红藻光合作用捕光复合物和光合膜的超分子结构、功能及生态适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藻胆体(PBsomes)是蓝藻和红藻中主要的捕光天线复合物。藻胆体由亲水性的藻胆蛋白(PBPs)和连接蛋白聚集而成,作为外部的超分子天线复合物,结合在类囊体膜的基质表面。藻胆蛋白是圆盘状结构的超分子蛋白质,由具有开链四吡咯结构的发色团(bilins)与脱辅基蛋白共价交联而成,有序的构成藻胆体。藻胆蛋白一般可以分为四类:藻红蛋白(PEs)、藻蓝蛋白(PCs)、别藻蓝蛋白(APCs)和少数藻红蓝蛋白(PECs)。在没有与光合作用反应中心复合物结合的情况下,藻胆体自身具有很强的荧光性。太阳光最初被藻红蛋白的色素吸收(λ_(max)=545~565 nm),然后被依次传递到藻蓝蛋白(λ_(max)=620nm)和别藻蓝蛋白(λ_(max)=650 nm),最终高效的传递到光反应中心的叶绿素。
     本论文研究了红藻中藻红蛋白的基本性质和藻胆体光谱结构特性,并应用显微镜技术从纳米尺度上揭示了红藻光合膜的天然构象和光适应性,藻胆体在类囊体膜上的扩散动态学,以及从单分子水平上探索了藻胆体的荧光动态过程。另外,对光合细菌Rhodobacter sphaeroides的LH2在二维晶体上的排布进行了研究。
     光合作用简介
     光合作用是光合生物体将太阳能转化为生物能的一个重要的生物过程。这种高效的反应从光合反应中心的捕光天线进行光能吸收开始。本论文第一章对光合作用的生物学意义、多样性和进化做了一个简介,重点介绍了蓝藻和红藻中的光合作用,以及其光合作用元件,如藻胆体、光反应中心、细胞色素Cyt b_6f复合物和ATP合成酶。特别对蓝藻和红藻的捕光天线系统——藻胆体的研究进展进行了综述,介绍了藻胆体的组成、光谱特性、结构和其中蛋白质—蛋白质之间的相互作用。本章还讨论了不同类型的光合作用复合物之间的相互关系,以及整个类囊体膜系统的超分子构象和生理的光适应性。
     藻红蛋白的分离纯化
     藻红蛋白被广泛应用在食品、化妆品、免疫诊断和分析试剂中。本论文第二章介绍了高效分离和纯化多管藻R-藻红蛋白的一步色谱法。该方法包括硫酸铵分步沉淀、DEAE-Sepharose Fast Flow离子交换层析。与以前报道的离子交换层析法相比,我们首次采用pH梯度洗脱蛋白的方法。通过该方法,纯化后的藻胆蛋白溶液的光吸收比(A_(565)/A_(280)达到5.6,回收率高达67.33%。这种有效的分离手段大大减少了传统工艺的分离步骤,降低了分离过程中蛋白损失和变性的几率,因此可以达到一个很高的蛋白回收率。随后我们对R-藻红蛋白的光谱特性、亚基组成和对pH的稳定性进行了研究。R-藻红蛋白的吸收光谱呈三峰型,吸收峰分别位于565、539和498 nm,室温荧光发射峰位于580nm。非变性电泳和SDS电泳检测了分离蛋白的纯度。结果证明,该方法是一种有效分离纯化多管藻R-藻红蛋白的手段,为进一步研究R-藻红蛋白的结构与功能打下了基础。
     R-藻红蛋白的活性结构与功能
     X—射线晶体衍射技术可以对蛋白质肽链和氨基酸结构进行高分辨率的解析。但是这个技术对于研究不同环境条件下蛋白的结构和功能的稳定性有一定局限性。在建立了有效分离R-藻红蛋白技术的基础上,第三章研究了pH诱导的R-藻红蛋白结构和功能的动态学过程。采用吸收光谱、荧光光谱和圆二色谱对R-藻红蛋白的光谱和结构变化进行检测,结合对现有的晶体结构进行分析。结果表明,R-藻红蛋白在pH 3.5-10范围内光谱特性稳定,而在pH 5-9范围内结构相对稳定。对结构的分析有助于我们了解R-藻红蛋白亚基的组成规律。R-藻红蛋白的四级结构通过一些关键位点的相互作用而构成。脱辅基蛋白肽为色素基团提供了稳定的蛋白环境,有利于其生理的能量传递功能。蛋白肽链局部的柔性构象是应对外界环境变化的一种策略。试验进一步揭示带电氨基酸和芳香族氨基酸在R-藻红蛋白结构的重要作用。芳香族氨基酸,尤其是酪氨酸(Tyr)能够与相邻的色素相互作用,从而影响其能量传递。该研究方法将静态的晶体结构分析与动态的蛋白质活性结构和功能研究相结合,为今后研究蛋白质的结构和功能提供了新的思路。
     藻胆体的单颗粒结构分析
     电子显微镜已经被用于观察紫球藻藻胆体的结构。第四章介绍了电子显微镜结合单颗粒平均技术在紫球藻藻胆体的超分子结构上的首次应用。结果表明半椭球状的藻胆体具有相对柔性的空间结构。相比而言,藻胆体—类囊体膜上藻胆体的结构比分离的藻胆体结构更稳定,从而有利于半椭球状构象的空间观察,并建立了半椭球状藻胆体的三维结构模型。另外研究表明,在低光照条件下,藻胆体在类囊体膜上形成有序排列结构域,而在相对强的光照下,藻胆体成无规则排列,藻胆体密度降低。这是首次在分离到的类囊体膜上观察到不同的藻胆体排列方式。这些结构数据有利于分析红藻藻胆体与光系统Ⅱ,以及集胞藻(Synechocystis)PCC 6803突变体中半圆盘状藻胆体与光系统Ⅱ可能的结合方式。
     红藻类囊体膜的天然构象和动态学
     在超分子水平上,整个光合作用膜网络的构象决定了大量光合作用蛋白复合物的生理作用。到目前为止,对红藻的类囊体膜表面的天然构象研究还较少。在第五章中,我们首次利用原子力显微镜(AFM)来研究红藻紫球藻的天然类囊体膜的超分子构象。在AFM中,单个藻胆体在空间上呈现半椭球状。另外,在不同的光强条件下,藻胆体在天然类囊体膜上表现出不同的排列方式:无规则排列和成排排列。而在上述不同的情况下,藻胆体的排列都是十分紧密的。这种紧密的分布不仅决定了类囊体膜上藻胆体的排列方式以及类囊体膜内光系统的排列规律,同时也限制了藻胆体在类囊体膜表面大范围的横向扩散。
     光脱色荧光恢复技术研究藻胆体的运动过程
     藻胆体被认为在蓝藻的类囊体膜表面上是可以横向移动的。而结构观察表明,膜上蛋白的拥挤排列大大限制了藻胆体的快速移动。在第六章中,我们利用光脱色荧光恢复技术(fluorescence recovery after photobleaching,FRAP)来研究紫球藻的类囊体膜上藻胆体的动态运动过程。对天然细胞的研究结果证实了荧光恢复现象的存在,这与蓝藻的观察结果一致。但是在用戊二醛固定的细胞体内以及体外分离出的藻胆体内也同样观察到了荧光恢复现象,这证明了藻胆体在红藻类囊体膜上的紧密排布限制了其水平的扩散运动。我们在红藻细胞中所观察到的荧光恢复现象是由于被光淬灭的藻胆体的自身光物理原因造成的,而不是由藻胆体在类囊体膜上的快速扩散所产生。藻胆体在类囊体膜上的快速扩散被认为与光能在两个光系统之间的分配有关,因此在红藻中一定有其他的与藻胆体相关的机制来完成光能的重新分配过程。
     同时,检测了光淬灭过程中藻红蛋白的荧光动态过程。体内和群体试验结果表明FRAP中的淬灭荧光可以引起藻红蛋白的荧光增强。对藻胆体和细胞进行戊二醛固定的对比试验揭示了光淬灭可以导致藻红蛋白在藻胆体杆上的能量解偶联。该反应可以使部分藻胆体的荧光从藻红蛋白散发出来,从而可以解释FRAP中只有部分荧光可以恢复的现象。
     藻胆体的单分子光谱研究
     在群体试验结果的基础上,第三章利用单分子光谱首次对红藻紫球藻(Porphyridium cruentum)的藻胆体进行研究,通过同步检测完整藻胆体中藻红蛋白和整个藻胆体的荧光强度,实时观测藻胆体在强光下的荧光动态过程。结果表明强绿光可以诱导藻胆体的荧光降低,而藻红蛋白的荧光在光淬灭(photobleaching)初期荧光增强。这说明藻胆体中藻红蛋白与邻近的藻胆蛋白之间发生了能量的解偶联。藻红蛋白的荧光随即降低,说明当藻胆体内能量传递受影响后,藻红蛋白作为单个荧光元件被淬灭。相比较,戊二醛固定后的藻胆体以及缺少B-藻红蛋白而只含有b-藻红蛋白的突变型藻胆体都没有发生能量解偶联。因此,结果表明这种能量解偶联是特异的发生在藻胆体杆中B-藻红蛋白和b—藻红蛋白的连接位点。同时,这种能量解偶联被证明具有光强依赖性和氧依赖性。
     光合作用生物体己经进化出多种保护机制来避免强光对细胞体内的光损伤。实验证明,橙色类胡萝卜素蛋白(orange carotenoid protein,OCP)在蓝藻的光保护机制中起到了重要的作用。然而藻胆体自身在蓝藻和红藻中的光保护作用还不清楚。这种能量解偶联被看作是藻胆体为了避免光系统受到光损伤所产生的生理对应机制,并揭示了红藻中含有γsubunit的藻红蛋白的新的光保护功能。AFM研究LH2的排布
     与蓝藻和红藻中的藻胆体不同,光细菌Rhodobacter sphaeroides的光合捕光复合物2(LH2)位于光合膜的内部,将光能传递给捕光复合物1(LH1)和反应中心。采用显微镜和光镜技术研究光合膜的超分子结构,证明光合作用蛋白复合物紧密的排列在膜上,蛋白的紧密排布对光合作用的功能结构域的形成和膜弯曲起到了重要作用。为了深入研究这种紧密排布效应,第八章利用AFM观察了R.sphaeroides LH2的二维晶体膜。与之前报道的一到二种排列方式不同,我们在一次制备中共观察到七种不同的排布阵列,其中LH2与膜表面均有倾斜角度。虽然LH2在体外以单体形式存在,但是我们发现了两种新的二聚体的排列方式。在第一种二聚体中,两个LH2单体相内倾斜;在第二种二聚体中,单体相外倾斜。进一步研究表明,这两种排列方式与“Z”型排列方式相似,倾斜角度也相对一致。其中第二种二聚体构象可以带动脂双层进行弯曲,在R.sphaeroides体内构成弧形的光合膜结构。
Phycobilisomes(PBsomes)are the major light-harvesting antennae complexes in cyanobacteria and red algae.They are aggregations of water-soluble phycobiliproteins(PBPs)and linker polypeptides,and serve as external antenna macrocomplexes associated to the stromal surfaces of thylakoid membranes.PBPs are a distinctively colored group of disk-shaped macromolecular proteins bearing covalently attached open-chain tetrapyrroles,known as phycobilins(bilins),orderly assembled into PBsomes.Four spectral groups of PBPs are commonly identified: phycoerythrins(PEs),phycocyanins(PCs),allophycocyanins(APCs)and sometimes phycoerythrocyanins(PECs).In the absence of photosynthetic reaction centers(RCs), the PBsomes are highly fluorescent.Solar energy is initially absorbed by the pigments of PEs(λ_(max)=545~565 nm)and transferred by nonradiative transfer in turn via PCs (λ_(max)=620 nm),APCs(λ_(max)=650 nm),and eventually to chlorophylls(Chls)with a high efficiency.
