用户名: 密码: 验证码:
生、炒酸枣仁相伍抗抑郁作用机制及相伍后化学成分变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:明确生、炒酸枣仁(1:1)相伍的抗抑郁作用及单胺能系统作用机制。阐明生、炒酸枣仁相伍后化学成分变化。
     方法:
     1.生、炒酸枣仁相伍抗抑郁作用研究
     1.1生、炒酸枣仁相伍对行为绝望模型的作用
     将ICR小鼠随机分为5组,每组10只,分别为模型组、氟西汀组、生枣仁组、炒枣仁组和相伍组。各给药组灌胃给予相应药物,模型组给予同体积蒸馏水。于末次给药后1h,进行小鼠游泳应激实验和小鼠悬尾应激实验,记录小鼠6min内后4min的累计不动时间。
     1.2生、炒酸枣仁相伍对氟西汀的抗抑郁协同作用
     将ICR小鼠随机分为6组,每组10只,分别为模型组、氟西汀组、生枣仁联合组、炒枣仁联合组、相伍联合组。各给药组灌胃给予相应药物,模型组给予同体积蒸馏水。于末次给药后1h,进行小鼠游泳应激实验和小鼠悬尾应激实验,记录小鼠6min内后4min的累计不动时间。
     1.3生、炒酸枣仁相伍抗抑郁作用的量效关系与时效关系研究
     将ICR小鼠随机分为5个给药剂量组(2.5g/kg,5g/kg,10g/kg,20g/kg,40g/kg),灌胃途径给药,于末次给药后1h,进行小鼠游泳应激实验,记录小鼠6min内后4min的累计不动时间。
     将ICR小鼠随机分为5个给药天数组(5天,7天,9天,11天,14天),灌胃途径给药,于末次给药后1h,进行小鼠游泳应激实验,观察6min,记录小鼠6min内后4min的累计不动时间。1.4生、炒酸枣仁相伍对小鼠慢性应激抑郁模型的作用
     将ICR小鼠随机分为4组,每组10只,分别为空白组、模型组、氟西汀组和相伍组。除空白组外,其余各组采用孤养结合慢性轻度不可预见性刺激的方法,进行连续21天的刺激,复制小鼠慢性应激抑郁模型,从造模第11天开始,各给药组于每次刺激前1h灌胃给予相应药物,模型组和空白组灌胃给予同体积蒸馏水,连续11天。末次刺激结束后,记录各组小鼠体质量变化,糖水消耗百分比和旷场行为学参数。
     1.5生、炒酸枣仁相伍对小鼠利血平拮抗模型的作用
     将ICR小鼠随机分为3组,每组10只,分别为模型组、丙咪嗪组和相伍组。各给药组灌胃给予相应药物,模型组给予同体积蒸馏水,连续11天。于末次给药1h后,腹腔注射利血平(2.5mg/kg)。观察小鼠体温下降、睁眼不能和运动不能情况,记录体温下降值、睁眼不能的百分率和运动不能的百分率。
     1.6生、炒酸枣仁相伍对5-HTP引起的小鼠甩头模型的作用
     将ICR小鼠随机分为3组,每组10只,分别为模型组、氟西汀组和相伍组。各给药组灌胃给予相应药物,模型组给予同体积蒸馏水,连续11天。于末次给药1h后,腹腔注射5-HTP(300mg/kg),观察小鼠甩头行为,记录15min内的甩头次数。1.7生、炒酸枣仁相伍对小鼠育亨宾毒性增强模型的作用将ICR小鼠随机分为3组,每组10只,分别为模型组、丙咪嗪组和相伍组。各给药组灌胃给予相应药物,模型组给予同体积蒸馏水,连续11天。于末次给药1h后,皮下注射育亨宾(30mg/kg),空白组皮下注射同体积生理盐水,观察记录各组24h内死亡只数,计算死亡百分率。2.生、炒酸枣仁相伍抗抑郁作用机制研究2.1生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马和额叶皮质5-HT含量及生物代谢的影响
     将ICR小鼠随机分为4组,每组10只,分别为空白组、模型组、氟西汀组和相伍组。除空白组外,其余各组采用孤养结合慢性轻度不可预见性刺激的方法,进行连续21天的刺激,复制小鼠慢性应激抑郁模型,从造模第11天开始,各给药组于每次刺激前1h灌胃给予相应药物,模型组和空白组灌胃给予同体积蒸馏水,连续11天,末次刺激结束后,断头取脑,分离海马和额叶皮质,ELISA法检测5-HT、5-HTIAA和TPH含量,并推算5-HTIAA/5-HT比值。
     2.2生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马5-HT转运体编码基
     因(S1c6a4)和5-HTlA受体编码基因(Htrla)表达的影响
     将ICR小鼠随机分为4组,每组10只,分别为空白组、模型组、氟西汀组和相伍组。除空白组外,其余各组采用孤养结合慢性轻度不可预见性刺激的方法,进行连续21天的刺激,复制小鼠慢性应激抑郁模型,从造模第11天开始,各给药组于每次刺激前1h灌胃给予相应药物,模型组和空白组灌胃给予同体积蒸馏水,连续11天,末次刺激结束后,断头取脑,冰上迅速分离海马,随机选择5个样本,采用荧光定量PCR技术,检测海马部位Slc6a4和Htrla的基因表达量。2.3生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马和额叶皮质DA含量及生物代谢的影响
     将ICR小鼠随机分为4组,每组10只,分别为空白组、模型组、氟西汀组和相伍组。除空白组外,其余各组采用孤养结合慢性轻度不可预见性刺激的方法,进行连续21天的刺激,复制小鼠慢性应激抑郁模型,从造模第11天开始,各给药组于每次刺激前1h灌胃给予相应药物,模型组和空白组灌胃给予同体积蒸馏水,连续11天,末次刺激结束后,断头取脑,分离海马和额叶皮质,ELISA法检测DA、HVA和TH含量,并推算HVA/DA比值。2.4生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马DA转运体编码基因(Slc6a3)表达的影响
     将ICR小鼠随机分为4组,每组10只,分别为空白组、模型组、氟西汀组和相伍组。除空白组外,其余各组采用孤养结合慢性轻度不可预见性刺激的方法,进行连续21天的刺激,复制小鼠慢性应激抑郁模型,造模第11天起,各给药组于每次刺激前1h灌胃给予相应药物,模型组和空白组灌胃给予同体积蒸馏水,末次刺激结束后,断头取脑,冰上迅速分离海马,随机选择5个样本,采用荧光定量PCR技术,检测小鼠海马部位Slc6a3基因表达量。3.生、炒酸枣仁相伍后化学成分变化
     比较生酸枣仁水煎提取物(简称生品水煎物)、炒酸枣仁水煎提取物(简称炒品水煎物)、生、炒酸枣仁合煎提取物(简称合煎物)的HPLC-ELSD指纹图谱,分析生、炒酸枣仁相伍后化学成分变化;采用HPLC-ELSD法同时检测生品水煎物、炒品水煎物、合煎物中三种成分斯皮诺素、酸枣仁皂苷A和酸枣仁皂苷B的含量,分析生、炒酸枣仁相伍后抗抑郁有效成分含量变化
     结果:
     1.生、炒酸枣仁相伍对行为绝望模型的作用
     与模型组相比,相伍组和氟西汀组小鼠游泳不动时间显著缩短(P<0.01),作用优于生枣仁组(P<0.05)。相伍组和氟西汀组小鼠悬尾不动时间显著缩短(P<0.01),作用优于生枣仁组(P<0.05)。
     2.生、炒酸枣仁相伍对氟西汀的抗抑郁协同作用
     与氟西汀组相比,相伍联合组小鼠游泳不动时间和悬尾不动时间显著缩短(P<0.05),表现出对氟西汀的抗抑郁协同作用。生枣仁联合组和炒枣仁联合组小鼠游泳不动时间和悬尾不动时间没有显著缩短(P<0.05),未表现出对氟西汀的抗抑郁协同作用。
     3.生、炒酸枣仁相伍抗抑郁作用的量效关系与时效关系
     在2.5g/kg-10g/kg剂量范围内,生、炒酸枣仁相伍抗抑郁作用存在剂量剂量依赖性,超出此范围,抗抑郁作用不再继续加强,10g/kg抗抑郁作用最佳。
     在5-11天给药天数范围内,生、炒酸枣仁相伍抗抑郁作用存在时间依赖性,超出此范围,抗抑郁作用不再增加。连续给药11天抗抑郁作用最佳。
     4.生、炒酸枣仁相伍对小鼠利血平拮抗模型的作用
     生、炒酸枣仁相伍能对抗利血平拮抗模型的抑郁症状,表现为注射利血平2h后体温下降显著减少(P<0.01);运动不能的百分率显著降低(P<0.05,P<0.01)。
     5.生、炒酸枣仁相伍对5-HTP引起的甩头模型的作用
     生、炒酸枣仁相伍能增加5-HTP引起的小鼠甩头次数,表现腹腔注射5-HTP后15min内甩头次数显著提高(P<0.05)。
     6.生、炒酸枣仁相伍对小鼠育亨宾毒性增强模型的的作用
     生、炒酸枣仁相伍不能增强育亨宾的毒性反应,表现为小鼠24h内死亡百分率未见显著提高(P>0.05)。
     7.生、炒酸枣仁相伍对小鼠慢性应激抑郁模型的作用
     生、炒酸枣仁相伍能改善慢性应激抑郁模型的抑郁症状,表现为显著提高慢性应激抑郁小鼠体质量增长速度(P<0.01);显著提高糖水消耗百分比(P<0.05);显著增加小鼠穿格数、直立次数、理毛次数(P<0.01,P<0.05),减少排便次数(P<0.05)。
     8.生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马和额叶皮质部位5-HT含量及生物代谢的影响
     生、炒酸枣仁相伍能显著增加慢性应激抑郁小鼠海马和皮质部位的5-HT含量(P<0.05),显著增加海马部位5-HIAA含量(P<0.01),提高海马部位5-HIAA/5-HT比值(P<0.05)。
     9.生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马5-HT转运体编码基因(Slc6a4)和5-HTlA受体编码基因(Htrla)表达量的影响
     生、炒酸枣仁相伍能够下调慢性应激抑郁小鼠海马部位Slc6a4基因表达,上调海马部位Htr1a基因表达。
     10.生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马和额叶皮质部位DA含量及生物代谢的影响
     生、炒酸枣仁相伍能显著增加慢性应激抑郁小鼠海马部位DA含量(P<0.05)。
     11.生、炒酸枣仁相伍对慢性应激抑郁模型小鼠海马DA转运体编码基因(Slc6a3)的影响
     生、炒酸枣仁相伍能够下调慢性应激抑郁小鼠海马部位Slc6a3基因表达。
     12.生、炒酸枣仁相伍后化学成分变化
     通过对比合煎物、生品水煎物和炒品水煎物的HPLC-ELSD指纹图谱,三种水煎物的峰数量一致,合煎物中未发现新成分。
