA Technical Memorandum 83248, 1982
    [111] Sobieszczanski-Sobieski J. Optimization by Decomposition:A Step from Hierarchic to Non-Hierarchic Systems. NASA Technical Report CP-3031,1988
    [112] Sobieszczamki-Sobieski J . The Sensitivity of Complex Intenrally Coupled Systems. AIAA Journal, 1990, 28 (1):153-160
    [113] AIAA White Paper. Current state of the art: Multidisciplinary Design Optimization.Washington: AIAA MDO Technical Committee,1991
    [114] Renaud J .E, Gabriele G .A . Improved Coordination in Non-Hierarchic System Optimization. AIAA Journal, 1993,31(12):2367-2373
    [115] Cramer E. J., Dennis J. E., Frank P D, Lewis R. M., Shubin G R. Problem Formulation for Multidisciplinary Optimization. SIAM Journal Optimization, 1994,4(4):754-776
    [116] Sobieski, I. and Kroo, I. Aircraft design using collaborative optimization. AIAA Paper 96-0715, 1996
    [117]Sellar R .S. ,Batill S .M, Renaud J .E . Response surface based concurrent subspace optimization for Multidisciplinary system design. Nevada:AIAA,1996.AIAA-96-071
    [118] Kroo, I. MDO applications in preliminary design: status and directions, AIAA Paper 97-1408, 1997.
    [119] Braun, R. D., and Kroo, I. M. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment. Multidisciplinary Design Optimization: State of the Art, N. M. Alexandrov and M. Y. Hussaini, eds., SIAM, 1997, pp. 98-116.
    [120] Sobieszczanski-Sobieski J., Haftka R.T. Multidisciplinary aerospace design optimization: survey of recent developments. AIAA-96-0711. Structural Optimization,1997,14(1):1-23
    [121] Sobieszczanski-Sobieski J, Agte J, Sandusky R. Bi-Level Integrated System Synthesis (BLISS). Langley Research Center, Hampton, Virginia, NASA Technical Report TM-1998-208715
    [122] S. Kodiyalam and J. Sobieski. Bi-Ievel integrated system synthesis with response surfaces. AIAA Journal, 38(8), 2000.
    [123] Kroo, I. and Manning, V. Collaborative optimization: status and directions. AIAA Paper 2000-4721, 2000.
    [124] Kodiyalam, S. Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Phase I. NASA/CR-1998-208716, Sep.1998
    [125] Kodiyalam, S. and Yuan, C. Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Part II. NASA/CR-2000-210313, Nov. 2000.
    [126] Sobieszczanski-Sobieski, J., Kodiyalam, S., and R. J. Yang. Optimization of Car Body for Noise, Vibration and Harshness (NVH) and Crash., Proceedings of the AIAA/ASME/ASCE/AHS/ASC 41st Structures, Structural Dynamics and Materials Conference, AIAA, Atlanta, April 2000. AIAA Paper Number: AIAA-2000-1521.
    [127] Yang, R. J., Gu, L., Tho, C. H., and Sobieszczanski-Sobieski, J. Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing. 42nd AIAA/ASME/AHS/ASC, Structures, Structural Dynamics, and Materials, Seattle, Washington, April 2001, AIAA-2001-1273.
    [128] Kodiyalam, S. Yang, R. J. Lei Gu, Cheng-Ho Tho. Large-scale Multidisciplinary Optimization of a Vehicle System in a Scalable High Performance Computing Environment. Proceedings of DETC’01 ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference Pittsburgh, PA, September 9-12, 2001
    [129] Kodiyalam, S. and Sobieszczanski-Sobieski, J. Multidisciplinary design optimization. some formal methods, framework requirements, and application to vehicle design. International Journal of Vehicle Design (Special Issue), 2001,25(1/2): 3-22
    [130] Kevin F. Hulme. The design of a simulation-based framework for the development of solution approaches in multidisciplinary design optimization: (dissertation of Doctor of Philosophy). State University of New York at Buffalo. 2000
    [131] M. Alexandra Ahlqvist. Dependency-tracking object-oriented multidisciplinary design optimization (mdo) formulation on a large-scale system: (dissertation of Doctor of Philosophy). University of Central Rorida. 2001
    [132]兆文忠,杨德庆,李福.结构系统优化分解法的解耦研究.大连铁道学院学报. l995,16(1):18-23
    [133]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用.航空学报. 2000,21(1):1-7
    [134]王健.导弹总体多学科设计优化技术.战术导弹技术.2000 , (4) :1-7
    [135]陈柏鸿.多领域优化设计中耦合因素的一种协调方法.机械科学与技术. 2000 ,19(6) :872 - 876.
