用户名: 密码: 验证码:
前B细胞增强因子对IL-1β介导的肺上皮和内皮细胞的炎症和通透性的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前B细胞克隆增强因子(Pre-B-cell colony-enhancing factor,PBEF)基因最早是从激活的外周血淋巴细胞的cDNA文库中克隆获得。它作为B细胞早期分化的一种生长因子,可以增强IL-7和干细胞因子(SCF)促进前B细胞向B细胞转化的能力。研究发现当细胞处于增殖状态时,PBEF主要分布在胞浆,处于非增殖状态时,则主要出现在胞核内,从而认为PBEF是与细胞周期有关的细胞内蛋白。在炎症细胞因子如IL-β, TNF-α促使中性粒细胞生存期延长的过程中,细胞内PBEF表达明显增多;通过RNAi技术抑制PBEF的表达后,可以完全抵消炎性细胞因子针对中性粒细胞的抗凋亡作用。在妊娠过程中,PBEF在胎膜表面大量表达能使IL-6和IL-8表达增加,这可能在自然分娩和感染性流产中起了重要的作用。PBEF还具有烟酰胺磷酸核糖转移酶的活性,参与NAD+的生物合成,通过调节NAD+依赖蛋白脱乙酰基酶(Sir)-2的活性,促进血管平滑肌细胞的成熟。最近研究表明,PBEF具有很好的类胰岛素活性,可以降低血浆葡萄糖水平,增加机体对胰岛素的敏感性。因此,PBEF是一个具有多种重要生物学功能的蛋白,在体内许多的生理性和病理性过程中发挥着重要的作用,已成为许多医学领域中重要的研究对象。
     急性肺损伤(ALI)是指由心源性以外的各种肺内外致病因素所导致的急性、进行性缺氧性呼吸衰竭。严重的ALI或ALI的最终严重阶段被定义为急性呼吸窘迫综合征(ARDS)。ALI/ARDS主要病理特征为肺微血管通透性增高而导致的肺泡渗出液中富含蛋白质的肺水肿及透明膜形成,并伴有肺间质纤维化。由肺内炎症细胞(如嗜中性粒细胞、巨噬细胞)和细胞因子(如IL-1β、IL-8)为主导的肺内炎症反应失控导致的肺泡毛细血管膜损伤是形成肺毛细血管通透性增高肺水肿的病理基础。目前ARDS的病死率为50-90%,究其原因,主要是由于ARDS发病机理错综复杂,迄今尚未完全阐明。
     我们以前通过对动物ALI的模型进行研究,发现PBEF的基因表达在血清、支气管肺泡灌洗液以及肺组织中的表达明显增加。通过对人类PBEF基因近端启动子区域的单核苷酸多态性(SNP)分析,我们发现在SNP T-1001G和C-1543T中GC单倍体ALI的发病率显著增加,报告基因分析显示SNP C-1543T中T的变异可以显著降低PBEF的转录。此外,凝血酶所引起的PBEF表达的增加以及内皮细胞屏障的功能障碍,可能是急性肺损伤发生的重要机制。综上,这些研究结果提示PBEF可能是急性肺损伤一个新的生物学标志物。
     本实验目的在于通过研究PBEF在IL-1β介导的肺血管内皮细胞和肺泡上皮细胞的炎症和通透性中的调节作用,进一步探讨PBEF在ALI发病中确切的分子机制。本实验研究了转录抑制剂对IL-1β刺激后的A549和HPAEC细胞中PBEF基因mRNA表达的影响;通过凝胶迁移滞后实验分析了转录因子与PBEF基因启动子区域SNP C-1535T的结合能力;将PBEF基因的cDNA和PBEF的siRNA转染到人肺腺癌上皮细胞(A549)和人肺动脉内皮细胞(HPAEC)中,观察了PBEF过表达和PBEF表达下调对细胞IL-8的分泌以及细胞通透性的影响;我们还研究了PBEF的表达对于其它的炎性细胞因子比如IL-16和CCR3基因表达的影响。为此做了以下的一些工作:
     1.通过蛋白免疫印迹(western blotting)的方法,对IL-1β诱导的A549细胞中PBEF蛋白表达的剂量依赖性与时间依赖性进行了分析。结果显示,IL-1β诱导A549细胞中PBEF蛋白的表达呈时间依赖性,并且在5至25 ng/ml浓度范围内,IL-1β均可使PBEF蛋白的表达显著增加。
     2.用转录抑制剂-放线菌素D处理IL-1β刺激后A549和HPAEC细胞,通过RT-PCR半定量的方法分析了转录抑制剂对PBEF基因mRNA表达的影响。结果显示,IL-1β可以显著增加A549和HPAEC细胞中PBEF基因mRNA的表达,这在一定程度上是由于IL-1β可以增加PBEF基因的转录所致。
     3.通过凝胶迁移滞后实验分析了转录因子与PBEF基因启动子区域SNP C-1535T的结合能力。结果显示,PBEF基因启动子区域C -1535T中T的变异可以改变一个未知的转录因子与PBEF基因启动子的亲和力,降低PBEF基因的转录,进而减少基因的表达。
     4.将PBEF基因的cDNA和PBEF的siRNA转染到A549和HPAEC细胞中,观察了PBEF过表达和PBEF表达下调对细胞IL-8表达的影响。结果显示,PBEF过表达可以显著增加IL-1β刺激后的A549和HPAEC细胞中IL-8的分泌;而PBEF的siRNA所引起的PBEF表达下调则可以显著降低IL-1β刺激后的A549和HPAEC细胞中IL-8的分泌。这些结果表明PBEF作为IL-1β所引发的炎症反应中一个重要的炎性细胞因子,通过调节IL-8的表达,在ALI的发病机制中起着重要的作用。