     合煎物中一些峰的峰面积百分比发生变化,表明生、炒酸枣仁相伍后一些成分比例发生变化。
     13.生、炒酸枣仁相伍后斯皮诺素、酸枣仁皂苷A和酸枣仁皂苷B含量变化
     合煎物斯皮诺素含量为3.7898mg,酸枣仁皂苷A含量为2.2849mg,在三种水煎物中含量最高;酸枣仁皂苷B含量为1.1823mg,居于生品水煎物和炒品水煎物之间。
     结论:
     1.生、炒酸枣仁相伍抗抑郁作用显著,优于生、炒酸枣仁单用。
     2.生、酸枣仁相伍抗抑郁作用机制为:抑制突触间隙5-HT的重摄取,增加突触后膜5-HT1A受体,提高中枢5-HT能系统的功能和兴奋性;抑制突触间隙DA的重摄取,提高中枢部分脑区DA含量。
     3.生、炒酸枣仁相伍后没有化学成分没有显著变化,一些成分比例产生较大变化。斯皮诺素含量和酸枣仁皂苷A含量增加。
Objective:
     To detect the changes of chemical components after the compatibility of SZS with its processing product, and to observe the antidepressant effects of the compatibility of crude SZS with SZS (1:1), and then to elucidate the mechanism of the central monoaminergic nerve system.
     Method:
     1. The research of antidepressant effect of the compatibility of SZS with its processing product.
     1.1The antidepressent effect of the the compatibility of SZS with its processing product on the despair model.
     The ICR mice were randomly divided into5groups,10rats in each group, respectively, model group, fluoxetine group,SZS crude, processing product group and combination group. After the last administration of1H, the mouse swimming test and mice tail suspension stress experiment, observe them for6min, record different mice group after4min motionless time.
     1.2The antidepressent combination effect of the the compatibility of SZS with its processing product on the fluoxetine.
     The ICR mice were randomly divided into6groups,10rats in each group, respectively, model group, fluoxetine group, szs combined group, fried combined group, compatibility combined group. After the last administration of1H, the mouse swimming test and mice tail suspension stress experiment, observe them for6min, record the mice's motionless time after4min.
     1.3Study on the dose effect relationship and time effect relationship antidepressant effect of the the compatibility of SZS with its processing product.
     The ICR mice were randomly divided into5dosage groups (2.5g/kg,5g/kg,10g/kg,20g/kg,40g/kg), after the last administration of1H, the mouse swimming stress experiment, observe them for6min, record the mice's motionless time after4min.
     The ICR mice were randomly divided into5dosage day array (5days,7days,9days,11days,14days), after the last administration of1H, the mouse swimming stress experiment, observe them for6min, record the mice's motionless time after4min.
     1.4The effects of the the compatibility of SZS with its processing product on mouse reserpine antagonistic model.
     The ICR mice were randomly divided into3groups,10rats in each group, respectively, model group, imipramine group and compatibility group. In the1h after the last administration, intraperitoneal injection of reserpine (2.5mg/kg). Mice were observed for hypothermia, eyes openless and motionless, recording body temperature decrease, eyes openless percentage and percentage of motionless.
     1.5The effect of the compatibility of SZS with its processing product on mouse reserpine antagonistic model of5-HTP induced head twitches.
     The ICR mice were randomly divided into3groups,10rats in each group, respectively, model group, fluoxetine group and compatibility group. In the1h after the last administration, intraperitoneal injection of5-HTP (300mg/kg), and observe the behavior of mice head shakes, recorded head shake times in15min.
     1.6The compatibility of SZS with its processing product of effect on the mice yohimbine increased toxicity model.
     The ICR mice were randomly divided into3groups,10rats in each group, respectively, model group, imipramine group and compatibility group. In the1h after the last administration, subcutaneous injection of yohimbine (30mg/kg), control group were injected with the same volume of physiological saline, observed the died in24h, calculate the mortality percentage.1.7The compatibility of SZS with its processing product of effects on mice with chronic
     stress depression model. The ICR mice were randomly divided into4groups,10rats in each group, respectively, into blank group, model group, fluoxetine group and compatibility group. Except the blank group, other groups with solitary condition with chronic mild not foreseen by method of stimulation, stimulation for21consecutive days.The last time after stimulation, record the body mass of mice changes, and the sugar consumption percentage and open field behavior parameters.