     In this thesis,I will present the detailed investigations on the properties of PEs, the spectral feature and the topography of PBsomes,the supramolecular architecture and photoacclimation of entire photosynthetic membrane in red algae using microscopic imaging in nano scale,the diffusion dynamics of PBsomes upon the thylakoid membrane,and the fluorescence dynamics of PBsomes at single molecule level.In addition,the packing organization of LH2s,the light-harvesting complexes from photosynthetic bacterium Rhodobacter sphaeroides,in artificially created 2D crystals is characterized.
     Introduction of photosynthesis
     Photosynthesis is an essential conversion of solar light to biological energy in photosynthetic organisms.This highly efficient process starts from the light capturing by light-harvesting antenna of photosynthetic RCs.In Chapter 1,I provide a general introduction about the biological roles,diversity and evolution of photosynthesis. Then I focus on the photosynthesis in cyanobacteria and red algae,and their photosynthetic elements including the PBsomes,PSs,Cyt b_6f complexes and ATPase. In particular,the studies of light-harvesting antenna complexes,the PBsomes,are overviewed,consisting of its components,spectral properties,structures,and protein-protein interactions.The interactions of individual photosynthetic complexes, as well as the supramolecular architecture and the physiological photoacclimation of the overall thylakoid membrane network are summarized.
     Isolation of pure PEs
     PEs have been widely used in food,cosmetics,immunodiagnostics and analytical reagents.An efficient one-step chromatography method for purification of R-PEs from Polysiphonia urceolata was described in Chapter 2.Pure R-PEs were obtained with an absorbance ratio A565/A280 of 5.6 and a high recovery yield of 67.33%using a DEAE-Sepharose Fast Flow chromatography with a gradient elution of pH,alternative to common gradient elution of ionic strength.Such an effective methodology greatly reduces the traditional processing steps as well as the possibility of protein loss and denaturation during the overall operation,and a high recovery could thus be obtained.The absorption spectrum of R-PE was characterized with three absorbance maxima at 565 nm,539 nm and 498 nm,respectively.The fluorescence emission spectrum at room temperature was measured to be 580 nm.The results of native-PAGE,and SDS-PAGE showed no contamination by other proteins in the PE solution,which suggests an efficient method for the separation and purification of R-PEs from P urceolata for further accurate analysis.
     Active conformation and function of R-PEs
     X-ray crystallography of proteins has revealed high-resolution peptide conformations and amino acid organizations.However,investigations on the structural and functional stability of proteins in response to the environmental variations are limited in terms of this methodology.On the basis of the previous developed separating methodology of R-PEs,in Chapter 3,we explore the pH-induced conformational and functional dynamics of R-PEs isolated from P urceolata.The spectroscopic and structural variations of R-PEs monitored by means of absorption,fluorescence and circular dichroism(CD)spectra are investigated, together with analysis of the crystal structure of R-PE.R-PEs present a spectroscopic stability in pH range between 3.5 and 10,and relative structural sensitivity in pH range between 5 and 9,in response to the pH variations.Structural analysis allows us to better understand the assembly pattem of R-PE complexes.The tertiary structure of R-PE hexamer is fixed by specific interactions between several key anchoring residues,providing a stable protein environment for the chromophores to perform physiological energy migration.Local flexibility of protein peptide arrangement is allowed in response to the environmental disturbance.Our data further reveal that the charged amino acids and aromatic amino acid residues are highly involved in the association of R-PE complex.More specifically,aromatic amino acids,especially Tyr residues,are found to be capable to modify the interprotein energy transfer by close contacts with neighboring chromophores.This study combining analysis on the available crystal structure with active structural and functional investigations will provide new insights into the conformation and function of protein of interest,in addition to R-PEs.
     Single-particle structural inspections on the PBsomes
     The structure of PBsomes from Porphyridium cruentum has been studied before with electron microscopy(EM).In Chapter 4,EM combining with single particle averaging was performed for the first time to investigate the supramolecular architecture of PBsomes from P.cruentum.Isolated PBsomes are found to have a relatively flexible conformation.In contrast,PBsome-thylakoid vesicles provide relatively uniform PBsome structure,and allow us to acquire a spatial view of hemiellipsoidal structure.A three-dimensional model of the hemiellipsoidal PBsome is proposed.Under low-light growth conditions,the PBsomes on the membrane are mostly arranged in ordered domains.Whereas at higher light intensities,the distribution of PBsomes is largely disordered.It is the first time to observe the variety of PBsome arrangements upon isolated thylakoid membranes.We suggest that one PBsome likely lines up with one PSII dimer in red algae under low-light conditions is hypothesized because the red algal PSⅡis enlarged by a possible membrane-bound peripheral antenna which is absent in cyanobacteria.
     Native architecture and dynamics of thylakoid membrane of red algae
     The architecture of the entire photosynthetic membrane network determines,at the supramolecular level,the physiological roles of the photosynthetic protein complexes.So far,a precise picture of the native configuration of red algal thylakoids is still lacking.In Chapter 5,we investigate the supramolecular architectures of native thylakoid membranes from red alga P.cruentum,for the first time,using atomic force microscopy(AFM).The topography of individual PBsomes is characterized to be spatially hemiellipsoidal.Furthermore,the native organization of thylakoid membranes presented variable arrangements of PBsomes,either a random arrangement,or rather ordered arrays of PBsomes,depending on light conditions.In particular,PBsomes were organized crowdingly in both cases.The packing of PBsomes is studied to determine not only the organizations of PBsomes,but also those of PSs in the thylakoid membrane.Furthermore,such crowding effects may restrict the large-scale lateral mobility of PBsomes on the surface of thylakoids. The dynamics of PBsomes studied using fluorescence recovery after photobleaching(FRAP)
     The lateral mobility of PBsomes on the surface of thylakoid membranes in cyanobacteria has been proposed.However,the structural inspections imply that the rapid diffusion of PBsomes may be greatly inhibited upon the crowding membrane surface.In Chapter 6,we examine for the first time the dynamic of photosynthetic membrane in red alga P cruentum with FRAP.Our data obtained from native cell showed the existence of partial fluorescence recovery,similar to that visualized in cyanobacteria.However,FRAP also occurs in the glutaraldehyde(GA)-fixed cell in vivo and ensemble PBsomes in vitro.Therefore,FRAP of red algal cell is ascribed to an intrinsic photophysics of the bleached PBsomes in situ,rather than the rapid diffusion of PBsomes on thylakoids in vivo,which has been proposed to be involved in excitation energy redistribution between photosystemⅠ(PSI)and photosystemⅡ(PSⅡ).There should be other mechanisms for the PBsomes-related energy redistribution in red algae.
     In addition,we selectively monitor the fluorescence of PE instead of that of the entire PBsome in FRAP.The results of in vivo and ensemble experiments show that the bleaching laser applied in FRAP could result in the fluorescence increase of PE.Furthermore,the comparative data from GA-treated PBsomes and cells elucidate the energetic decoupling of PEs in the PBsome rods.Due to this decoupling,part of the fluorescence of PBsomes is dissipated from PE.It can presumably explain the partial fluorescence recovery observed in FRAP.
     Single-molecule spectroscopic study on isolated PBsomes
     According to the ensemble results,in Chapter 7,single-molecule spectroscopy is applied for the first time on the PBsomes of red alga P.cruentum to detect the fluorescence emissions of PEs and PBsome terminal emitters(APB)simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light.Our data reveal that strong green-light can induce the fluorescence decrease of APB,as well as the fluorescence increase of PE at the first stage of photobleaching.It strongly indicated an energetic decoupling occurring between PE and its neighbor.The fluorescence of PE was subsequently observed to decrease,showing that PE could be photobleached when energy transfer in the PBsomes was disrupted.In contrast,the energetic decoupling was not observed in either the PBsomes fixed with GA,or the mutant PBsomes lacking B-PE and remaining b-PE.It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod.In addition,this process is demonstrated to be power- and oxygen-dependent.
     Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions.In cyanobacteria,the orange carotenoid protein(OCP)has been demonstrated to play roles in the photoprotective mechanism.However,the direct PBsome-related energy dissipation mechanism in red algae is still unclear.Such a decoupling process is proposed to be a strategy corresponding to the PBsomes to prevent photodamage of the photosynthetic RCs. Furthermore,our results implied a novel photoprotective role ofγ-subunit-containing PE in red algae.
     Packing of LH2s studied by AFM
     Unlike PBsomes in cyanobacteria and red algae,the peripheral photosynthetic LH2 complexes from the bacterium Rhodobacter sphaeroides are embedded in the photosynthetic membranes,transferring energy to LH1 and RCs.Microscopic and light spectroscopic investigations on the supramolecular architecture of bacterial photosynthetic membranes have revealed the photosynthetic protein-complexes to be arranged in a densely packed energy-transducing network.Protein packing may play a determinant role in the formation of functional photosynthetic domains and membrane curvature.To further investigate in detail the packing effects of like-protein photosynthetic complexes,in Chapter 8,I report an AFM investigation on artificially created 2D-crystals of LH2s from R.sphaeroides.Instead of the usually observed 1 or 2 different crystallization lattices for one specific preparation protocol we find 7 different packing lattices.The most abundant crystal types all show a tilting of the LH2 complex.Most surprisingly,although the LH2 complex is a monomeric protein-complex in vivo,we find a LH2 dimer packing motif.I further characterize two different dimer configurations:in Type 1 the LH2 complexes are tilted inwards,in Type 2 outwards.Closer inspection of the lattices surrounding the LH2 dimers indicates their close resemblance to those LH2 complexes that constitute a lattice of zig-zagging LH2.In addition,analyses of the tilt of the LH2 complexes within the zig-zag lattice and that observed within the dimers corroborate their similar packing-motif.The Type 2 dimer configuration exhibits a tilt that,in absence of up-down packing,could bend the lipid bi-layer leading to the strong curvature of the LH2 domains as observed in R.sphaeroides photosynthetic membranes in vivo.
引文
Adir, N., 2005. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85, 15-32.
    Ajlani, G. Vernotte, C., 1998. Deletion of the PB-loop in the L(CM) subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur. J. Biochem. 257, 154-159.
    Allen, J.F. Forsberg, J., 2001. Molecular recognition in thylakoid structure and function. Trends Plant Sci. 6, 317-326.