     5.将PBEF基因的cDNA和PBEF的siRNA转染到A549和HPAEC细胞中,观察了PBEF过表达和PBEF表达下调对其它的炎性细胞因子比如IL-16和CCR3基因表达的影响。结果显示,PBEF表达下调可以降低IL-1β刺激后的A549细胞中IL-16和CCR3基因mRNA表达,而PBEF过表达则可以增加IL-1β刺激后的A549细胞中IL-16和CCR3基因mRNA表达。这些结果提示PBEF可能在炎性通路中是一个重要的信号传递者或是始发者,它作为一个炎性细胞因子,可以通过调节其它的炎性细胞因子的表达,在肺部炎症反应中起着重要的作用。
     6.将PBEF基因的cDNA和PBEF的siRNA转染到A549和HPAEC细胞中,观察了PBEF过表达和PBEF表达下调对细胞通透性的影响。结果显示,PBEF过表达可以使IL-1β刺激后的A549和HPAEC细胞通透性分别增加44%和65%,而PBEF表达下调可以使IL-1β刺激后的A549和HPAEC细胞通透性分别降低29%和24%。这些结果表明PBEF可能在内皮细胞和上皮细胞屏障功能的调节中起着重要的作用。
     以上结果表明,PBEF作为IL-1β所引发的炎症反应中一个重要的炎性细胞因子在肺部炎症以及肺血管内皮以及肺泡上皮细胞屏障功能的调节中发挥着重要的功能。这为进一步了解PBEF的生物学功能和其在ALI发病中确切的分子机制以及为PBEF的临床应用提供了有价值的实验依据和线索。
Pre-B-cell colony-enhancing factor was first identified as a protein that was secreted by activated lymphocytesin bone marrow stromal cells and that synergized with IL-7 and stem cell factor (SCF) to stimulate early stage B cell formation. PBEF in non-proliferating cells is more abundant in the cells nuclei than in the cytoplasma, whereas in proliferating cells this distribution is inverse, suggesting that PBEF is a cell cycle-associated protein. IL-1βand TNF-α, inflammatory mediators known to inhibit neutrophil apoptosis, lead to an increased PBEF transcription in neutrophils and monocytes. The inhibition of apoptosis by these inflammatory stimuli is abrogated by blocking PBEF translation. PBEF is constitutively expressed by the fetal membranes during pregnancy. It increases the expression of IL-6 and IL-8 and is important in both normal spontaneous labor and infection-induced preterm labor. PBEF acts as a nicotinamide phosphoribosyltransferase involoved in nicotinamide adenine dinucleotide (NAD+) synthesis. This activity is shown to be important for vascular smooth muscle cell (SMC) maturation. PBEF has recently been identified as a new adipokine which exerts insulin-mimetic effects and has a physiological role in lowing plasma glucose levels and improvement of insulin sensitivity. Therefore, PBEF as a multifunctional protein is critically involved in many physiological and pathological processes.