     2. Study on antidepressent effect mechanism of the compatibility of SZS with its processing product
     2.1The study on the effects of the compatibility of SZS with its processing product on chronic stress depression model mice in hippocampus and frontal cortex of5-HT biological metabolism.
     The ICR mice were randomly divided into4groups,10rats in each group, respectively, into blank group, model group, fluoxetine group and compatibility group. Except the blank group, other groups with solitary condition with chronic mild not foreseen by method of stimulation, stimulation for21consecutive days, The last time after stimulation, the brains were removed, the cortex of frontal lobe and hippocampus in separation, ELISA detection of5-HT,5-HTIAA and TPH contents, and calculate the5-HTIAA/5-HT ratio.
     2.2Study on the effects of the compatibility of SZS with its processing product on the chronic stress depression model mice hippocampus Slc6a4and Htrla gene expression.
     The ICR mice were randomly divided into4groups,10rats in each group, respectively, into blank group, model group, fluoxetine group and compatibility group. The last time after stimulation, the brains were removed, the ice quickly isolated hippocampal, randomly selected5samples, using fluorescence quantitative PCR technology, detect the expression quantity of Slc6a4and Htrla genes in the hippocampus.
     2.3Study on the effects of the compatibility of SZS with its processing product on chronic stress depression model mice in hippocampus and frontal cortex of DA biological metabolism
     The ICR mice were randomly divided into4groups,10rats in each group, respectively, into blank group, model group, fluoxetine group and compatibility group. Except the blank group, other groups with solitary condition with chronic mild not foreseen by method of stimulation, stimulation for21consecutive days.The last time after stimulation, the brains were removed, the cortex of frontal lobe and hippocampus in separation, ELISA detection of DA, HVA and TH contents, and calculate the HVA/DA ratio.
     2.4Study on the effect of the compatibility of SZS with its processing product on chronic stress depression model mice hippocampus Slc6a3gene expression.
     The ICR mice were randomly divided into4groups,10rats in each group, respectively, into blank group, model group, fluoxetine group and compatibility group. the last after stimulation, the brains were removed, the ice quickly isolated hippocampal, randomly selected5samples, using fluorescence quantitative PCR, expression of Slc6a3gene in mice hippocampus detection.
     3. The changes of components after the compatibility of SZS with its processing product.
     To use the Hyphenated techniques of HPLC-ELSD, I compare the SZS decoction,its processing produce decoction, and mixed decoction,the I detect the content of Jujuboside A, Jujuboside B and spinosin.I analysis the changes of the components in the index components of the compatibility of SZS with its processing product.
     Results:
     1. The antidepressent effect of the the compatibility of SZS with its processing product on the despair model.
     Compared with the model group, compatibility group and fluoxetine group mice immobility time was significantly shortened (P<0.01), the function is better than SZS crude and processing product group (P<0.05). compatibility group and fluoxetine group immobility time in tail suspension was significantly shortened (P<0.01), the function is better than SZS (P<0.05).
     2. The anti depression combination effects of the compatibility of SZS with its processing product on fluoxetine.
     Compared with fluoxetine in the I group, compatibility group mice non swimming time and immobility time in tail suspension were significantly shortened (P<0.05), it is showed that the anti depression combination effects of fluoxetine. SZS crude and processing product group mice immobility time and immobility time in tail suspension were not significantly shortened (P<0.05), it showed no effect of antidepressant on fluoxetine.
     3. The dose effect relationship and time effect relationship antidepressant effect of the compatibility of SZS with its processing product.
     In the range of2.5g/kg-10g/kg,there is dose dependent of antidepressant effects of the the compatibility of SZS with its processing product, beyond this range, the antidepressant effect no longer increases. Antidepressant effect is best in10g/kg.
     In5-11days delivery time range, there is time dependent of antidepressant effects of the compatibility of SZS with its processing product,beyond this range, the antidepressant effect no longer increases. Continuous administration for11days is the best for antidepressant effect.
     4. The influence of the compatibility of SZS with its processing product on mouse reserpine antagonistic model.
     The compatibility of SZS with its processing productcan antagonize the reserpine antagonistic model of depressive symptoms,showed that the injection of reserpine hypothermia significantly reduced after2H (P<0.01); motionless percentage significantly reduced th (P<0.05, P<0.01).
     5. The influence of the the compatibility of SZS with its processing product on mice model of5-HTP induced head twitches.
     The compatibility of SZS with its processing product can improve the mice5-HTP induced head twitches, it showed that after intraperitoneal injection of5-HTP15min significantly increased (P<0.05) the number of head twitches.
     6. The influence of the compatibility of SZS with its processing product on the mice model of yohimbine increased toxicity.
     The compatibility of SZS with its processing product does not increase the toxicity of yohimbine,it showed that the mice dieth percentage within24h was significantly increased (P>0.05).
     7. The influence of the compatibility of SZS with its processing product on mice with chronic stress depression model.
     The compatibility of SZS with its processing product can improve chronic stress depression model of depressive symptoms, were significantly increased in chronic stress depression mice body weight growth rate (P<0.01); increase sucrose consumption percentage (P<0.05); mice induced a significant increase in cell number, the number of wear upright, grooming (P<0.01, P<0.05), reduce the frequency of defecation (P<0.05).
     8. The influence of the compatibility of SZS with its processing product on chronic stress depression model mice in hippocampus and frontal cortex of5-HT biological metabolism.
     The compatibility of SZS with its processing product could significantly I ncrease the5-HT content in chronic stress depression mice hippocampus and cortical sites (P<0.05), significantly increased the content of5-HIAA in hippocampus (P<0.01), improve the ratio of5-HIAA/5-HT (P<0.05) in the hippocampus.
     9. The influence of the compatibility of SZS with its processing product on the chronic stress depression model mice hippocampus Slc6a4and Htrla gene expression.
     The compatibility of SZS with its processing product can regulate the expression of chronic stress depression mice hippocampus Slc6a4gene down, Htrl a gene expression in the hippocampus up.
     10. The influence of the compatibility of SZS with its processing product on chronic stress depression model mice in hippocampus and frontal cortex of DA biological metabolism.
     The compatibility of SZS with its processing product could significantly increase the DA content in hippocampus of chronic stress depression mice (P<0.05).
     11. The influence of the compatibility of SZS with its processing product on the chronic stress depression model mice hippocampus Slc6a3gene.
     The compatibility of SZS with its processing product can regulate the expression of Slc6a3in hippocampus of chronic stress depression mice gene down.
     12. The changes of the components of the after compatibility of SZS with its processing product
     By analyzing,the HPLC-ELSD chromatogram peaks of mixed decoction, SZS decoction and its processing product decoction, In the decoction of individual peak area percentage changes.
     13. The changes of three kinds of index components after compatibility of SZS with its processing product
     The mixed decoction spinosin was3.7898mg, Jujuboside A in mixed decoction for2.2849mg,the highest in the content of three kinds of water decoction; the content of Jujuboside B content for1.1823mg.
     Conclusions:
     1. The compatibility of SZS with its processing product has obvious antidepressant effect,better than in crude and fried alone.
     2. Antidepressive mechanism of the compatibility of SZS with its processing product can uptake through the inhibition of central5-HT, increased central5-HT system function and excitability. At the same time can inhibit the reuptake of central DA, increase the central content of DA.3. The compatibility of SZS with its processing product has no new components, each component of HPLC-ELSD had no significant change. In the three index components, spinosin content and Jujuboside A content increases.
引文
1.王燕.抗抑郁药的研究进展与应用评价[J].中国医院用药评价与分析.2005,5(2):81-84.