    Allen, J.F., 2003. BOTANY: State Transitions-a Question of Balance. Science 299, 1530-1532.
    Allen, J.F. Holmes, N.G., 1986. A general model for regulation of photosynthetic unit function by protein phosphorylation. FEBS Lett. 202, 175-181.
    Amunts, A., Drory, O., Nelson, N., 2007. The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature 447, 58-63.
    Apt, K.E., Collier, J.L., Grossman, A.R., 1995. Evolution of the phycobiliproteins. J. Mol. Biol. 248, 79-96.
    Apt, K.E., Hoffman, N.E., Grossman, A.R., 1993. The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J. Biol. Chem. 268, 16208-16215.
    Apt, K.E., Metzner, S., Grossman, A.R., 2001. The gamma subunits of phycoerythrin from a red alga: position in phycobilisomes and sequence characterization. J. Phycol. 37, 64-70.
    Arteni, A.A., Liu, L.N., Aartsma, T.J., Zhang, Y.Z., Zhou, B.C., Boekema, E.J., 2008. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res. 95, 169-174.
    Bahatyrova, S., Frese, R.N., Siebert, C.A., Olsen, J.D., van der Werf, K.O., van Grondelle, R., Niederman, R.A., Bullough, P.A., Otto, C., Hunter, C.N., 2004. The native architecture of a photosynthetic membrane. Nature 430, 1058-1062.
    Bald, D., Kruip, J., Rogner, M., 1996. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth. Res. 49, 103-118.
    Barber, J., Morris, E.P., da Fonseca, P.C., 2003. Interaction of the allophycocyanin core complex with photosystem II. Photochem. Photobiol. Sci. 2, 536-541.
    Baymann, F., Brugna, M., Muhlenhoff, U., Nitschke, W., 2001. Daddy, where did (PS)I come from? Biochimica et Biophysica Acta (BBA) - Bioenergetics 1507, 291-310.
    Betz, M., 1997. One century of protein crystallography: the phycobiliproteins. Biol. Chem. 378, 167-176.
    Bibby, T.S., Nield, J., Barber, J., 2001. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743-745.
    Biggins, J., Campbell, C.L., Bruce, D., 1984. Mechanism of the light state transition in photosynthesis. 2. Analysis of phosphorylated polypeptides in the red alga, Porphyridium cruentum. Biochimica et Biophysica Acta 767, 138-144.
    Biggins, J. Bruce, D., 1989. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1-34.
    Blankenship, R.E., 1992. Origin and early evolution of photosynthesis. Photosynth. Res. 33, 91-111.
    Bopp, M.A., Jia, Y., Li, L., Cogdell, R.J., Hochstrasser, R.M., 1997. Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc. Natl. Acad. Sci. U. S. A 94, 10630-10635.
    Brimble, S. Bruce, D., 1989. Pigment orientation and excitation energy transfer in Porphyridium cruentum and Synechococcus sp. PCC 6301 cross-linked in light state 1 and light state 2 with glutaraldehyde. Biochim. Biophys. Acta 973, 315-323.
    Bruce, D., Brimble, S., Bryant, D.A., 1989. State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochim. Biophys. Acta 974, 66-73.
    Bumba, L., Havelkova-Dousova, H., Husak, M., Vacha, F., 2004. Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur. J. Biochem. 271, 2967-2975.
    Butler, P.J. Kuhlbrandt, W., 1988. Determination of the aggregate size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membranes. Proc. Natl. Acad. Sci U. S. A 85, 3797-3801.
    Canaani, O. Gantt, E., 1982. Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella. Proc. Natl. Acad. Sci. U. S. A 79,5277-5281.
    Capuano, V., Braux, A.S., Tandeau de, M.N., Houmard, J., 1991. The "anchor polypeptide" of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J. Biol. Chem. 266, 7239-7247.
    Capuano, V., Thomas, J.C., Tandeau de, M.N., Houmard, J., 1993. An in vivo approach to define the role of the LCM, the key polypeptide of cyanobacterial phycobilisomes. J. Biol. Chem. 268, 8277-8283.
    Chereskin, B.M., Clement-Metral, J.D., Gantt, E., 1985. Characterization of a purified photosystem II-phycobilisome particle preparation from Porphyridium cruentum. Plant Physiol 77, 626-629.
    Chitnis, P.R., 2001. PHOTOSYSTEM I: Function and Physiology. Annu. Rev. Plant Physiol Plant Mol. Biol. 52, 593-626.
    Chow, W.S., Kim, E.H., Horton, P., Anderson, J.M., 2005. Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem. Photobiol. Sci 4,1081-1090.
    Clement-Metral, J.D., Gantt, E., Redlinger, T., 1985. A photosystem II-phycobilisome preparation from the red alga, Porphyridium cruentum: oxygen evolution, ultrastructure, and polypeptide resolution. Arch. Biochem. Biophys. 238, 10-17.
    Clement-Metral, J.D. Gantt, E., 1983. Isolation of oxygen-evolving phycobilisome-photosystem II particles from Porphyridium cruentum. FEBS Lett. 156, 185-188.
    Cogdell, R.J., Gall, A., Kohler, J., 2006. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227-324.
    Contreras-Martel, C., Martinez-Oyanedel, J., Bunster, M., Legrand, P., Piras, C., Vernede, X., Fontecilla-Camps, J.C., 2001. Crystallization and 2.2 A resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning. Acta Crystallogr. D. Biol. Crystallogr. 57, 52-60.
    Dekker, J.P. Boekema, E.J., 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta-Bioenergetics 1706, 12-39.
    Delphin, E., Duval, J.C., Kirilovsky, D., 1995. Comparison of state 1 state 2 transitions in the green alga Chlamydomonas reinhardtii and in the red alga Rhodella violacea: Effect of kinase and Phosphatase inhibitors. Biochimica et Biophysica Acta-Bioenergetics 1232, 91-95.
    Drews,G. & Imhoff, J.F. (1991) Phototrophic purple bacteria. Variations in Autotrophic Life (ed. by J. M. Shively & L. L. Barton), pp. 51-97. Academic Press, London.
    Durnford, D.G., Deane, J.A., Tan, S., McFadden, G.I., Gantt, E., Green, B.R., 1999. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J. Mol. Evol. 48, 59-68.
    Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J., Iwata, S., 2004. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831-1838.
    Ficner, R. Huber, R., 1993. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem. 218, 103-106.
    Ficner, R., Lobeck, K., Schmidt, G., Huber, R., 1992. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J. Mol. Biol. 228, 935-950.
    Fromme, P., Jordan, P., Krauss, N., 2001. Structure of photosystem I. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1507, 5-31.
    Gantt, E., 1969. Properties and ultrastructure of phycoerythrin from Porphyridium cruentum. Plant Physiol 44,1629-1638.
    Gantt, E., 1980. Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae. International review of cytology 66, 45-80.
    Gantt,E. (1986) Phycobilisomes. Photosynthesis III: Photosenthetic Membranes and Light Harvesting Systems (ed. by L. A. Staehelin, J. M. Anderson, & C. J. Arntzen), pp. 260-268. Springer, Berlin.
    Gantt,E. (1994) Supramolecular membrane organization. The Molecular Biology of Cyanobacteria (ed. by D. A. Bryant), pp. 119-138. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Gantt, E. Conti, S.F., 1966. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell Biol. 29, 423-434.
    Gantt, E. Lipschul, C.A., 1972. Analysis of Phycobilisomes from Porphyridium cruentum. Plant Physiol. 49, 28-&.
    Gantt, E. Lipschultz, C.A., 1974. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry 13, 2960-2966.
    Gantt, E., Lipschultz, C.A., Zilinskas, B., 1976. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim. Biophys. Acta 430, 375-388.
    Gardian, Z., Bumba, L., Schrofel, A., Herbstova, M., Nebesarova, J., Vacha, F., 2007. Organisation of Photosystem I and Photosystem II in red alga Cyanidium caldarium: Encounter of cyanobacterial and higher plant concepts. Biochim. Biophys. Acta 1767,725-731.
    Giddings, T.H., Wasmann, C., Staehelin, L.A., 1983. Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol. 71,409-419.
    Gindt, Y.M., Zhou, J., Bryant, D.A., Sauer, K., 1994. Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the L_(CM), beta 18 and alpha AP-B chromophores. Biochim. Biophys. Acta 1186, 153-162.
    Glazer, A.N., 1985. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 47-77.
    Glazer, A.N., 1989. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264, 1-4.
    Glazer, A.N., Gindt, Y., Chan, C., Sauer, K., 1994. Selective disruption of energy flow from phycobilisomes to Photosystem I. Photosynth. Res. 40, 167-173.
    Glazer, A.N., Yeh, S.W., Webb, S.P., Clark, J.H., 1985. Disk-to-disk transfer as the rate-limiting step for energy flow in phycobilisomes. Science 227, 419-423.
    Glazer, A.N. Wedemayer, GJ., 1995. Cryptomonad biliproteins - an evolutionary perspective. Photosynth. Res. 46, 93-105.
    Gomez-Lojero, C., Perez-Gomez, B., Shen, G., Schluchter, W.M., Bryant, D.A., 2003. Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42, 13800-13811.
    Grabowski, B., Cunningham, F.X., Jr., Gantt, E., 2001. Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc. Natl. Acad. Sci. U. S. A 98,2911 -2916.
    Grossman, A.R., Schaefer, M.R., Chiang, G.G., Collier, J.L., 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725-749.
    Groth, G., 2002. Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin. Proc. Natl. Acad. Sci. U. S. A 99, 3464-3468.
    Groth, G. Pohl, E., 2001. The structure of the chloroplast F1-ATPase at 3.2 A resolution. J. Biol. Chem. 276,1345-1352.
    Hervas, M., Navarro, J.A., De La Rosa, M.A., 2003. Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc. Chem. Res. 36, 798-805.
    Houmard, J., Capuano, V., Colombano, M.V., Coursin, T., Tandeau de, M.N., 1990. Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc. Natl. Acad. Sci. U. S. A 87, 2152-2156.
    Jansson, S., 1994. The light-harvesting chlorophyll a/b-binding proteins. Biochim. Biophys. Acta 1184, 1-19.
    Jiang, T., Zhang, J., Liang, D., 1999. Structure and function of chromophores in R-Phycoerythrin at 1.9 A resolution. Proteins 34,224-231.
    Jiang, T., Zhang, J.p., Chang, W.r., Liang, D.c, 2001. Crystal Structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophys. J. 81,1171-1179.
    Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., Krauss, N., 2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411, 909-917.
    Joshua, S. Mullineaux, C.W., 2004. Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol. 135, 2112-2119.
    Kamiya, N. Shen, J.R., 2003. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. Proc. Natl. Acad. Sci. U.S. A 100, 98-103.
    Kargul, J., Nield, J., Barber, J., 2003. 3D reconstruction of a PSI-LHCI supercomplex from the green alga Chlamydomonas reinhardtii: insights into light harvesting for PSI. J. Biol. Chem., M300262200.
    Katoh, T. Gantt, E., 1979. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis. Biochim. Biophys. Acta 546, 383-393.