     Acute lung injury (ALI) is characterized by pulmonary inflammation, non-cardiogenic edema, and severe systemic hypoxemia. Acute respiratory distress syndrome (ARDS) is the severe form of ALI. One of the earliest manifestations of ALI is a diffuse intense inflammatory process and damage to both endothelial and epithelial cell barriers, resulting in marked extravasation of vascular fluid into the alveolar airspace. A number of inflammatory cells and cytokines including neutrophils, macrophages, IL-1βand IL-8 can induce or aggravate the inflammation of endothelial and epithelial cells, leading to this barrier dysfunctions.The mortality and morbidity of ALI/ARDS remain high since the etiology and molecular pathogenesis are still incompletely understood.
     In our previous study on animal models of ALI, we identified pre-B-cell colony enhancing factor as a significantly upregulated gene in ALI. We discovered single nucleotide polymorphisms in the human PBEF gene promoter. Moreover we found that carriers of the haplotype GC from SNPs T-1001G and C-1543T had a 7.7-fold higher risk of ALI. The T variant from the SNP C-1535T resulted in a significant decrease in the transcription rate (1.8-fold) by the reporter gene assay. We further found that a reduction in PBEF protein expression by siRNA significantly attenuated pulmonary artery endothelial cell barrier dysfunction induced by the potent edemagenic agent, thrombin, reflected by reductions in transendothelial electric resistance. Taken together, these results strongly indicate PBEF as a potential novel candidate gene and biomarker in ALI.
     The objective of this study was to further elucidate the role of PBEF in pulmonary inflammation and permeability using pulmonary cells as cell models since increased vascular and epithelial cell inflammation and permeability processes are important features of ALI. We investigated the molecular mechanism by which IL-1βinduces the expression of PBEF in pulmonary vascular endothelial cells. We assessed the effect of PBEF knockdown with PBEF siRNA and PBEF overexpression on basal and IL-1β-mediated pulmonary epithelial cell (A549) and human pulmonary artery endothelial cell (HPAEC) IL-8 production and permeability by in vitro cell permeability assay. We also examined the role of PBEF expression on other inflammatory cytokines such as IL-16 and CCR3. The main work is as followings:
     1. Dose-response and time-course of IL-1βinduced PBEF protein expression in A549 cells were analyzed by Western blotting. The results demonstrated that IL-1βsignificantly increased PBEF protein expression in a time-dependent manner and cell lysate PBEF expression was significantly increased with different dose treatments of IL-1β(5 to 25 ng/ml).
     2. The mRNA levels of HPAEC cells treated for 4 h with IL1-βin the presence or absence of actinomycin D, a transcription inhibitor were assessed by RT-PCR. The results showed that simultaneous treatment of HPAEC with IL1-βplus act D prevented the IL1-βinduction of PBEF mRNA, supporting that IL1-βinduces the transcription of PBEF gene. The data indicates that a transcriptional regulation mechanism is at least in part responsible for the IL-1βinduced up-regulation of the PBEF gene expression.
     3. EMSA analyzed whether the T-variant altered the binding affinity to any transcription factor, which may underlie its effect on the decrease in the transcription of PBEF gene expression. The results revealed that -1535 T-variant in the human PBEF gene promoter has less binding to an unknown transcription factor than the common -1535 C-allele, this difference became more pronounced after the IL1-βor TNFαtreatment. The altered transcriptional factor binding may underlie the reduced expression of PBEF and thus less susceptibility to acute lung injury in those -1535T carriers.
     4. A549 cells and HPAEC were transiently transfected with pCAGGS-hPBEF or PBEF stealth siRNA in order to increase or knock down PBEF expression. Then we assessed the effect of PBEF knockdown and PBEF overexpression on IL-8 production in the basal and IL-1β-mediated A549 cells and HPAEC. The results demonstrated that knockdown of PBEF expression by PBEF siRNA significantly blunted IL-1β-stimulated IL-8 secretion and its production in the A549 cells and HPAEC, and PBEF-overexpression augmented IL-8 secretion and its production from A549 cells, suggesting that PBEF may be a target of IL-1βinvolved in the inflammatory process during the pathogenesis of ALI.