    2.抗抑郁药物市场研究报告[R].2009. http://www.docin.com/p-364812287. html.
    3.韩明飞,高东,孙学礼.应激抑郁动物模型的建立与评价[J].华西医学.2008,23(4):901-902.
    4.段名远,欧亚龙,谢文.盐酸帕罗西汀联合加味酸枣仁汤治疗抑郁症疗效观察[J].实用中医内科杂志,2011,26(1):60-62.
    5.王俅俅,钱奇,徐珞,等.加味酸枣仁汤对不稳定型心绞痛伴抑郁状态白细胞介素-17的影响[J].中西医结合心脑血管病杂志,2012,10(1):31-32.
    6.祝连生,谭倩,武锋.枣仁安神胶囊辅助治疗脑卒中后抑郁症[J].浙江中西医结合杂志,2007,17(8):463-464.
    7.郑锦英.甘麦大枣汤合酸枣仁汤加减治疗脑卒中后抑郁疗效观察[J].北京中医药,2009,28(4):291-292.
    8.傅萍萍,邓德厚,黄珍珍.酸枣仁加龙牡汤治疗恶性肿瘤患者抑郁症临床研究[J].福建中医药,2012,43(3):20-21.
    9.张峰,曹仲伟,张学杰,等.酸枣仁对慢性应激抑郁大鼠的治疗作用及作用机制探讨[J].山东师范大学学报:自然科学版,2005,20(2):88-90.
    10.赵启铎,舒乐新,王颖,等.酸枣仁总黄酮抗抑郁作用的实验研究[J].天津中医药,2011,28(4):335-337.
    11.赵启铎,舒乐新,王颖,等.酸枣仁总皂苷抗抑郁作用的实验研究[J].中南药学,2011,9(7):489-491.
    12.中医研究院中药研究所.北京药品生物制品鉴定所编,第2版,北京;人民卫生出版社,1974;225-226.
    13.江苏新医学院.中药大辞典(下册)[M].上海:上海人民出版社,1977.2534-2535.
    14.高学敏.中药学(下册)[M].北京:人民卫生出版社,2000.1315-1316.
    15.徐树南.酸枣仁炒用安神、生则醒神吗?[J].贵阳中医学院学报,1985,04:55-56.
    16.于锡海,张东奎.施今墨治疗不寐验案四则[J].山东中医杂志,1999,11:017.
    17.吕玉娥.“施今墨对药”“吕景山对穴”组方治疗失眠59例临床观察[J].世界中西医结合杂志,2013,07:714-716.
    18.姜敏.浅谈王琦教授治疗失眠的经验与思路[J].北京中医药大学学报,2010,06:425-426.
    19.吕景山.施今墨对药[M].人民军医出版社,2002,265-266.
    20. Otsuka H, Akiyama T, Kawai KI, et al. The structure of jujubo-sides A and B, the saponins isolated from the seeds of ZizyphusJujuba [J]. Phytochemistry,1978,17:1349-1352.
    21. Yoshikawa M, Murakami T, Ikebata A, et al. Bioactive saponins and glycosides. X. On the constituents of zizyphi spinosi semen, the seeds of Zizyphus jujuba Mill. var. spinosa Hu (1): structures and histamine release-inhibitory effect of jujubosides Al and C and acetyljujuboside B[J]. Chem Pharm Bull,1997,45(7):1186-1192.
    22. Matsuda H, Murakami T, Ikebata A, et al. Bioactive Saponins and Glycosides. ⅩⅣ. Structure Elucidation and Immunological Adjuvant Activity of Novel Protojujubogenin Type Triterpene Bisdesmosides, Protojujubosides A, B, and B-1, from the Seeds of Zizyphus jujuba var. spinosa (Zizyphi Spinosi Semen)[J]. Chem Pharm Bull,1999,47(12):1744-1748.
    23. Woo S. The structure of spinosin (2"-0-beta-glucosyl-swertisin) from Zizyphus vulgaris var. Spinosus[J]. Phytochemistry,1979,18:353-355.
    24. Gong Cheng,Yanjing Bai,Yuying Zhao.etal. Flavonoids from Ziziphus jujuba Mill var. spinosa[J]. Tetrahedron,2000,56 (45):8915-8920.
    25. Shin KH, Kim HY, Woo WS. Determination of flavonoids in seeds of Zizyphus vulgaris var. spinosus by high performance liquid chromatography [J]. Plant Med,1982,44 (2):94-96.
    26. Xie Y Y, Xu Z L, Wang H, et al. A novel spinosin derivative from Semen Ziziphi Spinosae[J]. Journal of Asian natural products research,2011,13(12):1151-1157.
    27.尹升镇,金河奎,金宝渊.酸枣仁生物碱的研究[J].中国中药杂志,1997,22(5):296-297.
    28. Han RH, Park MH, Han YN. Cyclic peptide and peptide alka-loids from seeds of Zizyphus vulgaris [J]. Phytochemistry,1990,29 (10):3315.
    29.洪庚辛,曹斌.酸枣仁研究进展[J].中药通报,1987,12(8):51.
    30.陈振德,许重远,谢立.超临界流体C02萃取酸枣仁脂肪油化学成分的研究[J].中草药,2001,32(11):976-977.
    31.曹琴,王凯伟.中药酸枣仁的化学成分研究[J].药学实践杂志,2009,27(3):209-213.
    32.郎杏彩,李明湘,贾秉义等.酸枣仁、肉多糖增强小鼠免疫功能和抗放射性损伤的实验研究[J].中国中药杂志,1991,16(6):366-368.
    33.郭胜民,范晓变,宋少刚.酸枣仁中阿魏酸的提取、分离与鉴定[J].西北药学杂志,1995,10(1):22-23.
    34.王和平,王建明,王冬妮.酸枣仁饮片及其炮制品皂昔类成分的指纹图谱研究[J].中国药学杂志,2006,03:173-175.
    35.周忻,余河水,张洁,马百平,刘萍.生、炒酸枣f仁HPLC指纹图谱比较[J].中国药物应用与监测,2007,04:26-28.
    36.王健.生、炒酸枣仁中镇静催眠成分探讨[J].中成药,1989,11(1):18.
    37.李晓东,杨培民,齐立红.酸枣仁炮制前后有效成分的比较分析[J].山东中医杂志,1999,05:33-34.
    38.李会军,李萍.HPLC法测定酸枣仁不同炮制品中两种黄酮碳苷的含量[J].中国中药杂志,2002,04:23-25.
    39.王健,林晓.生、炒酸枣仁中酸枣仁皂苷A和B的含量比较[J].中成药,1994,16(10):24.
    40.刘福祥,高剑锋.炒制程度对酸枣仁提取物的影响[J].中国中药杂志,1990,15(5):28.
    41.李玉娟,梁鑫淼,肖红斌,等.生,炒酸枣仁镇静催眠作用及化学成分比较[J].JournalofShenyangPharmaceuticalUniversity,2003,1:20.
    42.于定荣,杨梓懿,邹建武.酸枣仁不同炮制品中酸枣仁皂苷A和B及浸出物含量的测定[J].时珍国医国药,2007,11:2875-2876.
    43.张朝华,周好田,刘福祥.炒制程度对酸枣仁中黄酮甙类含量的影响[J].山东医药工业,1998,05:4-5.
    44.陈百泉,杜钢军,许启泰.酸枣仁皂苷的镇静催眠作用中药材2002;25(6):429-430.
    45.吴树勋,张建新.酸枣(仁,叶,肉)与酸枣皂甙A对中枢神经系统作用的实验研究[J].中国中药杂志,1993,18(11):685-687.