    [136]胡峪,李为吉.飞机多学科设计的分级优化方法.西北工业大学学报. 2001 ,19(1) :144 - 147.
    [137]李响,李为吉.基于序列响应面方法的协同优化算法.西北工业大学学报. 2003,21(1):79-82
    [138]钟毅芳,陈柏鸿,肖人彬,刘继红.复杂机械产品协同寻优相关技术的研究.中国机械工程. 2002 ,13 (6) :515~517
    [139]陈琪锋,戴金海.多目标的分布式协同进化MDO算法.国防科技大学学报. 2002 ,24(4) :12-15.
    [140]薛飞,余雄庆.协同优化在机翼气动/结构一体化设计中初步应用.航空计算技术. 2004 ,34(1) :82 - 86.
    [141]陈飚松.热传导与结构耦合系统的灵敏度分析及优化设计(:博士学位论文).大连理工大学. 2001
    [142]韩明红.复杂工程系统多学科设计优化方法及技术研究:(博士学位论文).北京航空航天大学. 2004
    [143]刘克龙.面向MDO的结构形状优化方法研究: (硕士学位论文).南京航空航天大学. 2004
    [144]张科施.飞机设计的多学科优化方法研究:(博士学位论文).西北工业大学. 2006
    [145] iSIGHT Reference Guide,Version9.0.Engineous software.2004
    [146]刘惟信.机械最优化设计.北京:清华大学出版社,1994
    [147] L. A. Schmit and Farshi, B. Some Approximation Concepts for Structural Synthesis. AIAA Journal, 1974, (5), 12: 692-699.
    [148] L. A. Schmit and Miura, H., Approximation Concepts for Structural Synthesis, NASA Contractor Report 552, March 1976.
    [149] CANFIELD, R. A. High-quality approximation of eigenvalues in structural optimization. AIAA JOURNAL 1990
    [150] Oleg Golovidov, Srinivas Kodiyalam, Peter Marineau. Flexible implementation of approximation concepts in an MDO framework. AIAA 98-4959
    [151] I. P. Sobieski and I. Kroo, Collaborative Optimization using Response Surface Estimation, 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1998. AIAA Paper No. AIAA-98-0915.
    [152] Kodiyalam S, Su Lin, J Wujek. Design of experiments based response surface models for design optimization. Proc. 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. (held in Long Beach, CA), 1998: 2718–2727 [153 ]J.F. Rodríguez, V.M. Pérez, D. Padmanabhan , J.E. Renaud. Sequential approximate optimization using variable fidelity response surface approximations. Structural and Multidisciplinary Optimization. 2001, 22(1) :24-34
    [154] Simpson T. W., Lin, D. K. J., Chen W. Sampling Strategies for Computer Experiments: Design and Analysis. International Journal of Reliability and Application, 2001,2(3):209-240
    [155]方开泰,马长兴.正交与均匀试验设计[M ].北京:科学出版社,2001.
    [156] Cressie, N. A. C. Statistics for Spatial Data. Revised Edition, John Wiley &Sons, New York. 1993
    [157] Matheron, G. Principles of Geostatistics. Economic Geology. 1963,Vol. 58, pp.1246-1266.