    Kirchhoff, H., Lenhert, S., Buchel, C., Chi, L., Nield, J., 2008. Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry 47, 431-440.
    Kirchhoff, H., Tremmel, I., Haase, W., Kubitscheck, U., 2004. Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. Biochemistry 43, 9204-9213.
    Kirilovsky, D., Kessel, M., Ohad, I., 1983. In vitro reassociation of phycobiliproteins and membranes to form functional membrane-bound phycobilisomes. Biochimica et Biophysica Acta - Bioenergetics 724, 416-426.
    Kruip, J., Bald, D., Boekema, E., Rogner, M., 1994. Evidence for the existence of trimeric and monomeric photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth. Res. 40, 279-286.
    Kura-Hotta, M., Satoh, K., Katoh, S., 1986. Functional linkage between phycobilisome and reaction center in two phycobilisome oxygen-evolving photosystem II preparations isolated from the thermophilic cyanobacterium Synechococcus sp. Arch. Biochem. Biophys. 249, 1-7.
    Kurisu, G., Zhang, H., Smith, J.L., Cramer, W.A., 2003. Structure of the cytochrome b6f complex of oxygenic photosynthesis: Tuning the cavity. Science 302, 1009-1014.
    Lefort-Tran, M., Cohen-Bazire, G., Pouphile, M., 1973. Photosynthetic membranes of biliprotein-containing algae observed after freeze etching. J. Ultrastruct. Res. 44, 199-209.
    Li, S., Nosenko, T., Hackett, J.D., Bhattacharya, D., 2006. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol. Biol. Evol. 23, 663-674.
    Liu, J.Y., Jiang, T., Zhang, J.p., Liang, D.c, 1999. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A Resolution. J. Biol. Chem. 274, 16945-16952.
    Liu, L.N., Chen, X.L., Zhang, X.Y., Zhang, Y.Z., Zhou, B.C., 2005a. One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J. Biotechnol. 116, 91-100.
    Liu, L.N., Chen, X.L., Zhang, Y.Z., Zhou, B.C., 2005b. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta 1708, 133-142.
    Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., Chang, W., 2004. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428, 287-292.
    Lockhart, P.J., Larkum, A.W., Steel, M., Waddell, P.J., Penny, D., 1996. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl. Acad. Sci U. S. A 93, 1930-1934.
    Loll, B., Kern, J., Zouni, A., Saenger, W., Biesiadka, J., Irrgang, K.D., 2005. The antenna system of photosystem II from Thermosynechococcus elongatus at 3.2 A resolution. Photosynth. Res. 86, 175-184.
    Lunde, C., Jensen, P.E., Haldrup, A., Knoetzel, J., Scheller, H.V., 2000. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408, 613-615.
    MacColl, R., 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311-334.
    MacColl, R., Eisele, L.E., Dhar, M., Ecuyer, J.P., Hopkins, S., Marrone, J., Barnard, R., Malak, H., Lewitus, A.J., 1999. Bilin organization in cryptomonad biliproteins. Biochemistry 38, 4097-4105.
    Manodori, A. Melis, A., 1985. Phycobilisome-photosystem II association in Synechococcus 6301 (Cyanophyceae). FEBS Lett. 181, 79-82.
    Marquardt, J., Lutz, B., Wans, S., Rhiel, E., Krumbein, W.E., 2001. The gene family coding for the light-harvesting polypeptides of Photosystem I of the red alga Galdieria sulphuraria. Photosynth. Res. 68, 121-130.
    Marquardt, J., Wans, S., Rhiel, E., Randolf, A., Krumbein, W.E., 2000. Intron-exon structure and gene copy number of a gene encoding for a membrane-intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria. Gene 255, 257-265.
    Marsac,N.T. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 197-205. 2003.
    McConnell, M.D., Koop, R., Vasil'ev, S., Bruce, D., 2002. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130, 1201-1212.
    McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., Cogdell, R.J., Isaacs, N.W., 1995. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517-521.
    McLuskey, K., Prince, S.M., Cogdell, R.J., Isaacs, N.W., 2001. The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40, 8783-8789.
    Melkozernov, A.N., Barber, J., Blankenship, R.E., 2006. Light harvesting in photosystem I supercomplexes. Biochemistry 45, 331-345.
    Moreira, D., Le, G.H., Philippe, H., 2000. The origin of red algae and the evolution of chloroplasts. Nature 405, 69-72.
    Morschel, E. Schatz, G.H., 1987. Correlation of photosystem-II complexes with exoplasmatic freeze-fracture particles of thylakoids of the cyanobacterium Synechococcus sp. Planta 172, 145-154.
    Morsy, F.M., Nakajima, M., Yoshida, T., Fujiwara, T., Sakamoto, T., Wada, K., 2008. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms. Photosynth. Res. 95, 73-85.
    Mullineaux, C.W., 1999. The thylakoid membranes of cyanobacteria: structure, dynamics and function. Aust. J. Plant Physiol 26, 671-677.
    Mullineaux, C.W., 2005. Function and evolution of grana. Trends Plant Sci 10, 521-525.
    Mullineaux, C.W., Tobin, M.J., Jones, G.R., 1997. Mobility of photosynthetic complexes in thylakoid membranes. Nature 390, 421-424.
    Mullineaux, C.W., 1992. Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterium. Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology 1100,285-292.
    Mullineaux, C.W., 1994. Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterial mutant lacking Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1184, 71-77.
    Murray, J.W., Maghlaoui, K., Barber, J., 2007. The structure of allophycocyanin from Thermosynechococcus elongatus at 3.5 A resolution. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 63, 998-1002.
    Mustardy, L., Cunningham, F.X., Jr., Gantt, E., 1992. Photosynthetic membrane topography: quantitative in situ localization of photosystems I and II. Proc. Natl. Acad. Sci. U. S. A 89, 10021-10025.
    Nelson, N. Ben-Shem, A., 2005. The structure of photosystem I and evolution of photosynthesis. Bioessays 27, 914-922.
    Nilsson, F., Simpson, D.J., Jansson, C., Andersson, B., 1992. Ultrastructural and biochemical characterization of a Synechocystis 6803 mutant with inactivated psbA genes. Arch. Biochem. Biophys. 295, 340-347.
    Olive, J., Ajlani, G., Astier, C., Recouvreur, M., Vernotte, C., 1997. Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim. Biophys. Acta 1319, 275-282.
    Olson, J.M. Blankenship, R.E., 2004. Thinking about the evolution of photosynthesis. Photosynth. Res. 80, 373-386.
    Oostergetel, G.T., Reus, M., Gomez Maqueo, C.A., Bryant, D.A., Boekema, E.J., Holzwarth, A.R., 2007. Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581, 5435-5439.
    Padyana, A.K., Bhat, V.B., Madyastha, K.M., Rajashankar, K.R., Ramakumar, S., 2001. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 282, 893-898.
    Pan, Z.Z., Zhou, B.C., Tseng, C.K., 1986. Comparative studies on spectral properties of R-phycoerythrin from the red seaweeds from Qingdao. Chin. J. Oceanol. Limnol. 4, 353-359.
    Porter, G., Tredwell, C.J., Searle, G.F., Barber, J., 1978. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim. Biophys. Acta 501,232-245.
    Rakhimberdieva, M.G., Boichenko, V.A., Karapetyan, N.V., Stadnichuk, I.N., 2001. Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40, 15780-15788.
    Redlinger, T. Gantt, E., 1982. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc. Natl. Acad. Sci. U. S. A 79, 5542-5546.
    Reuter, W., Wiegand, G., Huber, R., Than, M.E., 1999. Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP Lc7.8, from phycobilisomes of Mastigocladus laminosus. Proc. Natl. Acad. Sci. U. S. A 96, 1363-1368.
    Ritter, S., Hiller, R.G., Wrench, P.M., Welte, W., Diederichs, K., 1999. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution. J. Struct. Biol. 126, 86-97.
    Roose, J.L., Wegener, K.M., Pakrasi, H.B., 2007. The extrinsic proteins of Photosystem II. Photosynth. Res. 92, 369-387.
    Sandona, D., Croce, R., Pagano, A., Crimi, M., Bassi, R., 1998. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim. Biophys. Acta 1365, 207-214.
    Sauer, K. Austin, L.A., 1978. Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. Biochemistry 17, 2011-2019.
    Scheller, H.V., Jensen, P.E., Haldrup, A., Lunde, C., Knoetzel, J., 2001. Role of subunits in eukaryotic Photosystem I. Biochim. Biophys. Acta 1507,41-60.
    Scheming, S. Sturgis, J.N., 2005. Chromatic adaptation of photosynthetic membranes. Science 309,484-487.
    Schubert, W.D., Klukas, O., Saenger, W., Witt, H.T., Fromme, P., Krauss, N., 1998. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J. Mol. Biol. 280, 297-314.
    Searle, G.F., Barber, J., Porter, G., Tredwell, C.J., 1978. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light harvesting complex (phycobilisomes). Biochim. Biophys. Acta 501, 246-256.
    Sidler,W.A. (1994) Phycobilisome and phycobiliprotein structures. The Molecular Biology of Cyanobacteria (ed. by D. A. Bryant), pp. 139-216. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Skibinski, A., Urbas, A., Valkunas, L., Frackowiak, D., 1992. Picosecond Time-Resolved Transient Absorption-Spectroscopy of Phycobilisomes Adapted to Red and Green Radiation. Photosynthetica 26, 347-353.
    Stadnichuk, I.N., Khokhlachev, A.V., Tikhonova, Y.V., 1993. Polypeptide γ subunits of R-phycoerythrin. J. Photochem. Photobiol. B: Biol. 18, 169-175.
    Staehelin, L.A., Golecki, J.R., Drews, G., 1980. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim. Biophys. Acta 589, 30-45.
    Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M., Kuhlbrandt, W., 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J. 24, 919-928.
    Stiller, J.W. Hall, B.D., 1997. The origin of red algae: Implications for plastid evolution. Proc. Natl. Acad. Sci U. S. A 94,4520-4525.
    Stroebel, D., Choquet, Y, Popot, J.L., Picot, D., 2003. An atypical haem in the cytochrome b_6f complex. Nature 426, 413-418.
    Su, X., Fraenkel, P.G., Bogorad, L., 1992. Excitation energy transfer from phycocyanin to chlorophyll in an apcA-defective mutant of Synechocystis sp. PCC 6803. J. Biol. Chem. 267, 22944-22950.
    Talarico, L. Maranzana, G., 2000. Light and adaptive responses in red macroalgae: an overview. J. Photochem. Photobiol. B 56, 1-11.
    Tan, S., Cunningham, F.X., Jr., Gantt, E., 1997. LhcaR1 of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs. Plant Mol. Biol. 33, 157-167.
    Tandeau de Marsac, N. Cohen-Bazire, G., 1977. Molecular composition of cyanobacterial phycobilisomes. Proc. Natl. Acad. Sci U. S. A 74, 1635-1639.
    Tsekos, I., Reiss, H.D., Delivopoulos, S.G., 2004. The supramolecular organization of photosynthetic membranes in the red alga Thorea ramosissima: spatial relationship between putative photosystem II core particles (EF-particles) and phycobilisomes. Phycologia 43, 543-551.