    46.郭胜民,范晓雯,宋少刚,赵强.酸枣仁总皂苷中枢抑制作用研究[J].西北药学杂志,1996,04:166-168.
    47.郭胜民,范晓雯,何建伟.酸枣仁总黄酮的中枢抑制作用[J].中药材,1998,11:578-579.
    48.王旭峰,何计国,陈阳,等.酸枣仁皂苷的提取及改善睡眠功效的研究[J].食品科学,2006,27(4):226-229.
    49.赵启铎.酸枣仁油中不饱和脂肪酸的药理实验研究[J].天津中医药,2005,22(4):331.
    50.李宝莉,夏传涛.不同提取工艺的酸枣仁油对小鼠镇静催眠作用的影响[J].西安交通大学学报(医学版),2008,29(4):228.
    51.乔卫.酸枣仁镇静催眠有效成分研究[D].天津:大津医科大学.2002.
    52.黄维,金邦筌.酸枣仁功效成分测定及改善睡眠保健功能的研究[J].时珍国医国药,2008,19(5):1173.
    53. Zhang M, Ning G, Shou C, et al. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus[J]. Planta Med,2003,69(08):692-695.
    54. Han H, Ma Y, Eun J S, et al. Anxiolytic-like effects of sanjoinine A isolated from Zizyphi Spinosi Semen:Possible involvement of GABAergic transmission[J]. Pharmacology Biochemistry and Behavior,2009,92(2):206-213.
    55.胡健等主编.中药现代研究与临床应用.北京:学苑出版社,1993:673.
    56.朱铁梁,胡占嵩,李璐,乔卫等.酸枣仁总生物碱抗抑郁作用的实验研究[J].武警医学院学报,2009,18(5):420.
    57.张丹丹,李亚妮,王金龙,等.酸枣仁中有效成分抗抑郁作用的实验研究[J].山西中医学院学报,2013(5):16-18.
    58.杨奕,乔卫,刘婧姝,等.酸枣仁抗抑郁活性组分配伍的研究[J].时珍国医国药,2012,23(1):7-8.
    59.荣春蕾,代永霞,崔瑛,等.酸枣仁对阴虚小鼠焦虑行为的影响[J].中药材,2008,31(11):1703.
    60.贺一新,赵素霞,崔瑛.酸枣仁抗焦虑活性物质分析[J].中药材,2010(2):229-231.
    61.刘菊芳等.酸枣仁抗大鼠实验性心律失常和心肌缺血作用的研究。第一军医大学学报,1985,5(11):31.
    62.吴树勋,张建新,徐涛,等.酸枣(仁、叶、肉)与酸枣皂苷A中抠神经系统作用的实验研究[J].中国中药杂志.1993,18(11):685.687.
    63.吴玉兰.酸枣仁炮制品中总皂苷的抗心肌缺血作用[J].南京中医药大学学报,2004,20(3):187.
    64.黄宜生,贾钰华,孙学刚,等.酸枣仁皂苷A对缺血再灌注损伤大鼠心律失常及Bcl-2,Bax表达的影响[J].中药新药与临床药理,2011,22(001):51-54.
    65.袁昌鲁等.酸枣仁中黄酮类镇静催眠有效成分的研究明.中药通报,1987,12(9):34.
    66.周伯川.酸枣仁油的特性及开发利用[J].中国油脂,1994,19(6):38-39.
    67.郎杏彩,李明湘,贾秉义,等.酸枣仁,肉多糖增强小鼠免疫功能和抗放射性损伤的实验研究[J].中国中药杂志,1991,16(6):366-368.
    68.万华印,丁力,陈兴坚,等.酸枣仁总皂苷抗脂质过氧化作用[J].中草药,1996,27(2):103.
    69.万嘉珍等.中药酸枣仁预防急性高原反应的研究[J].中药药理与临床,1986,2(1):
    70.王清莲,袁秉祥,黄建华,等.酸枣仁油对艾氏腹水癌小鼠生存期和体重的影响[J].西安医科大学学报,1995,16(3):16-18.
    71.鲍淑娟,李淑芳,韩国强,等.酸枣仁的抗炎作用[J].贵阳医学院学报,1994,19(4):336-338.
    72.娄松年.冯宝麟.夏有英生、炒酸枣仁水煎剂镇静、安眠作用的比较[J].中成药研究,1987,02:18-19.
    73.吕锦芳,张正,宁康健.生,炒酸枣仁镇静催眠作用的比较研究[J].中兽医医药杂志,2004,23(6):3.
    74.于雁灵,王运革.酸枣根与生,炒酸枣仁的镇静催眠作用的比较研究[J].药学实践杂志,1999,17(4):220-220.
    75.李廷利,刘立,孙加源,方允臣,白石桩,萨仁花.生、炒酸枣仁催眠作用的实验研究[J].中医药学报,2001,05:35-36+0.
    76.ThomasW,Miller.应激性生活事件对健康的影响.国外医学.精神病学分册,1989,24(3):163-166.
    77.江开达.精神医学新概念[M].上海:上海医科大学出版社,2004:168-169.
    78.雷庆华,陈东营,温乃义,等.男女抑郁症患者病前生活事件比较[J].中国民康医学,2008,20(18):2127-2153.
    79.赵幸福,徐一峰.生活事件与抑郁症.上海精神医学,1995,新7(3):209-211.
    80.杜巧琳,王小云.抑郁症病因研究[J].现代中西医结合杂志,2003,12(1):106-108.
    81.王立伟,江三多,汪栋祥等.5-羟色胺6受体基因多态性与抑郁症的关联研究.中华精神科杂志,2000:33(4):216-217.
    82. Roth receptors BL, Shapior DA. Insights reveal novel strategies into the structure of therapeutic and function of 5-HT2 family Ther serotonin Expert Opin 2001,5(1):685-695.
    83. Chotai J, Serretti A, Lorenzi C. Interaction between the tryptophan hydroxylase gene and the serotonin transporter gene in schizophrenia but not in bipolar or unipolar affective disorders[J]. Neuro psychobiology,2005,51(1):3-9.
    84. Jacobs BL. Adult brain neurogenesis and depression. Brain Behav and Immun,2002,16(5):602-609.
    85.周建松,李凌江,曹霞,等.5-羟色胺及其突触后1A受体对慢性应激大鼠情绪和认知的影响.中南大学学报(医学版),2008,33(4):305-311.
    86.. NeumeisterAIryptophandepletion,serotoninanddepression:wheredowestand2003(04)
    87.秦娟娟,刘振华,梁艳,等.5-羟色胺及其受体与抑郁症[J].国际药学研究杂志,2012,5:014.
    88. Boldrini M,Underwood MD,Mann JJ,et al. Serotonin-1A auto-receptor binding in the dorsal raphe nucleus of depressed suicides [J]. J Psychiatr Res,2008,42(6):433442.
    89.刘效巍,许晶.抗抑郁剂对慢性应激抑郁大鼠脑内5-HT1A受体和5-HT2A受体的影响[J].中国行为医学科学,2005,13(6):610-612.
    90. Celada P, Puig M V, Amargos-Bosch M, et al. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression[J]. Journal of psychiatry and neuroscience,2004,29(4):252.
    91. brevets WC, Furey ML. Emotional disorders:depression and the brain. In New Encyclopedia of Neuroscience, Elsevier, Amsterdam, in the press 2009.
    92. Lambert G, Johansson M, et al. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness:evidence in support of the catecholamine hypothesis of mood disorders. Arch. Gen. Psychiatry 2000;57:787-93.
    93. BowdneC,Cheehtma SC,Lowther S,Kato NE CL,CormPton MR & Horton RW. Reduced dopamine turnover in the basal gnagliao of depressed suicides. BraillRes,1997,769(1):135-140.