    [158] Sacks J , Welch W J , Mitchell T J. Design and Analysis of Computer Experiments. Statistics Science , 1989 ,4 (4) :409-435
    [159] Welch W J , Buck R J , Sacks J . Predicting and Computer Experiments. Technometrics , 1992 , 34(1) :15-25
    [160] Timothy W. Simpson; Timothy M. Mauery; John J. Korte; Farrokh Mistree. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal 2001vol.39 no.12 (2233-2241)
    [161]徐亚栋,钱林方,陈龙淼.基于Kriging方法的复合材料身管结构近似分析.中国机械工程. 2007,18(8):988-990
    [162]韩永志,高行山,李立州.基于Kriging模型的涡轮叶片多学科设计优化.航空动力学报2007,22(7):1055-1059
    [163]王晓锋,席光.基于Kriging模型的翼型气动性能优化设计.航空学报,2005 ,26(5) :545-549
    [164] B. Wang. Parameter Optimization in Radial Basis Function Response Surface Approximations. AIAA-2002-1344
    [165] Masao Arakawa, Hirotaka Nakayama, Hiroshi Ishikawa. Approximate Optimization Using Radial Basis Function Networks and Genetic Range Genetic Algorithms. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 30 August-1 September 2004, Albany, New York. AIAA 2004-4503
    [166] Giunta A A, Watsony L T. A Comparison of Approximation Modeling Techniques: Polynomial versus Interpolating Models. AIAA-98-4758.
    [167] H. A Eschenauer, N. Olhoff. Topology optimization of continuum structures: A review. Applied Mechanics Review. 2001, 54(4): 331~390
    [168]罗震,陈立平,黄玉盈等.连续体结构的拓扑优化设计.力学进展. 2004,34(4): 463~476
    [169]朱灯林,陈俊伟等.结构拓扑优化设计的研究现状及其应用.机械制造与自动化. 2005,34(6): 7~11
    [170] W. Dorn, R . Gomory, H Greenberg. Automatic design of optimal structures. J. de Mechanique. 1964,3(1):25-52
    [171]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1996
    [172]王凤洲等.广深210km/h电动车组中间动车车体结构静强度测试[R].中国北车集团四方车辆研究所,2002, 11
    [173]吴国视等.广深210km/h电动车组中间动车车体结构固有频率测试[R].吉林大学测试科学实验中心,2002,12
    [174]中华人民共和国铁道部.高速铁道车辆强度设计及试验鉴定暂行规定.2000.8
    [175]朱梅林.涡轮增压器原理.北京:国防工业出版社,1982.
    [176]朱大鑫.涡轮增压与涡轮增压器.北京:机械工业出版社, 1997.
    [177]刘淑华.柴油机废气涡轮增压器的研制.内燃机车. 2003,(1):19-24
    [178] Keiichi Shiraishi等.新一代大型涡轮增压器.国外内燃机车.2006 (1): 17-22
    [179] P M Came, C J Robinson. Centrifugal compressor design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. Volume 213, Number 2 / 1999:139-155
    [180] Hartmut Krain, Review of Centrifugal Compressor’s Application and Development. ASME Journal of Turbomachinery,2005, 112:24-34 .
    [181] Rolf Dornberger, Dirk Büche, Peter Stoll. Multidisciplinary optimization in turbomachinery design. European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS 2000 . Barcelona, 11-14 September 2000
    [182] Michael J. Plat. Matthew Marsh. Multidisciplinary optimization of a LH2 turbopump design in an agile engineering environment. American Institute of Aeronautics and Astronautics Joint Propulsion Conference and Exhibit Von Braun Center, Huntsville, Alabama July 20-23, 2003. AIAA-2003-4765
    [183] Weitzman P S. Platt M J. Yu MM. Multi-Disciplinary Optimization of a Turbocharger Compressor.2003 International iSIGHT Automotive Conference, May 20-21,2003, Southfield, MI
    [184] David Japikse, Michael J. Platt. Optimization in component design and redesign. The 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, March 07-11, 2004:132-145
    [185]王尚锦.离心压缩机三元流动理论及应用.西安:西安交通大学出版社,1991.6.
    [186]张明辉,王尚锦.离心压缩机叶轮的形状优化设计.机械设计. 2001 ,2 :13-15
    [187]席光,王晓锋,蒋三红,等.基于三维粘性流动分析的离心压缩机叶轮设计方法.工程热物理学报,2002,23(增刊):55-57.
    [188]王晓锋,席光,王尚锦.离心压缩机叶轮的响应面优化设计Ⅰ:优化设计方法.工程热物理学报,2004(3):50-52.