    Tsekos, I., Reiss, H.D., Orfanidis, S., Orologas, N., 1996. Ultrastructure and supramolecular organization of photosynthetic membranes of some marine red algae. New Phytologist 133, 543-551.
    Tsekos, I., Niell, F.X., Aguilera, J., Figueroa, F.L., Delivopoulos, S.G., 2002. Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green light. Phycological Research 50, 251-264.
    van Thor, J.J., Gruters, O.W., Matthijs, H.C., Hellingwerf, K.J., 1999. Localization and function of ferredoxin:NADP(+) reductase bound to the phycobilisomes of Synechocystis. EMBO J. 18,4128-4136.
    Wang, X.Q., Li, L.N., Chang, W.R., Zhang, J.P., Gui, L.L., Guo, B.J., Liang, D.C., 2001. Structure of C-phycocyanin from Spirulina platensis at 2.2 A resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallogr. D. Biol. Crystallogr. 57, 784-792.
    Wedemayer, G.J., Kidd, D.G., Glazer, A.N., 1996. Cryptomonad biliproteins: Bilin types and locations. Photosynth. Res. 48, 163-170.
    Wendler, J., Holzwarth, A.R., Wehrmeyer, W., 1984. Picosecond time-resolved energy transfer in phycobilisomes isolated from the red alga Porphyridium cruentum. Biochimica et Biophysica Acta (BBA) - Bioenergetics 765, 58-67.
    Wilbanks, S.M. Glazer, A.N., 1993. Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J Biol Chem. 268, 1236-1241.
    Wolfe, G.R., Cunningham, F.X., Durnfordt, D., Green, B.R., Gantt, E., 1994. Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367, 566-568.
    Wolfe,G.R. & Hoober,J.K. (1996) Evolution of thylakoid structure. Oxygenic Photosynthesis: The Light Reactions (ed. by D. R. Ort & C. F. Yocum), pp. 31-40. Kluwer Academic Publishers, Dordrecht.
    Wollman, F.A., 1979. Ultrastructural comparison of Cyanidium caldarium wild type and Ⅲ-C mutant lacking phycobilisomes. Plant Physiol 63, 375-381.
    Xiong, J., 2006. Photosynthesis: what color was its origin? Genome Biol. 7, 245.
    Xiong, J. Bauer, C.E., 2002. Complex evolution of photosynthesis. Annu. Rev. Plant Biol. 53, 503-521.
    Yano, J., Kern, J., Irrgang, K.D., Latimer, M.J., Bergmann, U., Glatzel, P., Pushkar, Y, Biesiadka, J., Loll, B., Sauer, K., Messinger, J., Zouni, A., Yachandra, V.K., 2005. X-ray damage to the Mn_4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc. Natl. Acad. Sci U. S. A 102, 12047-12052.
    Zhang, Y, Chen, M., Zhou, B.B., Jermiin, L.S., Larkum, A.W., 2007. Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae, and plants. J. Mol. Evol. 64, 321-331.
    Zouni, A., Witt, H.T., Kern, J., Fromme, P., Krauss, N., Saenger, W., Orth, P., 2001. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409, 739-743.
    Albertsson, P.A., 2003. The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900-1980. Photosynth. Res. 76,217-225.
    Apt, K.E., Collier, J.L., Grossman, A.R., 1995. Evolution of the phycobiliproteins. J. Mol. Biol. 248, 79-96.
    Bermejo, R., Acien, KG., Ibanez, M.J., Fernandez, J.M., Molina, E., varez-Pez, J.M., 2003. Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 790, 317-325.
    Bermejo, R., Talavera, E.M., varez-Pez, J.M., 2001. Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum. Semipreparative high-performance liquid chromatographic separation and characterization of its subunits. J. Chromatogr. A 917, 135-145.
    Bermejo, R.R., varez-Pez, J.M., cien Fernandez, F.G., Molina, G.E., 2002. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J. Biotechnol. 93, 73-85.
    Chang, W.R., Jiang, T., Wan, Z.L., Zhang, J.P., Yang, Z.X., Liang, D.C., 1996. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 A resolution. J.Mol. Biol. 262, 721-731.
    Chen, C., Zhang, Y.Z., Chen, X.L., Zhou, B.C., Gao, H.J., 2003. Langmuir-Blodgett film of phycobilisomes from blue-green alga Spirulina platensis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35, 952-955.
    Duerring, M., Huber, R., Bode, W, Ruembeli, R., Zuber, H., 1990. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J. Mol. Biol. 211, 633-644.
    Ficner, R., Lobeck, K., Schmidt, G., Huber, R., 1992. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J. Mol. Biol. 228, 935-950.
    Galland-lrmouli, A.V., Pons, L., Lucon, M., Villaume, C., Mrabet, N.T., Gueant, J.L., Fleurence, J., 2000. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J. Chromatogr. B Biomed. Sci Appl. 739,117-123.
    Gantt, E., Lipschultz, C.A., Grabowski, J., Zimmerman, B.K., 1979. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol 63, 615-620.
    Glazer, A.N., 1984. Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta 768, 29-51.
    Glazer, A.N., 1985. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14,47-77.
    Glazer, A.N., 1989. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264, 1-4.
    Glazer, A.N., 1994. Phycobiliproteins - a family of valuable, widely used fluorophores. Journal of Applied Phycology 6, 105-112.
    MacColl, R., 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311-334.
    MacColl, R. Eisele, L.E., 1996. R-phycoerythrins having two conformations for the same aggregate. Biophys. Chem. 61, 161-167.
    Pan, Z.Z., Zhou, B.C., Tseng, C.K., 1986. Comparative studies on spectral properties of R-phycoerythrin from the red seaweeds from Qingdao. Chin. J. Oceanol. Limnol. 4, 353-359.
    Pan, Z.Z., Zhou, B.C., Tseng, C.K., 1987. The effect of pH on both spectral types of R-phycoerythrin. Chin. J. Oceanol. Limnol. 5, 73-79.
    Rossano, R., Ungaro, N., D'Ambrosio, A., Liuzzi, G.M., Riccio, P., 2003. Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J. Biotechnol. 101, 289-293.
    Siegelman,H.W. & Kycia,J.H. (1978) Algal biliproteins. Physiological and Biochemical Methods (ed. by J. A. Hellebust & J. S. Craigie), pp. 71-79. Cambridge University Press, Cambridge.
    Tandeau de, M.N., 2003. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193-205.
    Tchernov, A.A., Minkova, K.M., Houbavenska, N.B., Kovacheva, N.G., 1999. Purification of phycobiliproteins from Nostoc sp. by aminohexyl-Sepharose chromatography. Journal of Biotechnology 69, 69-73.
    Telford, W.G., Moss, M.W., Morseman, J.P., Allnutt, F.C., 2001a. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44, 16-23.
    Telford, W.G., Moss, M.W., Morseman, J.P., Allnutt, F. C., 2001b. Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J. Immunol. Methods 254, 13-30.
    Tseng, C.K., 1943. Marine algae of Hong Kong. VI. The genus Polysiphonia. Papers of the Michigan Academy of Science. Arts Lett. 28, 185-208.
    Wilbanks, S.M. Glazer, A.N., 1993. Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J. Biol. Chem. 268, 1236-1241.
    Yu, L.H., Zeng, F.J., Zhou, B.C., 1991. Subunit composition and chromophore content of R-phycoerythrin from the red alga Polysiphonia urceolata Grev. Chin. J. Biochem. Biophys. 23, 127-133.
    Yu, M.H., Glazer, A.N., Spencer, K.G., West, J.A., 1981. Phycoerythrins of the red alga Callithamnion: variation in phycoerythrobilin and phycourobilin content. Plant Physiol 68, 482-488.
    Zeng, F.J., Lin, Q.S., Jiang, L.J., 1992. Isolation and characterization of R-phycocyanin from the red alga Porphyra haitanensis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 24, 545-551.
    Zhang, Y.Z., Chen, X.L., Wang, L.S., Zhou, B.C., He, J.A., Shi, D.X., Pang, S.J., 2002. In vitro assembly of R-phycoerythrin from marine red alga Polysiphonia urceolata. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34, 99-103.
    Zhang, Y.Z., Chen, X.L., Zhou, B.C., Tseng, C.K., 1999. A new model of phycobilisome in Spirulina platensis. Sci. China (Series C), 145-150.
    Zhang, Y.M. Chen, F., 1999. A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnology Techniques 13, 601-603.
    Adir, N., 2005. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85, 15-32.
    Apt, K.E., Collier, J.L., Grossman, A.R., 1995. Evolution of the phycobiliproteins. J. Mol. Biol. 248, 79-96.
    Apt, K.E., Hoffman, N.E., Grossman, A.R., 1993. The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J. Biol. Chem. 268, 16208-16215.
    Baker, C.M. Grant, G.H., 2007. Role of aromatic amino acids in protein-nucleic acid recognition. Biopolymers 85, 456-470.
    Bermejo, R., Acien, F.G., Ibanez, M.J., Fernandez, J.M., Molina, E., varez-Pez, J.M., 2003. Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 790, 317-325.
    Chang, W.R., Jiang, T., Wan, Z.L., Zhang, J.P., Yang, Z.X., Liang, D.C., 1996. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 A resolution. J.Mol. Biol. 262, 721-731.
    Contreras-Martel, C., Martinez-Oyanedel, J., Bunster, M., Legrand, P., Piras, C., Vernede, X., Fontecilla-Camps, J.C., 2001. Crystallization and 2.2 A resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning. Acta Crystallogr. D. Biol. Crystallogr. 57, 52-60.
    DeLano,W.L. The PyMOL Molecular Graphics System.http://www.pvmol.org. 2002.
    Ficner, R. Huber, R., 1993. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem. 218, 103-106.
    Glazer, A.N. Hixson, C.S., 1977. Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J. Biol. Chem. 252, 32-42.
    Greenfield, N.J., 2004. Circular dichroism analysis for protein-protein interactions. Methods Mol. Biol. 261, 55-78.
    Jiang, T., Zhang, J., Liang, D., 1999. Structure and function of chromophores in R-Phycoerythrin at 1.9 A resolution. Proteins 34, 224-231.
    Kikuchi, H., Wako, H., Yura, K., Go, M., Mimuro, M., 2000. Significance of a Two-Domain Structure in Subunits of Phycobiliproteins Revealed by the Normal Mode Analysis. Biophys. J. 79, 1587-1600.
    Lane, A.N. Jardetzky, O., 1985. Identification of surface residues in the trp repressor of Escherichia coli. Eur. J. Biochem. 152, 411-418.
    Liang,J.J.,2004.Interactions and chaperone function of alphaA-crystallin with T5P gammaC-crystallin mutant.Protein Sci 13,2476-2482.
    Liu,L.N.,Chen,X.L.,Zhang,X.Y.,Zhang,Y.Z.,Zhou,B.C.,2005a.One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata.J.Biotechnol.116,91-100.
    Liu,L.N.,Chen,X.L.,Zhang,Y.Z.,Zhou,B.C.,2005b.Characterization,structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae:an overview.Biochim.Biophys.Acta 1708,133-142.