     5. The role of PBEF expression on other inflammatory cytokines such as IL-16 and CCR3 was examined by RT-PCR. The results showed that the knockdown of PBEF in A549 cells attenuated IL-1β-stimulated increase of IL-16 and CCR3 gene expression, while the overexpression of PBEF in A549 cells promoted IL-1β-stimulated increase of IL-16 and CCR3 gene expression at mRNA level. These data implicate PBEF might be an important“master” signal transducer or initiator in the inflammation pathway to regulate the synthesis of some inflammatory cytokines and PBEF could play a critical role as an inflammatory cytokine during the pathogenesis of ALI.
     6. The effect of PBEF knockdown and PBEF overexpression permeability on cell permeability in the basal and IL-1β-mediated A549 cells and HPAEC was investigated by in vitro cell permeability assay. The results demonstrated that the overexpression of PPEF significantly augmented IL-1βmediated cell permeability by 44% in A549 cells and 65% in endothelial cells; the knockdown of PBEF expression significantly attenuated IL-1β-induced cell permeability by 29% in epithelial cells and 24% in endothelial cells. These results indicate that overexpression of PBEF in A549 cells and HPAEC augmented IL-1βinduced lung epithelial cell barrier dysfunction and thus increased cell permeability in vitro.
     These results suggest that PBEF may play a critical role as an inflammatory cytokine in the development of pulmonary inflammation and dysregulation of pulmonary vascular endothelial and alveolar epithelial cell barriers, which may be an important mechanism underlying PBEF in the pathogenesis of ALI. These results lend further support that PBEF may represent a new diagnostic and therapeutic target in ALI.
引文
1. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007, 9572: 1553-1564.
    2. Calfee CS, Matthay MA. Nonventilatory treatments for acute lung injury and ARDS. Chest. 2007, 131 (3): 913-920.
    3. Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA, Hoffman E, Hubmayr RD. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med. 2003, 167: 1027-1035.
    4. Frank JA, Parsons PE, Matthay MA. Pathogenetic significance of biological markers of ventilator-associated lung injury in experimental and clinical studies. Chest. 2006, 130(6):1906-1914.
    5.徐远达.白介素-1与急性呼吸窘迫综合征.国外医学呼吸系统分册.1999, 19 (4):2041.
    6.孙耕耘,毛宝龄,吕宝璋.白细胞介素-1、肿瘤坏死因子与炎症.生理科学进展. 1993, 24(1):23– 261.
    7. Demczuk S, Baumber C, Mach B, et al. Expression of human IL-1αandβmessenger RNAs and IL-1 activity in human peripheral blood mononuclearcells. J Mol Cell Immunol.1987, 3:255– 265.
    8. Fujishima S, Saaki JI, Shinozawa Y, et al. Interleukin-8 in ARDS. Lancet. 1993, 342: 237.
    9. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 1994, 14: 1431–1437.
    10. Kitani T, Okuno S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. 2003, 544: 74–78.
    11. Jia SH, Li Y, Parodo J, et al. Pre-B-cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004, 113: 1318-1327.
    12. Ognjanovic S, Bryant-Greenwood GD. Pre-B cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am. J. Obstet. Gynecol.2002, 187: 1051– 1058.
    13. Ognjanovic S, Tashima LS, Bryant-Greenwood GD. The effects of pre-B-cellcolony-enhancing factor on the human fetal membranes by microarray analysis. Am J Obstet Gynecol. 2003, 189: 1187-1195.
    14. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004, 279: 0754–0763.
    15. Van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering JG. Pre-B-cell colony-enhancing factor regulates NAD-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ. Res. 2005, 97: 25–34.
    16. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005, 307: 426–430.
    17. Ye SQ, Simon B, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, Easley RB, McVerry B, Tuder RM, Standiford T, Brower R, Barnes K, Garcia JG. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury, Am J Respir Crit Care Med. 2005, 171 (2): 361–370.
    18. Ye SQ, Zhang LQ, Adyshev D, Usatyuk PV, Garcia AN, Lavoie TL, Verin AD, Natarajan V, Garcia JG. Pre-B-cell-colony-enhancing factor is critically involved in thrombin-induced lung endothelial cell barrier dysregulation, Microvasc Res. 2005, 70 (3): 142-151.