    94. Serretti A, Macciardi F, Verga M, et al. Tyrosine hydroxylase gene associated with depressive symptomatology in mood disorder[J]. American J Med Genet,1998,81(2):127-130.
    95. Leggio G M, Micale V, Drago F. Increased sensitivity to antidepressants of dopamine receptor-deficient mice in the forced swim test (FST)[J]. Eur Neuropsychopharmacology,2008, 18(4):271-277.
    96. Ossowska G, Nowa G, Kata R, Klenk-Majewska B, Danilczuk Z,Zebrowska-Lupina I. Brain monoamine receptors in a chronic unpredictable stress model in rats. J Neural Transm,2001; 108(3): 311-319.
    97. Brunswick D J, Amsterdam J D, Mozley P D, et al. Greater availability of brain dopamine transporters in major depression shown by [99mTc] TROD AT-1 SPECT imaging[J]. American Journal of Psychiatry,2003,160(10):1836-1841.
    98. Levinson D F. The genetics of depression:a review[J]. Biological psychiatry,2006,60(2):84-92.
    99.王勇,方贻儒.抑郁症神经生化机制的研究‘进展[J].上海交通大学学报:医学版,2007,27(4):461-464.
    100. Leonard BE. Noradrenaline in basic models of depression. Eur Neuropsychopharmacol,1997; 7(Suppl):Sll-6.
    101.周东丰,阮燕,范肖冬,等.比较四种精神病治疗方法对鼠脑皮层p、5-HTZ受体的作用.中华神经精神科杂志,1991,24(4):207-209.
    102.田庆锷.抑郁症的神经生化机制及抗抑郁药研究进展[J].中国药房,2006,16(23):1828-1830.
    103.宋煜青,周东丰,范建华,等.电针、氟西汀治疗抑郁症前后血小板膜鸟苷酸结合蛋白含量的变化[J].中国心理卫生杂志,2004,18(11):783-786.
    104. Schreiber G, Avissar S. G proteins as a biochemical tool for diagnosis and monitoring treatments of mental disorders[J]. The Israel Medical Association journal:IMAJ,2000,2:86-91.
    105.浦梦佳,张志(?).抗抑郁剂治疗效应基因组学研究进展[J].中华行为医学与脑科学杂志,2011,20(1):93-95.
    106.易正辉,方贻儒,王祖承.抑郁症神经生化和神经电生理学研究进展[J].中国新药与临床杂志,2006,24(9):676-679.
    107.张宁,侯钢.抑郁症的神经内分泌学初步研究[J].临床精神医学杂志,2002,12(4):208-209.
    108. Young E A, Lopez J F, Murphy-Weinberg V, et al. Mineralocorticoid receptor function in major depression[J]. Archives of General Psychiatry,2003,60(1):24-28.
    109.王树阳,牛俊红,孙太起,等.吗氯贝胺与氯丙咪嗪治疗抑郁症的对照研究.神经疾病与精神卫生,2002,15:3132.
    110.姜红,韩迎.抗抑郁药物新进展.中国药房,2004,15:308-310.
    111. Rudolph RL. Achieving remission from depression with venlafaxine and venlafaxine extended release:a literature review of comparative studies with selective serotonin reuptake inhibitors. Acta Psychatr Scand,2002,106(Suppl 415):24.
    112. de Boer T. The pharmacologic profile of mirtazapine. J Clin Psychiatry,1996,57(suppl4):19-25.
    113. Leinonen E,Skarstein J,Behnke K,et al. Efficacy and tolerability of mirtazapine versus citalopranra doubleblind,randomized study in patients with major depressive disorder. Int Clin Psychopharmacol,1999,14:329-337.
    114.李焕德,朱运贵,易清华.抗抑郁药及其临床应用的研究进展(综述).国外医学药学分册,1998,25:228-232.
    115.郭珊,郭克锋.抑郁症的研究进展.中国临床康复,2005,9:131-133.
    116.张帕芳.黛安神治疗神经症临床疗效观察[J].中国神经精神疾病杂志,2000,26(2):77.
    117. Appelberg B G, Syvalafit EK, KoshinenTE,et al. Patientswith severe depression may benefit from buspironeaugmentation of selective serotonin reuptake inhibitors [J]. JClin Psychiatry, 2001,62(6):448.
    118. Sparenberg B,Demisch L,Hoeizi J, et a.l Antidepressive constituents of St. Johns'wort[J]. P Z. W iss. 1993,6(2):50.
    119. Noldner M,Schots K. Rutin is essential for the antidepressent activity ofHypericum perforatum extracts in the forced swimming test[J]. PlantaMedica,2002,68(7):577-580.
    120.朱铁梁,胡占嵩,李璐,乔卫等.酸枣仁总生物碱抗抑郁作用的实验研究[J].武警医学院学报,2009,18(5):420.
    121.张峰,曹仲伟,张学杰,等.酸枣仁对慢性应激抑郁大鼠的治疗作用及作用机制探讨[J].山东师范大学学报(自然科学版),2005,50(2):88-90.
    122.杨奕,乔卫,刘婧姝,等.酸枣仁抗抑郁活性组分配伍的研究[J].时珍国医国药,2012,23(1):7-8.
    123.李云峰,杨明,赵毅民,栾新慧,罗质璞.无毒棉籽水提物对皮质酮诱导的PC12细胞损伤的对抗作用[J].中国中药杂志,2002,06:45-49.
    124.李云峰,刘艳芹,杨明,王恒林,赵毅民,罗质璞.无毒棉籽水提物中抗抑郁活性成分的筛选研究[J].军事医学科学院院刊,2004,03:250-251+263.
    125.李云峰,袁莉,杨明,黄世杰,徐玉坤,赵毅民.棉籽总黄酮抗抑郁作用的研究[J].中国药理学通报,2006,01:60-63.
    126. ButterweackV,Nishibe S, SasakiT, eta.1 Antidepressant effects of apoc-ynun venetun leaves in a forced swimming test[J]. Biol Pharm Bull 2001,24(7):848.
    127.郑梅竹,时东方,范亚军,刘春明.罗布麻叶总黄酮抗抑郁作用参与NE能系统可能机制的研究[J].广东农业科学,2012,16:169-171.
    128.郑梅竹,吴山力,修瑾,范亚军,刘春明.罗布麻叶总黄酮提取物对小鼠的抗抑郁作用及机制的研究[J].时珍国医国药,2012,11:2697-2699.
    129.郑梅竹,吴山力,时东方,刘春明.罗布麻叶总黄酮抗抑郁作用及其机制研究[J].中草药,2012,12:2468-2470.
    130.郑梅竹,刘春明,丛大力,时东方,张语迟,吴桂梅.罗布麻叶总黄酮提取物促进小鼠抗抑郁基因CREB^ BDNF的表达[J].基因组学与应用生物学,2011,02:184-189.
    131.陈瑶,韩婷,秦路平,等.积雪草总苷对小鼠抑郁行为和脑内氨基酸含量的影响[J].中药材,2003,12:870-873.
    132.陈瑶,秦路平,郑汉臣,等.积雪草总苷对抑郁症大鼠神经内分泌功能的影响[J].第二军医大学学报,2002,23(11):1224-1226.
    133.陈瑶,韩婷,芮耀诚,殷明,秦路平,郑汉臣.积雪草总苷对实验性抑郁症大鼠血清皮质酮和单胺类神经递质的影响[J].中药材,2005,06:492-496.
    134.秦路平,丁如贤,张卫东,等.积雪草挥发油成分分析及其抗抑郁作用研究[J].第二军医大学学报,1998,19(2):186.