    Manchester,K.L.,1996.Use of UV methods for measurement of protein and nucleic acid concentrations.Biotechniques 20,968-970.
    Martinez-Oyanedel,J.,Contreras-Martel,C.,Bruna,C.,Bunster,M.,2004.Structural-functional analysis of the oligomeric protein R-phycoerythrin.Biol.Res.37,733-745.
    Okumura,A.,Sano,M.,Suzuki,T.,Tanaka,H.,Nagao,R.,Nakazato,K.,Iwai,M.,Adachi,H.,Shen,J.R.,Enami,I.,2007.Aromatic structure of tyrosine-92 in the extrinsic PsbU protein of red algal photosystem Ⅱ is important for its functioning.FEBS Lett.581,5255-5258.
    Reuter,W.,Wiegand,G.,Huber,R.,Than,M.E.,1999.Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex,AP L_C7.8,from phycobilisomes of Mastigocladus laminosus.Proc.Natl.Acad.Sci.U.S.A 96,1363-1368.
    Ritter,S.,Hiller,R.G.,Wrench,P.M.,Welte,W.,Diederichs,K.,1999.Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution.J.Struct.Biol.126,86-97.
    Roell,M.K.Morse,D.E.,1993.Organization,expression and nucleotide sequence of the operon encoding R-phycoerythrin alpha and beta subunits from the red alga Polysiphonia boldii.Plant Mol.Biol.21,47-58.
    Yu,L.H.,Zeng,F.J.,Jiang,L.J.,Zhou,B.C.,1990.Subunits composition and chromophore content of R-phycoerythrin from Polysiphonia urceolata Grev.Acta Biochem.Biophys.Sinica 22,221-227.
    Aspinwall, C.L., Sarcina, M., Mullineaux, C.W., 2004. Phycobilisome mobility in the cyanobacterium Synechococcus sp. PCC 7942 is influenced by the trimerisation of photosystem I. Photosynth. Res. 79, 179-187.
    Bald, D., Kruip, J., Rogner, M., 1996. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth. Res. 49, 103-118.
    Barber, J., Morris, E.P., da Fonseca, P.C., 2003. Interaction of the allophycocyanin core complex with photosystem II. Photochem. Photobiol. Sci. 2, 536-541.
    Buchel, C. Kuhlbrandt, W., 2005. Structural differences in the inner part of photosystem II between higher plants and cyanobacteria. Photosynth. Res. 85, 3-13.
    Bumba, L., Havelkova-Dousova, H., Husak, M., Vacha, F., 2004. Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur. J. Biochem. 271, 2967-2975.
    Cunningham, F.X., Dennenberg, R.J., Mustardy, L., Jursinic, P.A., Gantt, E., 1989. Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91, 1179-1187.
    Ducret, A., Miiller, S.A., Goldie, K.N., Hefti, A., Sidler, W.A., Zuber, H., Engel, A., 1998. Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J. Mol. Biol. 278, 369-388.
    Gantt, E. Conti, S.F., 1966. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell Biol. 29, 423-434.
    Gantt,E., Grabowski,B., & Cunningham,F.X., Jr. (2003) Antenna systems of red algae: phycobilisomes with photosystem II and chlorophyll complexes with photosystem I. Light-Harvesting Antennas in Photosynthesis (ed. by B. R. Green & W. W. Parson), pp. 307-322. Kluwer Academic Publishers, Dordrecht.
    Gantt, E., Lipschultz, C.A., Zilinskas, B., 1976. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim. Biophys. Acta 430, 375-388.
    Gardian, Z., Bumba, L., Schrofel, A., Herbstova, M., Nebesarova, J., Vacha, F., 2007. Organisation of Photosystem I and Photosystem II in red alga Cyanidium caldarium: Encounter of cyanobacterial and higher plant concepts. Biochim. Biophys. Acta 1767,725-731.
    Gindt, Y.M., Zhou, J., Bryant, D.A., Sauer, K., 1994. Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the Lcm, beta 18 and alpha AP-B chromophores. Biochim. Biophys. Acta 1186, 153-162.
    Glazer,A.N. (1988) Phycobilisomes. Methods in Enzymology (ed. by L. Packer & A. N. Glazer), pp. 304-312. Academic Press, San Diego.
    Glazer, A.N., Chan, C., Williams, R.C., Yeh, S.W., CLARK, J.H., 1985. Kinetics of Energy Flow in the Phycobilisome Core. Science 230, 1051-1053.
    Houmard, J., Capuano, V., Colombano, M.V., Coursin, T., Tandeau de, M.N., 1990. Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc. Natl. Acad. Sci. U. S. A 87, 2152-2156.
    Jahn, W., Steinbiss, J., Zetsche, K., 1984. Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta 161, 536-539.
    Joshua, S., Bailey, S., Mann, N.H., Mullineaux, C.W., 2005. Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiol. 138, 1577-1585.
    Li, H., Li, D., Yang, S., Xie, J., Zhao, J., 2006. The state transition mechanism -simply depending on light-on and -off in Spirulina platensis. Biochim. Biophys. Acta 1757, 1512-1519.
    Morschel, E. Schatz, G.H., 1987. Correlation of photosystem-II complexes with exoplasmatic freeze-fracture particles of thylakoids of the cyanobacterium Synechococcus sp. Planta 172, 145-154.
    Morsy, F.M., Nakajima, M., Yoshida, T., Fujiwara, T., Sakamoto, T., Wada, K., 2008. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms. Photosynth. Res. 95, 73-85.
    Mullineaux, C.W, 1999. The thylakoid membranes of cyanobacteria: structure, dynamics and function. Aust. J. Plant Physiol. 26, 671-677.
    Mullineaux, C.W., Tobin, M.J., Jones, G.R., 1997. Mobility of photosynthetic complexes in thylakoid membranes. Nature 390,421-424.
    Nilsson, F., Simpson, D.J., Jansson, C., Andersson, B., 1992. Ultrastructural and biochemical characterization of a Synechocystis 6803 mutant with inactivated psbA genes. Arch. Biochem. Biophys. 295, 340-347.
    Penczek, P., Radermacher, M., Frank, J., 1992. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40, 33-53.
    Redecker, D., Wehrmeyer, W, Reuter, W, 1993. Core substructure of the hemiellipsoidal phycobilisome from the red alga Porphyridium cruentum. Eur. J. Cell Biol. 62,442-450.
    Sarcina, M., Bouzovitis, N., Mullineaux, C.W., 2006. Mobilization of photosystem II induced by intense red light in the cyanobacterium Synechococcus sp PCC7942. Plant Cell 18, 457-464.
    Sarcina, M., Tobin, M.J., Mullineaux, C.W., 2001. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. J. Biol. Chem. 276, 46830-46834.
    Tsekos, I., Reiss, H.D., Delivopoulos, S.G., 2004. The supramolecular organization of photosynthetic membranes in the red alga Thorea ramosissima: spatial relationship between putative photosystem II core particles (EF-particles) and phycobilisomes. Phycologia 43, 543-551.
    van Heel, M., Gowen, B., Matadeen, R., Orlova, E.V., Finn, R., Pape, T., Cohen, D., Stark, H., Schmidt, R., Schatz, M., Patwardhan, A., 2000. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33, 307-369.
    Yi, Z.W., Huang, H., Kuang, T.Y., Sui, S.F., 2005. Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett. 579, 3569-3573.
    Adir, N., 2005. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85, 15-32.
    Arteni, A.A., Liu, L.N., Aartsma, T.J., Zhang, Y.Z., Zhou, B.C., Boekema, E.J., 2008. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res. 95, 169-174.
    Bahatyrova, S., Frese, R.N., Siebert, C.A., Olsen, J.D., van der Werf, K.O., van Grondelle, R., Niederman, R.A., Bullough, P.A., Otto, C., Hunter, C.N., 2004a. The native architecture of a photosynthetic membrane. Nature 430, 1058-1062.
    Bahatyrova, S., Frese, R.N., Siebert, C.A., Olsen, J.D., van der Werf, K.O., van Grondelle, R., Niederman, R.A., Bullough, P.A., Otto, C., Hunter, C.N., 2004b. The native architecture of a photosynthetic membrane. Nature 430, 1058-1062.
    Bald, D., Kruip, J., Rogner, M., 1996. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth. Res. 49,103-118.
    Barber, J., Morris, E.P., da Fonseca, P. C., 2003. Interaction of the allophycocyanin core complex with photosystem II. Photochem. Photobiol. Sci. 2, 536-541.
    Betz, M., 1997. One century of protein crystallography: the phycobiliproteins. Biol. Chem. 378, 167-176.
    Bumba, L., Havelkova-Dousova, H., Husak, M., Vacha, F., 2004. Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur. J. Biochem. 271,2967-2975.
    Dilworth, M.F. Gantt, E., 1981. Phycobilisome-thylakoid topography on photosynthetically active vesicles of Porphyridium cruentum. Plant Physiol. 67, 608-612.
    Ducret, A., Muller, S.A., Goldie, K.N., Hefti, A., Sidler, W.A., Zuber, H., Engel, A., 1998. Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J. Mol. Biol. 278, 369-388.
    Edward, A.B., Li-Shar, H., Lai, K.S., Pon, G., Maria, V., Fevzi, D., 2004. X-Ray Structure of Rhodobacter Capsulatus Cytochrome bcl: Comparison with its Mitochondrial and Chloroplast Counterparts. Photosynth. Res. V81, 251-275.
    Feniouk, B.A., Cherepanov, D.A., Voskoboynikova, N.E., Mulkidjanian, A.Y., Junge, W., 2002. Chromatophore Vesicles of Rhodobacter capsulatus Contain on Average One FOF1-ATP Synthase Each. Biophys. J. 82, 1115-1122.
    Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J., Iwata, S., 2004. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831-1838.
    Ficner, R. Huber, R., 1993. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem. 218, 103-106.
    Frese, R.N., Pamies, J.C., Olsen, J.D., Bahatyrova, S., van der Weij-De Wit, C.D., Aartsma, T.J., Otto, C., Hunter, C.N., Frenkel, D., van Grondelle, R., 2008. Protein shape and crowding drive domain formation and curvature in biological membranes. Biophys. J. 94, 640-647.
    Gantt, E., 1980. Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae. Int. Rev. Cytol. 66, 45-80.
    Gantt,E. (1986) Phycobilisomes. Photosynthesis III: Photosenthetic Membranes and Light Harvesting Systems (ed. by L. A. Staehelin, J. M. Anderson, & C. J. Arntzen), pp. 260-268. Springer, Berlin.
    Gantt,E. (1994) Supramolecular membrane organization. The Molecular Biology of Cyanobacteria (ed. by D. A. Bryant), pp. 119-138. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Gantt, E. Conti, S.F., 1966. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell Biol. 29, 423-434.
    Gantt,E., Grabowski,B., & Cunningham,F.X., Jr. (2003) Antenna systems of red algae: phycobilisomes with photosystem II and chlorophyll complexes with photosystem I. Light-Harvesting Antennas in Photosynthesis (ed. by B. R. Green & W. W. Parson), pp. 307-322. Kluwer Academic Publishers, Dordrecht.