    19. Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 2003, 14(6):523-535
    20. Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F, Park DR, Pugin J, Skerrett SJ, Hudson LD, Martin TR. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001, 164(10 Pt 1):1896-1903.
    21. Adams JM, Hauser CJ, Livingston DH, Lavery RF, Fekete Z, Deitch EA. Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. J Trauma. 2001, 51:452-456.
    22. Hudson LD. Causes of the adult respiratory distress syndrome--clinical recognition. Clin Chest Med 1982, 3:195-212.
    23. Ware LB. Prognostic determinants of acute respiratory distress syndrome in adults:impact on clinical trial design. Crit Care Med. 2005, 33 (Suppl) :217-222.
    24. Matsushima K, Morishita K, Yoshimura T, Lavu S, Kobayashi Y, Lew W, Appella E, Kung HF, Leonard EJ, Oppenheim JJ. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988, 167(6):1883-1893.
    25. Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003, 284(4):L566-577.
    26. Folkesson HG, Matthay MA, Hebert CA, Broaddus VC. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8- dependent mechanisms. J Clin Invest. 1995, 96:107-116.
    27. Yokoi K, Mukaida N, Harada A, Watanabe Y, Matsushima K. Prevention of endotoxemia-induced acute respiratory distress syndrome-like lung injury in rabbits by a monoclonal antibody to IL-8. Lab Invest. 1997, 76:375-384.
    28. Dunican AL, Leuenroth SJ, Grutkoski P, Ayala A, Simms HH. TNFalpha-induced suppression of PMN apoptosis is mediated through interleukin-8 production. Shock. 2000, 14(3):284-288.
    29. Modelska K, Pittet JF, Folkesson HG, Courtney V, Matthay MA. Acid-induced lung injury. Protective effect of anti-interleukin-8 pretreatment on alveolar epithelial barrier function in rabbits. Am J Respir Crit Care Med. 1999, 160:1450-1456.
    30. Bachofen A, Weibel ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis. 1977, 116:589–615.
    31. Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med. 1982, 3:35-56.
    32. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol. 2001, 91(4):1487-1500.
    33. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006, 86: 279–367.
    34. Csortos C, Kolosova I, Verin AD. Regulation of vascular endothelial cell barrier function and cytoskeleton structure by protein phosphatases of the PPP family. Am J Physiol Lung Cell Mol Physiol. 2007, 293(4):L843-854.
    35. Liener UC, Brückner UB, Kn?ferl MW, Steinbach G, Kinzl L, Gebhard F. Chemokine activation within 24 hours after blunt accident trauma. Shock. 2002,17:169-172.
    36. Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005, 33:1-6
    37. Thomas R, Martin NH, Morio N, Gustavo MB. Apoptosis and epithelial injury in the lungs. Proc Am Thorac Soc. 2005, 2:214-220.
    38. Leone AK, Chun JA, Koehler CL, Caranto J, King JM. Effect of proinflammatorycytokines, tumor necrosis factor-alpha and interferon-gamma on epithelial barrier function and matrix metalloproteinase-9 in Madin Darby canine kidney cells. Cell Physiol Biochem. 2007, 19(1-4):99-112.
    39. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982, 126:332-337
    40. Lacherade JC, Van LA, Planus E, Escudier E, D'Ortho MP, Lafuma C, Harf A, Delclaux C. Evaluation of basement membrane degradation during TNF-alpha- induced increase in epithelial permeability. Am J Physiol Lung Cell Mol Physiol. 2001, 281(1):134-143.
    41. Schraufstatter IU, Chung J, Burger M.IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2001, 280(6):L1094-1103.
    1. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol Metab.2004, 89, 2548-2556.
    2. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin.Immunol. 2005, 115, 911–919.
    3. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006, 6, 772–783.
    4. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 1994, 14, 1431–1437.
    5. Ognjanovic S,Bao S.,Yamamoto SY,Garibay-Tupas J,Samal B,Bryant-Greenwod GD. Genomic organization of the gene coding for human pre-B-cell colony -enhancing factor and expression in human fetal membranes. J. Mol. Endocrinol. 2001, 26, 107–117.