    135蔡兵,崔承彬,陈玉华,等.巴戟天中菊淀粉型低聚糖类单体成分对小鼠的抗抑郁作用[J].中国药理学与毒理学杂志,1996,10(2):109.
    136. Li,Y,F.,Gong,Z. H.,Yang,M.,et al. Inhibition of the oligosac-charides extracted from Morinda officinalis.a Chinese traditionalherbal medicine on the corticosreron e induced apoptosis in PC 12 cells [J]. Life Sci,2003,72(8):933-942.,
    137.张中启,黄世杰.巴戟天寡糖对鼠强迫性游泳和获得性无助抑郁模型的影响[J].中国药理学与毒理学杂志,2001,15(4):262.
    138.高世勇,倪小虎,于蕾,等.人参茎叶皂甙、人参根皂甙抗抑郁作用研究[J].哈尔滨商业大学学报(自然科学版),2002,18(2):135-136.
    139.刘丽琴,罗艳,张瑞睿,郭建友.人参皂苷对慢性应激抑郁模型大鼠行为学及HPA轴、BDNF的影响[J].中国中药杂志,2011,10:1342-1347.
    140.杨晓燕,陈发奎,刘玉兰.石菖蒲抗抑郁药理作用的研究[J].海军军事医学,1999,20(2):16.
    141.戈宏焱,陈博,许丹,李有田,李洋.柴胡皂苷A对抑郁模型大鼠脑中单胺类神经递质及其代谢产物含量的影响[J].高等学校化学学报,2008,08:1535-1538.
    142.戈宏焱,陈博,万有贵.柴胡皂苷对抑郁症大鼠海马BDNF表达的影响[J].中国老年学杂志,2012,06:1209-1211.
    143.王景霞,张建军,李伟,等.白芍提取物对慢性应激抑郁模型大鼠行为学及大脑皮质单胺类神经递质的影响[J].中华中医药杂志,2010,25(11):1895-1897.
    144.钟海波.淫羊藿提取物抗抑郁作用研究[J].中草药,2005,36(10):1506-1510.
    145张业,杨新年,李霏,赵欣纪.酸枣仁汤对行为绝望小鼠模型的影响[J].中华中医药学刊,2007,10:2136-2137.
    146.夏寒星.酸枣仁汤抗抑郁实验研究[J].浙江中医药大学学报,2010,01:52-53.
    147.田旭升,胡妮娜,宋琳,闫秀君,程伟.酸枣仁汤对抑郁模型大鼠行为学及海马BDNF和TrKB影响的实验研究[J].中医药学报,2011,05:30-32.
    148.胡妮娜,宋琳,孙志新,程伟.酸枣仁汤对抑郁症模型大鼠海马TNF-α,、IL-1p及c-fos表达的影响实验研究[J].中医药学报,2013,02:44-46.
    149.畅洪昇,孙建宁,石任兵,王庆国,张硕峰,姬曼.四逆散有效部位对嗅球损毁大鼠探索行为及学习记忆功能的影响[J].北京中医药大学学报,2005,04:39-41.
    150.金艳.四逆散活性成分对慢性应激大鼠抑郁模型的治疗作用及机理研究[D].北京中医药大学,2004.
    151.熊静悦,曾南,张崇燕,杨婧,刘晓帅.逍遥散抗抑郁作用研究[J].中药药理与临床,2007,01:3-5.
    152.张晓杰,董海影.柴胡疏肝散对抑郁模型大鼠海马CA3区神经元的影响[J].时珍国医国药,2011,22(1):43-45.
    153.程林江,兰敬昀,于涛,李庆云.半夏厚朴汤对慢性应激抑郁模型大鼠下丘脑-垂体-肾上腺轴的影响[J].中医药信息,2009,04:45-46.
    154.康大力,瞿融,朱维莉,马世平.柴胡加龙骨牡蛎汤对抑郁动物下丘脑-垂体-肾上腺轴的影响[J].中国临床药理学与治疗学,2005,11:1231-1235.
    155.孟海彬,瞿融,马世平.柴胡加龙骨牡蛎汤抗抑郁作用研究[J].中药药理与临床,2003,01:3-5.
    175.尉小慧,徐向东,沈敬山,王峥涛.越鞠丸及各单味药醇提物对小鼠的抗抑郁作用研究[J].中国药房,2009,03:166-168.
    156. Porsolt R D, Le Pichon M, Jalfre M. Depression:a new animal model sensitive to antidepressant treatments[J]. Nature,1977,266(5604):730-732.
    157. Steru L, Chermat R, Thierry B, et al. The tail suspension test:a new method for screening antidepressants in mice[J]. Psychopharmacology,1985,85(3):367-370.
    158. ChatterHEe M,Verma P,Maurya R,et al-Evaluation of ethanol leaf extract of Ocimum sanctum in experimental models of anxiety and depression,Pharm Biol,2011,49(5):477.
    159. Li S,Wang C,Li W,et al. Antidepressant-like effects of piperine and its derivative,antiepilepsirine. J Asian Nat Prod Res,2007,9 (3-5):421.
    160. Katz R J, Roth K A, Carroll B J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression[J]. Neuroscience & Biobehavioral Reviews,1981,5(2): 247-251.
    161. Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant [J]. Psychopharmacology,1987,93(3): 358-364.
    162. Rasenick M M, Chaney K A, Chen J. G protein-mediated signal transduction as a target of antidepressant and antibipolar drug action:evidence from model systems[J]. The Journal of clinical psychiatry,1995,57:49-55; discussion 56-8.
    163. Shabanov PD, Roik RO. Evaluation of antidepressant activity in a molel of depressionlike state due to social isolation in rats. Eksp Klin Farmakol.2005; 68 (4):11-15.
    164. Seligman M E,Beagly G. Learned helplessness in the rat [J]. J Comp Physiol Psychol,1975,88 (2):534-541
    165. Porsolt R D. Animal model of depression:utility for transgenic research [J]. Rev Neurosci,2000,11 (1):53-58.
    166.晏忠,罗质璞.抗抑郁药理实验方法[A].见:张均田主编.现代药理实验方法[M].北京:北京医科大学中国协和医科大学联合出版社,1998.1061-1071.
    167. McArthur R, Borsini F. Animal models of depression in drug discovery:a historical perspectivefJ]. Pharmacology Biochemistry and Behavior,2006,84(3):436-452.
    168. Kato M,Katayama T,Iwata H,et al. In vivo characterization of T-794,a novel reversible inhibitor of monoamine oxidase-A,as anantidepressant with a wide safety margin [J]. J Pharmacol ExpTher,1998,284(3):983-990.
    169.刘屏,王东晓,郭代红等.远志36-二芥子酰基蔗糖在药物诱发抑郁模型上的药效评价[J].中国药学杂志,200843181391-1394.
    170. O'Neil M F, Moore N A. Animal models of depression:are there any?[J]. Human Psychopharmacology:Clinical and Experimental,2003,18(4):239-254.
    171. Dhir A, Kulkarni S K. Effect of addition of yohimbine (alpha-2-receptor antagonist) to the antidepressant activity of fluoxetine or venlafaxine in the mouse forced swim test[J]. Pharmacology, 2007,80(4):239-243.
    172. Xu Y, Wang ZC, You WT, et al. Antidepressant-like effect of trans-resveratrol:involvement of serotonin and noradrenaline system[J]. Eur Neuropsychopharmacol,2010,20 (6):405-413.
    173. Pandey DK, Mahesh R, Kumar AA, et al. A novel 5-HT2A receptor antagonist exhibits antidepressant-like effects in abattery of rodent behavioural assays:Approaching early-onset antidepressants[J]. Pharmacol Biochem Behav,2010,94(3):363-73.