    Gantt, E., Lipschultz, C.A., Zilinskas, B., 1976. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim. Biophys. Acta 430, 375-388.
    Gardian, Z., Bumba, L., Schrofel, A., Herbstova, M., Nebesarova, J., Vacha, F., 2007. Organisation of Photosystem I and Photosystem II in red alga Cyanidium caldarium: Encounter of cyanobacterial and higher plant concepts. Biochim. Biophys. Acta 1767, 725-731.
    Giddings, T.H., Wasmann, C., Staehelin, L.A., 1983. Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol. 71,409-419.
    Glazer, A.N., 1985. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 47-77.
    Goncalves, R.P., Bernadac, A., Sturgis, J.N., Scheuring, S., 2005. Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. J. Struct. Biol. 152,221-228.
    Gradinaru, C.C., Martinsson, P., Aartsma, T.J., Schmidt, T., 2004. Simultaneous atomic-force and two-photon fluorescence imaging of biological specimens in vivo. Ultramicroscopy 99, 235-245.
    Grossman, A.R., Schaefer, M.R., Chiang, G.G., Collier, J.L., 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725-749.
    Jones, R.F., Speer, H.L., Kury, W., 1963. Studies on the growth of the red alga Porphyridium cruentum. Physiol. Plant. 16, 636-643.
    Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., Krauss, N., 2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411, 909-917.
    Kaftan, D., Brumfeld, V, Nevo, R., Scherz, A., Reich, Z., 2002. From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J. 21, 6146-6153.
    Kamiya, N. Shen, J.R., 2003. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. Proc. Natl. Acad. Sci. U.S. A 100, 98-103.
    Kirchhoff, H., 2008. Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13, 201-207.
    Kirchhoff, H., Lenhert, S., Buchel, C., Chi, L., Nield, J., 2008. Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry 47, 431-440.
    Lefort-Tran, M., Cohen-Bazire, G., Pouphile, M., 1973. Photosynthetic membranes of biliprotein-containing algae observed after freeze etching. J. Ultrastruct. Res. 44, 199-209.
    Liu, L.N., Chen, X.L., Zhang, Y.Z., Zhou, B.C., 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta 1708, 133-142.
    MacColl, R., 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311-334.
    Mullineaux, C.W., 1999. The thylakoid membranes of cyanobacteria: structure, dynamics and function. Aust. J. Plant Physiol. 26, 671-677.
    Mullineaux, C.W., 2008. Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth. Res. 95, 175-182.
    Mustardy, L., Cunningham, F.X., Jr., Gantt, E., 1992. Photosynthetic membrane topography: quantitative in situ localization of photosystems I and II. Proc. Natl. Acad. Sci. U. S. A 89,10021-10025.
    Nevo, R., Charuvi, D., Shimoni, E., Schwarz, R., Kaplan, A., Ohad, I., Reich, Z., 2007. Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J. 26, 1467-1473.
    Nield, J., Kruse, O., Ruprecht, J., da, F.P., Buchel, C., Barber, J., 2000. Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J. Biol. Chem. 275, 27940-27946.
    Olive, J., Ajlani, G., Astier, C., Recouvreur, M., Vernotte, C., 1997. Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim. Biophys. Acta 1319, 275-282.
    Redecker, D., Wehrmeyer, W., Reuter, W., 1993. Core substructure of the hemiellipsoidal phycobilisome from the red alga Porphyridium cruentum. Eur. J. Cell Biol. 62,442-450.
    Redlinger, T. Gantt, E., 1982. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc. Natl. Acad. Sci. U. S. A 79, 5542-5546.
    Ritz, M., Lichtle, C., Spilar, A., Joder, A., Thomas, J.C., Etienne, A.L., 1998. Characterization of phycocyanin-deficient phycobilisomes from a pigment mutant of Porphyridium sp. (Rhodophyta). J. Phycol. 34, 835-843.
    Scheming, S., Goncalves, R.P., Prima, V., Sturgis, J.N., 2006. The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J. Mol. Biol. 358, 83-96.
    Scheming, S., Seguin, J., Marco, S., Levy, D., Robert, B., Rigaud, J.L., 2003. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc. Natl. Acad. Sci. U.S. A 100, 1690-1693.
    Scheuring, S. Sturgis, J.N., 2005. Chromatic adaptation of photosynthetic membranes. Science 309,484-487.
    Scheuring, S., Sturgis, J.N., Prima, V, Bernadac, A., Levy, D., Rigaud, J.L., 2004. Watching the photosynthetic apparatus in native membranes. Proc. Natl. Acad. Sci. U.S. A 101, 11293-11297.
    Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V., Reich, Z., 2005. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580-2586.
    Sidler,W.A. (1994) Phycobilisome and phycobiliprotein structures. The Molecular Biology of Cyanobacteria (ed. by D. A. Bryant), pp. 139-216. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Sivan, A. Arad, S.M., 1993. Induction and characterization of pigment mutants in the red microalga Porphyridium sp (Rhodophyceae). Phycologia 32, 68-72.
    Sivan, A., Thomas, J.C., Dubacq, J.P., Moppes, D., Arad, S., 1995. Protoplast fusion and genetic complementation of pigment mutations in the red microalga Porphyridium sp. J. Phycol. 31, 167-172.
    Tsekos, I., Reiss, H.D., Delivopoulos, S.G., 2004. The supramolecular organization of photosynthetic membranes in the red alga Thorea ramosissima: spatial relationship between putative photosystem II core particles (EF-particles) and phycobilisomes. Phycologia 43, 543-551.
    Tsekos, I., Reiss, H.D., Orfanidis, S., Orologas, N., 1996. Ultrastructure and supramolecular organization of photosynthetic membranes of some marine red algae. New Phytologist 133, 543-551.
    Wanner, G. Kost, H.P., 1980. Investigations on the arrangement and fine structure of Porphyridium cruentum phycobilisomes. Protoplasma 102, 97-109.
    Yi, Z.W., Huang, H., Kuang, T.Y., Sui, S.F., 2005. Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett. 579, 3569-3573.
    Zouni, A., Witt, H.T., Kern, J., Fromme, P., Krauss, N., Saenger, W, Orth, P., 2001. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409, 739-743.
    Brimble, S. Bruce, D., 1989. Pigment orientation and excitation energy transfer in Porphyridium cruentum and Synechococcus sp. PCC 6301 cross-linked in light state 1 and light state 2 with glutaraldehyde. Biochim. Biophys. Acta 973, 315-323.
    Ficner, R. Huber, R., 1993. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem. 218, 103-106.
    Gantt, E. Conti, S.F., 1965. The ultrastructure of Porphyridium cruentum. J. Cell Biol. 26,365-381.
    Gantt, E. Lipschultz, C.A., 1974. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry 13, 2960-2966.
    Joshua, S. Mullineaux, C.W., 2004. Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol. 135, 2112-2119.
    Li, D., Xie, J., Zhao, J., Xia, A., Li, D., Gong, Y., 2004. Light-induced excitation energy redistribution in Spirulina platensis cells: "spillover" or "mobile PBSs"? Biochim. Biophys. Acta 1608, 114-121.
    Mullineaux, C.W., 2004. FRAP analysis of photosynthetic membranes. J. Exp. Bot. 55, 1207-1211.
    Mullineaux, C.W, Tobin, M.J., Jones, G.R., 1997. Mobility of photosynthetic complexes in thylakoid membranes. Nature 390, 421-424.
    Sarcina, M., Tobin, M.J., Mullineaux, C.W., 2001. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. J. Biol. Chem. 276,46830-46834.
    Sivan, A. Arad, S.M., 1993. Induction and characterization of pigment mutants in the red microalga Porphyridium sp (Rhodophyceae). Phycologia 32, 68-72.
    Sivan, A., Thomas, J.C., Dubacq, J.P., Moppes, D., Arad, S., 1995. Protoplast fusion and genetic complementation of pigment mutations in the red microalga Porphyridium sp. J. Phycol. 31, 167-172.
    Yang, S., Su, Z., Li, H, Feng, J., Xie, J., Xia, A., Gong, Y, Zhao, J., 2007. Demonstration of phycobilisome mobility by the time- and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim. Biophys. Acta 1767, 15-21.
    Apt, K.E., Collier, J.L., Grossman, A.R., 1995. Evolution of the phycobiliproteins. J. Mol. Biol. 248, 79-96.
    Arteni, A.A., Liu, L.N., Aartsma, T.J., Zhang, Y.Z., Zhou, B.C., Boekema, E.J., 2008. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res. 95, 169-174.
    Biggins, J., Campbell, C.L., Bruce, D., 1984. Mechanism of the light state transition in photosynthesis. 2. Analysis of phosphorylated polypeptides in the red alga, Porphyridium cruentum. Biochimica et Biophysica Acta 767, 138-144.
    Bopp, M.A., Jia, Y., Li, L., Cogdell, R.J., Hochstrasser, R.M., 1997. Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc. Natl. Acad. Sci. U. S. A 94,10630-10635.
    Bopp, M.A., Sytnik, A., Howard, T.D., Cogdell, R.J., Hochstrasser, R.M., 1999. The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc. Natl. Acad. Sci U. S. A 96, 11271-11276.
    Ficner, R. Huber, R., 1993. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem. 218,103-106.
    Gaigalas, A., Gallagher, T., Cole, K.D., Singh, T., Wang, L., Zhang, Y.Z., 2006. A Multistate Model for the Fluorescence Response of R-Phycoerythrin. Photochem. Photobiol. 82, 635-644.
    Gantt, E. Lipschultz, C.A., 1972. Phycobilisomes of Porphyridium cruentum. I. Isolation. J. Cell Biol. 54, 313-324.
    Gantt, E. Lipschultz, C.A., 1974. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry 13,2960-2966.
    Glazer, A.N., 1984. Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta 768,29-51.
    He, J.A., Hu, Y.Z., Jiang, L.J., 1997. Photodynamic action of phycobiliproteins: in situ generation of reactive oxygen species. Biochimica et Biophysica Acta (BBA) -Bioenergetics 1320, 165-174.
    Hofmann, C., Aartsma, T.J., Michel, H., Kohler, J., 2003a. Direct observation of tiers in the energy landscape of a chromoprotein: a single-molecule study. Proc. Natl. Acad. Sci U. S. A 100,15534-15538.
    Hofmann, C., Ketelaars, M., Matsushita, M., Michel, H., Aartsma, T.J., Kohler, J., 2003b. Single-molecule study of the electronic couplings in a circular array of molecules: light-harvesting-2 complex from Rhodospirilium molischianum. Phys. Rev. Lett. 90, 013004.
    Jones, R.F., Speer, H.L., Kury, W., 1963. Studies on the growth of the red alga Porphyridium cruentum. Physiol. Plant. 16, 636-643.
    Kirilovsky, D., 2007. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93, 7-16.
    Lao, K. Glazer, A.N., 1996. Ultraviolet-B photodestruction of a light-harvesting complex. Proc. Natl. Acad. Sci. U. S. A 93, 5258-5263.