    [189]席光,王晓锋,王尚锦.离心压缩机叶轮的响应面优化设计Ⅱ:实例及讨论.工程热物理学报,2004(3):53-55.
    [190]杜建一,祁志国,汤华等.高比转速离心压气机叶轮的设计及其三维流场分析.工程热物理学报2005,26(3):420-422
    [191]杨策,马朝臣,王航.离心压气机叶轮设计方法研究进展.内燃机工程. 2002, 2:54-59
    [192]杨策,王航.高速离心压气机的设计与流场数值计算.工程热物理学报.2003,24(2):234-236
    [193]张虹,马朝臣.车用涡轮增压器可展直纹面叶片设计方法研究.内燃机学报.2005,23(1):58-62
    [194]张虹,马朝臣.车用涡轮增压器压气机叶轮几何参数优化设计和性能分析.北京理工大学学报. 2005,25(1):22-27
    [195]高丽敏,刘海湖,王尚锦.离心压缩机直纹面叶轮的网格生成方法.应用力学学报. 2006,23(3):450-452
    [196]伊卫林,黄鸿雁,韩万金.基于遗传算法与响应面模型的压气机叶片气动优化设计.推进技术. 2006,27(6):510-514
    [197]李兵,朱梅林,陈晓伟,柯蓬勃.涡轮增压器叶片的振动特性分析.车用发动机.1999:04(2):28-32
    [198]张凤格,李惠彬,王国兵,等.涡轮增压器压气机叶片振动分析.噪声与振动控制. 2003, 23 (6) : 13-14
    [199]马玉星,李惠彬,王一棣,等.涡轮增压器叶片振动分析.振动、测试与诊断.2005,25(2):131~133
    [200]刘淑华.增压器压气机工作轮的模态分析与应用[D].大连:大连理工大学,2003
    [201]陈朝辉,毕玉华,申立中,涡轮增压器压气机叶片模态特性分析.拖拉机与农用运输车. 2006,33(4):28-29
    [202]徐灏.疲劳强度(第一版).北京:高等教育出版社,1988:1-212
    [203] Fuchs H O, Stephens RT. Metal fatigue in engineering, John Wiley&Sons.1980
    [204]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003
    [205] Krajcinovic D, Lemaitre J.Continuum damage mechanics: theory and application, Springe Verlag. 1987
    [206]赵少汴,王忠保.抗疲劳设计——方法与数据[M].北京:机械工业出版社,1997.
    [207] SCHIJVE JAAP.Fatigue of structures and materials [M]. Netherlands: kluwer academic publishers, 2001.
    [208]丁彦闯,兆文忠.提高焊接结构疲劳寿命的刚度协调策略与应用[J].焊接学报.2007, 28 (12): 31-34.
    [209]项彬,史建平,郭灵彦等.铁路常用材料Goodman疲劳极限线图的绘制与应用.中国铁道科学. 2002,23(4):72-76
    [210]赵永翔,杨冰,彭佳纯等.铁道车辆疲劳可靠性设计Goodman-Smith图的绘制与应用.中国铁道科学. 2005,26(6):6-12
    [211]刘德刚,侯卫星,王风洲等.基于有限元技术的构件疲劳寿命计算.铁道学报.2004,26(2):47-51
    [212] Wolfgang Fricke. Fatigue analysis of welded joints: state of development. Marine Structures. Volume 16, Issue 3, May 2003, Pages 185-200
    [213] Taylor D,Barrett N,Lucano G.Some new methods for predicting fatigue in welded joints [J]. International Journal of Fatigue, 2002,24(5):509-518.
    [214] The International Institute of Welding.Fatigue design of welded joints and components ( IIW Docs XIII-1539-96/ XV–845– 96) [R]. Cambridge: Abington Publishing, 1996.
    [215] BS7608.Code of Practice for Fatigue Design and Assessment of Steel Structures [R].London:British Standards Institution,1993.
    [216]兆奇,丁彦闯.焊接结构虚拟疲劳试验技术研究.机械设计. 2007,(1):31-34
    [217] UIC515-4.Passenger rolling stock trailer bogies-running gear bogie frame structure strength tests[S].International Union of Railways, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700