    6. Li Q, Verma IM. NF-κB regulation in the immune system. Nat.Rev. Immunol.2002, 2, 725–734.
    7. Macia′n F, Lo′pez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001, 20, 2476–2489.
    8. Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes.2004, 53, 1937-1941.
    9. Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C.Structure of Nampt/ PBEF/visfatin, a mammalian NAD- biosynthetic enzyme. Nat. Struct. Mol. Biol. 2006, 13, 661–662.
    10. Kim MK, Lee JH, Kim H, Park SJ, Kim SH, Kang GB, Lee YS, Kim JB, Kim KK, Suh SW, Eom SH. Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti- cancer agent FK-866. J. Mol. Biol. 2006, 362, 66–77.
    11. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003, 63, 7436-7442.
    12. Sethi JK, Vidal-Puig A. Visfatin: the missing link between intraabdominal obesity and diabetes? Trends Mol Med. 2005, 11, 344-347.
    13. Jia SH, Li Y, Parodo J, et al. Pre-B-cell colony-enhancing factor inhibits neutrophilapoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004, 113, 1318-1327.
    14. Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony enhancing factor as a potential novel biomarker in acute lung injury.Am J Resp ir Crit CareMed. 2005, 171, 361-370.
    15. Ognjanovic S, Bryant-Greenwood GD. Pre-B-cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am J Obstet Gynecol. 2002 , 187, 1051-1058.
    16. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H,Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005,307, 426–430.
    17. Kralisch S, Klein J, Lossner U, et al. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes. J Endocrinol. 2005, 185, R128.
    18. Patrone L, Damorea MA, Lee M B, et al. Genes expressed during the IFNγ-induced maturation of pre-B cells. Mol Immunol. 2001, 38, 597-606.
    19. Kralisch S, Klein J, Lossner U, et al. Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab.2005, 289, E586-E590.
    20. Xu L-G, Wu M, Hu J, Zhai Z, Shu H-B. Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1. J. Leukoc. Biol. 2002, 72, 410–416.
    21. Turpaev K, Bouton C, Diet A, Glatigny A, Drapier JC Analysis of differentially expressed genes in nitric oxide-exposed human monocytic cells. Free Radic Biol Med. 2005, 38, 1392-1400.
    22. Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC. Pre-B-cell colony- enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit. Care Med. 2007, 35, 1290–1295.
    23. Ye SQ, Zhang LQ, Adyshev D, Usatyuk PV, Garcia AN, Lavoie TL, Verin AD, Natarajan V, Garcia JG. Pre-B-cell colony-enhancing factor is critically involved in thrombin-induced lung endothelial cell barrier dysregulation. Microvasc. Res. 2005, 70, 142–151.
    24. Nowell MA, Richards PJ, Fielding CA, Ognjanovic S, Topley N, Williams AS, Bryant-Greenwood G, Jones SA. Regulation of pre-B-cell colony-enhancing factorby STAT-3-dependent interleukin- 6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 2006, 54, 2084–2095.
    25. Otero M, Lago R, Gomez R, Lago F, Dieguez C, Go′mez-Reino JJ, Gualillo O. Changes in plasma levels of fat-derived hormonesadiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 1198–1201.
    26. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, Tilg H Visfatin, an adipocytokine with proinflammatory and immuno- modulating properties. J. Immunol. 2007, 178, 1748–1758.
    27. Koczan D, Guthke R, Thiesen HJ, Ibrahim SM, Kundt G, Krentz H, Gross G, Kunz M. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur. J. Dermatol. 2005, 15, 251–257.
    28. Paoletti R, Gotto Jr AM., Hajjar DP. Inflammation atherosclerosis and implications for therapy. Circulation. 2004, 109, III20–III26.
    29. Dahl TB, Yndestad A, Skjelland M, ?ie E, Dahl A, Michelsen A, Dam?s JK, Tunheim SH, Ueland T, Smith C, Bendz B, Tonstad S, Gullestad L, Fr?land SS, Krohg-S?rensen K, Russell D, Aukrust P, Halvorsen B. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization.Circulation. 2007, 115, 972–980.