    Luong, A.K., Gradinaru, C.C., Chandler, D.W., Hayden, C.C., 2005. Simultaneous time- and wavelength-resolved fluorescence microscopy of single molecules. J. Phys. Chem. B 109, 15691-15698.
    Mackowski, S., Woermke, S., Brotosudarmo, T.H., Jung, C., Hiller, R.G., Scheer, H., Braeuchle, C., 2007. Energy transfer in reconstituted peridinin-chlorophyll-protein complex: ensemble and single molecule spectroscopy studies. Biophys. J. 93, 3249-3258.
    Rakhimberdieva, M.G., Bolychevtseva, Y.V., Elanskaya, I.V., Karapetyan, N.V., 2007. Protein-protein interactions in carotenoid triggered quenching of phycobilisome fluorescence in Synechocystis sp. PCC 6803. FEBS Lett. 581, 2429-2433.
    Rakhimberdieva, M.G., Stadnichuk, I.N., Elanskaya, I.V., Karapetyan, N.V., 2004. Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett. 574, 85-88.
    Rinalducci, S., Pedersen, J.Z., Zolla, L., 2008. Generation of reactive oxygen species upon strong visible light irradiation of isolated phycobilisomes from Synechocystis PCC 6803. Biochim. Biophys. Acta 1777, 417-424.
    Sivan, A. Arad, S.M., 1993. Induction and characterization of pigment mutants in the red microalga Porphyridium sp (Rhodophyceae). Phycologia 32, 68-72.
    Sivan, A., Thomas, J.C., Dubacq, J.P., Moppes, D., Arad, S., 1995. Protoplast fusion and genetic complementation of pigment mutations in the red microalga Porphyridium sp. J. Phycol. 31, 167-172.
    Six, C., Joubin, L., Partensky, F., Holtzendorff, J., Garczarek, L., 2007. UV-induced phycobilisome dismantling in the marine picocyanobacterium Synechococcus sp. WH8102. Photosynth. Res. 92, 77-86.
    Stoitchkova, K., Zsiros, O., Javorfi, T., Pali, T., Andreeva, A., Gombos, Z., Garab, G., 2007. Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Therrno-optic effect. Biochim. Biophys. Acta 1767,750-756.
    Suter, G.W., Mazzola, P., Wendler, J., Holzwarth, A.R., 1984. Fluorescence decay kinetics in phycobilisomes isolated from the bluegreen alga Synechococcus 6301. Biochimica et Biophysica Acta (BBA) - Bioenergetics 766, 269-276.
    Vacha, F., Bumba, L., Kaftan, D., Vacha, M., 2005. Microscopy and single molecule detection in photosynthesis. Micron. 36,483-502.
    van Oijen, A.M., Ketelaars, M., Kohler, J., Aartsma, T.J., Schmidt, J., 1999. Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285, 400-402.
    White, J.C. Stryer, L., 1987. Photostability Studies of Phycobiliprotein Fluorescent Labels. Analytical Biochemistry 161, 442-452.
    Wilson, A., Boulay, C., Wilde, A., Kerfeld, C.A., Kirilovsky, D., 2007. Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19, 656-672.
    Wilson, A., Ajlani, G., Verbavatz, J.M., Vass, I., Kerfeld, C.A., Kirilovsky, D., 2006. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18, 992-1007.
    Wormke, S., Mackowski, S., Brotosudarmo, T.H.P., Brauchle, C., Garcia, A., Braun, P., Scheer, H., Hofmann, E., 2007. Detection of single biomolecule fluorescence excited through energy transfer: Application to light-harvesting complexes. Applied Physics Letters 90, 193901-193903.
    Wu, M., Goodwin, P.M., Ambrose, W.P., Keller, R.A., 1996. Photochemistry and fluorescence emission dynamics of single molecules in solution: B-phycoerythrin. J. Phys. Chem. 100, 17406-17409.
    Wyman, M., Gregory, R.P., Carr, N.G., 1985. Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science 230, 818-820.
    Ying, L. Xie, X.S., 1998. Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers. J. Phys. Chem. B 102, 10399-10409.
    Zehetmayer, P., Hellerer, T., Parbel, A., Scheer, H., Zumbusch, A., 2002. Spectroscopy of single phycoerythrocyanin monomers: dark state identification and observation of energy transfer heterogeneities. Biophys. J. 83, 407-415.
    Zehetmayer, P., Kupka, M., Scheer, H., Zumbusch, A., 2004. Energy transfer in monomeric phycoerythrocyanin. Biochim. Biophys. Acta 1608, 35-44.
    Allen, J.P., Feher, G., Yeates, T.O., Komiya, H., Rees, D.C., 1987. Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc. Natl. Acad. Sci. USA 84, 6162-6166.
    Bahatyrova,S. (2005) Atomic force microscopy of bacterial photosynthetic systems: a new model for native membrane organization, University of Twente, Ensched.
    Bahatyrova, S., Frese, R.N., Siebert, C.A., Olsen, J.D., van der Werf, K.O., van Grondelle, R., Niederman, R.A., Bullough, P.A., Otto, C., Hunter, C.N., 2004a. The native architecture of a photosynthetic membrane. Nature 430, 1058-1062.
    Bahatyrova, S., Frese, R.N., van der Werf, K.O., Otto, C., Hunter, C.N., Olsen, J.D., 2004b. Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy: functional significance for bacterial photosynthesis. J. Biol. Chem. 279, 21327-21333.
    Chami, M., Pehau-Arnaudet, G., Lambert, O., Ranck, J.-L., Levy, D., Rigaud, J.-L., 2001. Use of octyl beta-thioglucopyranoside in two-dimensional crystallization of membrane proteins. J. Struct. Biol. 133, 64-74.
    Cogdell, R.J., Fyfe, P.K., Barrett, S.J., Prince, S.M., Freer, A.A., Isaacs, N.W., McGlynn, P., Hunter, C.N., 1996. The purple bacterial photosynthetic unit. Photosynth. Res. 48, 55-63.
    Cogdell, R.J., Gall, A., Kohler, J., 2006. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227-324.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H., 1985. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution. Nature 318, 618-624.
    Drews,G. & Imhoff,J.F. (1991) Drews and J.F. Imhoff, Phototrophic purple bacteria. Variations in Autotrophic Life (ed. by J. M. Shively & L. L. Barton), pp. 51-97. Academic Press, London.
    Fleming, G.R. van Grondelle, R., 1997. Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr. Opin. Struct. Biol. 7, 738-748.
    Frese, R.N., Olsen, J.D., Branvall, R., Westerhuis, W.H., Hunter, C.N., van, G.R., 2000. The long-range supraorganization of the bacterial photosynthetic unit: a key role for PufX. Proc. Natl. Acad. Sci. U. S. A 97, 5197-5202.
    Frese, R.N., Parties, J.C., Olsen, J.D., Bahatyrova, S., van der Weij-de Wit, C.D., Aartsma, T.J., Otto, C., Hunter, C.N., Frenkel, D., van, G.R., 2008. Protein shape and crowding drive domain formation and curvature in biological membranes. Biophys. J. 94, 640-647.
    Frese,R.N.,Siebert,C.A.,Niederman,R.A.,Hunter,C.N.,Otto,C.,van Grondelle,R.,2004.The long-range organization of a native photosynthetic membrane.Proc.Natl.Acad.Sci.USA 101,17994-17999.
    Goncalves,R.P.,Bernadac,A.,Sturgis,J.N.,Scheuring,S.,2005a.Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum.J.Struct.Biol.152,221-228.
    Goncalves,R.P.,Busselez,J.,Levy,D.,Seguin,J.,Scheuring,S.,2005b.Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2investigated by high resolution AFM.J.Struct.Biol.149,79-86.
    Jungas,C.,Ranck,J.-L.,Rigaud,J.-L.,Joliot,P.,Vermeglio,A.,1999.Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides.EMBO J.18,534-542.
    Koepke,J.,Hu,X.,Muenke,C.,Schulten,K.,Michel,H.,1996.The crystal structure of the light-harvesting complex Ⅱ(B800-850)from Rhodospirillum molischianum.Structure 4,581-597.
    McDermott,G.,Prince,S.M.,Freer,A.A.,Hawthornthwaite-Lawless,A.M.,Papiz,M.Z.,Cogdell,R.J.,Isaacs,N.W.,1995.Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria.Nature 374,517-521.
    McLuskey,K.,Prince,S.M.,Cogdell,R.J.,Isaacs,N.W.,2001.The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050.Biochemistry 40,8783-8789.
    Milhiet,P.-E.,Gubellini,F.,Berquand,A.,Dosset,P.,Rigaud,J.-L.,Le Grimellec,C.,Levy,D.,2006.High-resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer.Biophys.J.91,3268-3275.
    Miller,K.R.,1982.Three-dimensional structure of a photosynthetic membrane.Nature 300,53-55.
    Rigaud,J.-L.,Chami,M.,Lambert,O.,Levy,D.,Ranck,J.-L.,2000.Use of detergents in two-dimensional crystallization of membrane proteins.Biochim.Biophys.Acta 1508,112-128.
    Rigaud,J.-L.,Levy,D.,Mosser,G.,Lambert,O.,1998.Detergent removal by non-polar polystyrene beads.Eur.Biophys.J.27,305-319.
    Rigaud,J.-L.,Mosser,G.,Lacapere,J.-J.,Olofsson,A.,Levy,D.,Ranck,J.-L.,1997.Bio-beads:an efficient strategy for two-dimensional crystallization of membrane proteins.J.Struct.Biol.118,226-235.
    Roszak,A.W.,Howard,T.D.,Southall,J.,Gardiner,A.T.,Law,C.J.,Isaacs,N.W.,Cogdell,R.J.,2003.Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302, 1969-1972.
    Scheuring, S., Francia, F., Busselez, J., Melandri, B.A., Rigaud, J.L., Levy, D., 2004a. Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J. Biol. Chem. 279, 3620-3626.
    Scheuring, S., Reiss-Husson, F., Engel, A., Rigaud, J.-L., Ranck, J.-L., 2001. High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2. EMBO J. 20, 3029-3035.
    Scheuring, S., Rigaud, J.-L., Sturgis, J.N., 2004b. Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J. 23,4127-4133.
    Scheuring, S., Seguin, J., Marco, S., Levy, D., Breyton, C., Robert, B., Rigaud, J.-L., 2003. AFM characterization of tilt and intrinsic flexibility of Rhodobacter sphaeroides light harvesting complex 2 (LH2). J. Mol. Biol. 325, 569-580.
    Scheuring, S. Sturgis, J.N., 2005. Chromatic adaptation of photosynthetic membranes. Science 309,484-487.
    Stahlberg, H., Fotiadis, D., Scheuring, S., Remigy, H., Braun, T., Mitsuoka, K., Fujiyoshi, Y., Engel, A., 2001. Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett. 504, 166-172.
    Stamouli, A., Kafi, S., Klein, D.C., Oosterkamp, T.H., Frenken, J.W., Cogdell, R.J., Aartsma, T.J., 2003. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys. J. 84, 2483-2491.
    Walz, T., Jamieson, S.J., Bowers, C.M., Bullough, P.A., Hunter, C.N., 1998. Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. J. Mol. Biol. 282, 833-845.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700