    174. Richardson J S. Animal models of depression reflect changing views on the essence and etiology of depressive disorders in humans[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,1991,15(2):199-204.
    175.郭建友,李昌煜,葛卫红。抑郁症动物模型研究进展。中国临床康复,2004;8(10):1932-1933.
    176.王俅俅,钱奇,徐珞,等.加味酸枣仁汤对不稳定型心绞痛伴抑郁状态白细胞介素-17的影响[J].中西医结合心脑血管病杂志,2012,10(1):31-32.
    177.祝连生,谭倩,武锋.枣仁安神胶囊辅助治疗脑卒中后抑郁症[J].浙江中西医结合杂志,2007,17(8):463-464.
    178.郑锦英.甘麦大枣汤合酸枣仁汤加减治疗脑卒中后抑郁疗效观察[J].北京中医药,2009,28(4):291-292.
    179.傅萍萍,邓德厚,黄珍珍.酸枣仁加龙牡汤治疗恶性肿瘤患者抑郁症临床研究[J].福建中医药,2012,43(3):20-21.
    180.国家药典委员会编.中国药典2020版1部附录[M].北京:中国医药科技出版社,2010.20.
    181.叶定江,中药炮制学[M].上海.上海科学技术出版社,1997,215-216.
    182.Bourin M, Poncelet M, Chermat R, et al. The value of the reserpine test in psychopharmacology[J]. Arzneimittel-Forschung,1982,33(8):1173-1176.
    183.Bhattacharya S K, Chakrabarti A, Chatterjee S S. Activity profiles of two hyperforin-containing hypericum extracts in behavioral models[J]. Pharmacopsychiatry,1998,31(S 1):22-29.
    184. Meignen J, Grognet A, Deniard M J, et al. Pharmacological comparison of the potential antidepressant UP 614-04 with viloxazine and imipramine; behavioral studies[J]. General Pharmacology:The Vascular System,1982,13(5):381-391.
    185.鲍康德,李萍,李会军,等.HPLC-ELSD法同时测定酸枣仁中黄酮及皂苷类成分[J].中国天然药物,2009,7(1):47-53.
    186秦琴,刘利学.抑郁症动物模型概述及评价[J].实验动物科学,2010,27(1):53.
    187. Detke M J, Johnson J, Lucki I. Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression[J]. Experimental and clinical psychopharmacology,1997,5(2): 107.
    188. Messiha F S. Fluoxetine:adverse effects and drug-drug interactions[J]. Clinical Toxicology,1993, 31(4):603-630.
    189.李洪,徐舒,李滨,等.逍遥散联合盐酸氟西汀治疗抑郁症肝郁脾虚型41例[J].陕西中医,2009(1):49-50.
    190.李清亚,王晓慧,刘杰,等.氟西汀与中药联合应用治疗抑郁症临床效果观察[J].中华中医药学刊,2009,27(9):1889-1891.
    191. All W H O. Diagnostic and statistical manual of mental disorders[J].1995.
    192..Kitayama J,Wang P,YamashitaK.eta.l Noradrenergic function in depressionmodel rats.In:Nomura J.ed.Neurobiology of pression and related disorders. New York:Acad Press,1998:236-247.
    193. Mccarthy MM, Felzenber E,Robbins A,et al. Infusion of diazepam and all opregnanolone into the midbrain central gray facilitate open-field behavior and sexual receptivity in female rats [J]. Horm Behavior,1995,29:279-295.
    194. Cyr N E, Romero L M. Identifying hormonal habituation in field studies of stress[J]. Gen Comp Endocrinol,2009,161 (3):295-303.
    195..Nakagawa T, Ukai K, Ohyama T, et al. Effects of dopaminergic agents on reversal of reserpine-induced impairment in conditioned avoidance response in rats[J]. Pharmacology Biochemistry and Behavior,1997,58(4):829-836.
    196. Come SJ Pickering RW and Warne BT. A method for assessing the effect of drugs on central antion of 5-hydroxtrptamine. BrJ Pharmacol.1983,20:106-120.
    197. Hulvershorn LA, Cullen K, Anand A. et al. Toward dys-functional connectivity:a review of neuroimaging findings in pediatric major depressive disorder [J]. Brain Imaging Behav,2011,5(4): 307-328.
    198. Cremniter D,Jamain S,KollenbachK,et al. CSF5-HIAA levels are lower in impulsive as compared to nonimpulsive violent suicide attempters and control subjects[J]. Biol Psychiatry,1999,45:1572-1579.
    199. Mann JJ,Malone KM. Cerebrospinal fluid amines and higher-lethality suicide attempts in depressed inpatients[J]. Biol Psychiatry,1997,41:162.
    200.方剑乔,梁宜,汪存信,等.经皮穴位电刺激对力竭运动大鼠海马、中脑5-HT及代谢产物含量影响的机制.中国康复医学杂志,2009,24(3):193-196.
    201.黄志强.高压氧改善慢性应激大鼠抑郁症状的效用和机制[D].第二军医大学,2009.
    202. Lopez J F, Chalmers D T, Little K Y, et al. Regulation of serotoninlA, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus:implications for the neurobiology of depression[J], Biol Psychiatry,1998,43:547-573.
    203.金艳,王庆国,石任兵,等.四逆散活性成分对慢性应激诱导的抑郁症模型大鼠大脑皮层与海马5-HT1A受体mRNA表达的影响[J].北京中医药大学学报,2004,27:34-36.
    204. brevets WC, Furey ML. Emotional disorders:depression and the brain. In New Encyclopedia of Neuroscience (Squire, L., ed.), Elsevier, Amsterdam, in the press 2009.
    205..Kitayama J,Wang P,YamashitaK,eta.l Noradrenergic function in depressionmodel rats.In:Nomura J,ed. Neurobiology of pression and related disorders. New York:Acad Press,1998:236-247.
    206.黄洁云.抑郁症的发病机制与治疗进展[J].中国疗养医学,2013,22(3):233-235.
    207. Leyton M, Paquette V, Gravel P, et al. α-[11C]methyltry ptophan trapping in the orbital and ventral medial prefrontal cortex of suicide attempters [J]. Eur. Neuropsy-chopharmacol,2006,16(3): 220-223.
    208.Dulawa SC,Holick KA,Gundersen B,et al.Effects of Chronic Fluoxetine in Animal Models of Anxietyand Depression[J].Neuropsychopharmacology,2004,29(7):1321-1330.
    209.林岩松,丁时禹,陈正平,等.老龄鼠与记忆障碍大鼠脑内多巴胺系统的研究.中华核医学杂志,2002,22(10):281-283.
    210.尹伟华,刘春风,罗蔚峰,等.帕金森病患者抑郁的相关因素.苏州大学医学科学杂志,2003;23(1):60-6310
    211.尹建国.可卡因与中枢多巴胺转运体之间关系的研究进展.中国药理学通报,1998;14(3):206-209.
    212.马桂劫,张婷,解军波,等.HPLC-MS-MS法同时测定酸枣仁分散片中酸枣仁皂苷A,酸枣仁皂苷B,斯皮诺素的含量[J].食品科学,2013,34(22):151.
    213.刘昌辉,黄小桃,李颖仪,等.LC-MS/MS法测定酸枣仁中酸枣仁皂苷A,B和斯皮诺素的含量[J].中药新药与临床药理,2012,23(1):69-72.
    214.张昕莹,王庆伟,张文娟,等.川芎-香附不同配比提取物中主要成分含量变化研究[J].中国医药导报,2013,10(19):121-123.
    215.谢增山.银杏叶标准提取物Egb761及银杏叶制剂的质量评价[J].中国中药杂志,1999,24(1):3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700