    30. Nemeth E, Tashima LS, Yu Z, Bryant-Greenwood GD. Fetal membrane distention: I. Differentially expressed genes regulated by acute distention in amniotic epithelial (WISH) cells. Am J Obstet Gynecol. 2000, 182, 50-59.
    31. Ognjanovic S, Bryant-Greenwood GD. Pre-B cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am. J. Obstet. Gynecol.2002, 187, 1051–1058.
    32. Marvin KW, Keelan JA, Eykholt RL, Sato TA, Mitchell MD. Use of cDNA arrays to generate differential expression profiles for inflammatory genes in human gestational membranes delivered at term and preterm.Mol Hum Reprod. 2002, 8, 399-408.
    33. Ognjanovic S, Tashima LS, Bryant-Greenwood GD. The effects of pre-B-cell colony-enhancing factor on the human fetal membranes by microarray analysis. Am J Obstet Gynecol. 2003, 189, 1187-1195.
    34. Ognjanovic S, Ku TL, Bryant-Greenwood GD. Pre-B-cell colony-enhancing factor is a secreted cytokine-like protein from the human amniotic epithelium.Am J Obstet Gynecol. 2005, 193, 273-282.
    35. Krzyzanowska K, Krugluger W, Mittermayer F, Rahman R, Haider D, Shnawa N, Schernthaner G. Increased visfatin concentrations in women with gestational diabetes mellitus.Clin Sci (Lond). 2006, 110, 605-609.
    36. Hufton SE, Moerkerk PT, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR. A profile of differentially expressed genes in primary colorectal cancer using suppressive subtractive hybridization. FEBS Lett. 1999, 463, 77–82.
    37. Van Beijnum JR, Moerkerk PT, Gerbers AJ, De Bru?ne AP, Arends JW, Hoogenboom HR, Hufton SE. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int J Cancer. 2002 ,101,118-127.
    38. Kitani T, Okuno S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. 2003, 544, 74–78.
    39. Folgueira MA, Carraro DM, Brentani H, Patr?o DF, Barbosa EM, Netto MM, Caldeira JR, Katayama ML, Soares FA, Oliveira CT, Reis LF, Kaiano JH, Camargo LP, Vêncio RZ, Snitcovsky IM, Makdissi FB, e Silva PJ, Góes JC, Brentani MM. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res. 2005, 11, 7434-7443.
    40. Martin P, Shea R, Mulks M. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol. 2001, 183, 1168–1174.
    41. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004, 279, 0754–0763.
    42. Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. Bioessays. 2003, 25, 683–690.
    43. Menissier de Murcia J, Ricoul M, Tartier L, et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 2003, 22, 2255–2263.
    44. Corda D, Di Girolamo M. Functional aspects of protein mono-AD P ribo- sylation. EMBO J. 2003, 22, 1953–1958.
    45. Lee HC. Physiological functions of cyclic ADP-ribose and NAADP as calciummessengers. Annu Rev Pharmacol Toxicol. 2001, 41, 317–345.
    46. Denu JM. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem Sci. 2003, 28, 41–48.
    47. Lin S-J, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003, 15, 241–246.
    48. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403, 795–800.
    49. Landry J, Slama JT, Sternglanz R. Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun. 2000, 278, 685–690.
    50. Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA. 2000, 97, 6658–6663.
    51. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007, 32, 12–19.
    52. Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007, 23, 164–170.
    53. Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. Bioessays. 2003, 25, 683–690.
    54. Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol. 1999, 73, 135–182.
    55. Van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering JG. Pre-B-cell colony-enhancing factor regulates NAD-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ. Res. 2005, 97, 25–34.
    56. Archer SL. Pre-B-cell colony-enhancing factor regulates vascular smooth muscle maturation through a NAD+-dependent mechanism: recognition of a new mechanism for cell diversity and redox regulation of vascular tone and remodeling. Circ Res. 2005, 97, 4-7.
    57. Van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 2007, 282, 10841–10845.
    58. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006, 91, 1578-1581.
    59. Kloting N, Kloting I. Visfatin: gene expression in isolated adipocytes and sequence analysis in obese WOKW rats compared with lean control rats. Biochem Biophys Res Commun. 2005, 332, 1070-1072.
    60. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot specific mRNA expression in humans. Diabetes. 2005, 54, 2911-2916.
    61. Revollo JR, K?rner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007, 6, 363-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700