几种化合物及脂质体包裹对量子点光学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与常规的有机荧光染料相比,量子点具有激发光谱宽,发射光谱窄,量子产率高,光学稳定性好等优点,它已广泛应用于分子生物学,细胞生物学,生物化学,蛋白质组学、基因组学、药物筛选,医学诊断等领域。本文主要研究了几种化合物及脂质体包裹对量子点光学性质的影响,具体内容如下:
     1、几种化合物对量子点光学性质的影响。实验研究了巯基乙酸、半胱氨酸、二硫代苏糖醇、没食子酸乙酯、硫脲、谷胱甘肽,表面活性剂以及亚硫酸钠除氧对溶液中单个量子点闪烁、漂白、蓝移的影响。结果表明,巯基化合物巯基乙酸、半胱氨酸、二硫代苏糖醇、硫脲、谷胱甘肽,以及抗氧化剂没食子酸乙酯通过钝化量子点的表面缺陷态而抑制了量子点的闪烁;并且加入这几种化合物后,量子点的幂律分布指数αon减小,量子点“on”时间变长。一定浓度的三重态淬灭剂二硫代苏糖醇、谷胱甘肽,抗氧化剂没食子酸乙酯以及亚硫酸钠对量子点溶液除氧后,有效地抑制了量子点的漂白;临界胶束浓度以上的阳离子表面活性剂CTAB、CTAC可以保护量子点的受激三线态免遭淬灭,而加快了量子点的漂白。由此我们推测量子点的光氧化和三重态的积聚共同导致了量子点的光漂白。添加一定浓度的强还原剂二硫代苏糖醇和没食子酸乙酯,以及对溶液进行除氧后阻止了量子点核的氧化,从而抑制了量子点的蓝移。实验发现了几种有效抑制量子点闪烁、漂白与光谱蓝移的化合物,改善了量子点的光学性质,并初步阐释了量子点这些光学现象所隐藏的机理,从而有望进一步拓展量子点的应用范围。
     2、脂质体包裹对量子点光学性质的影响。实验采用逆相蒸发法将水溶性的羧基量子点包裹进脂质体,用荧光成像和散射成像相结合的方式,对其进行表征,并考察了脂质体包裹后对量子点光学性质的影响。结果表明,大部分量子点被包裹入脂质体;量子点被脂质体包裹后,其耐漂白能力降低。该方法提高了量子点的生物兼容性,但同时降低了量子点的光化学稳定性。
Compared with conventional fluorescence dyes, quantum dots (QDs) have many excellent optical properties, such as broad excitation spectrum, narrow emission spectra, high quantum yields, good photostability and so on. They have gotten extensive use in molecular biology, cell biology, biochemistry, proteomics, genomics, drug screening, medical diagnosis, and so on. This thesis studied the influence of several compounds and liposome encapsulation on the optical properties of quantum dots. The main contents were as follows:
     1. The influence of several compounds on the optical properties of quantum dots. The effect of several compounds such as mercaptoacetic acid, cysteine, dithiothreitol, ethyl gallate, thiourea, glutathione, surfactants and sodium sulfite’s depleting oxygen to fluorescence blinking, photobleaching, blue shift of single quantum dots in solution was investigated in detail. The results of experiment proved that sulfhydryl compounds such as mercaptoacetic acid, cysteine, dithiothreitol, thiourea, glutathione, and antioxidant ethyl gallate could suppress blinking in quantum dots by passivating surface trap states of quantum dots. And the power-law distribution exponentialαon decreased which meant long“on”time after addition of these compounds. The addition of an appropriate dose of triplet quencher such as dithiothreitol, glutathione, and antioxidant ethyl gallate into the sample and depleting the oxygen from solution by use of sodium sulfite could inhibit photobleaching of quantum dots. We also found QDs’photobleaching was speeded up by cationic surfactants (hexadecyl trimethyl ammonium bromide, CTAB, hexadecyltrimethylammonium chloride, CTAC) because they could protect QDs’triplet excited state from quenching at a concentration above the critical micellar concentration (CMC) of them. Thus we speculate that photooxidation and accumulation of the triplet excited state together induce photobleaching of quantum dots. The oxidation of quantum dots cores was blocked by addition of an appropriate dose of strong reducing agents (dithiothreitol, ethyl gallate) and by efficient oxygen removal using sodium sulfite, and as a result, blue shift of quantum dots was suppressed. In a word, the optical properties of quantum dots were improved by several compounds which could effectively suppress the photobleaching, blue shift and blinking in quantum dots and the possible mechanism behind these optical phenomena was elucidated. Consequently, the application scope of quantum dots would expand further.
     2. The influence of liposome encapsulation on the optical properties of quantum dots. The water-souble carboxyl quantum dots were encapsulated in liposomes by the method of reverse-phase evaporation. It was characterized by the combination of fluorescent imaging and scattering imaging and we also investigated the impact of liposome encapsulation on the optical properties of quantum dots. The result indicated that most of the quantum dots were encapsulated in liposomes and the quantum dots had lower photobleaching resistance after liposome encapsulation. This method raised the biological compatibility of quantum dots, but meanwhile, the QDs’photostability was lowered.
引文
[1]林章碧,苏星光,胡海.单分子光谱检测法的新进展.分析科学学报, 2003, 19(3): 288-292
    [2]李哲,曹莉.荧光单分子检测技术在生命科学中的应用.细胞生物学杂志, 2005, 27(6): 649-651
    [3] Hirschfeld T. Optical microscopic observation of single small molecules. Applied Optics, 1976, 15(12): 2965-2966
    [4] Shera E B, Seitzinger N K, Davis L M, et al. Detection of single fluorescent molecules. Chemical Physics Letters, 1990, 174(6): 553-557
    [5] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. Journal of Physical Chemistry, 1996, 100(2): 468-471
    [6] Chan W C, Maxwell D J, Gao X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 2002, 13(1): 40-46
    [7] Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Analytical Chemistry, 2002, 74(4): 841-847
    [8] Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots. Biomaterials, 2007, 28(31): 4717-4732
    [9] Wang X J, Jose R M, Hall E A H. The emerging use of quantum dots in analysis. Analytical Letters, 2007, 40(9): 1497-1520
    [10] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715
    [11] Reiss P, Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Letters, 2002, 2(7): 781-784
    [12] Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters, 2001, 1(4): 207-211
    [13] Danek M, Jensen K F, Murray C B, et al. Synthesis of luminescent thin-filmCdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chemistry of Materials, 1996, 8(1): 173-180
    [14] Aldana J, Wang Y A, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. Journal of the American Chemical Society, 2001, 23(36): 8844-8850
    [15] Wuister S F, Swart I, van Driel F, et al. Highly luminescent water-soluble CdTe quantum dots. Nano Letters, 2003, 3(4): 503-507
    [16] Kim S, Bawendi M G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. Journal of the American Chemical Society, 2003, 125(48): 14652-14653
    [17] Yu W W, Chang E, Drezek R, et al. Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 2006, 348(3): 781-786
    [18] Alivisatos A P, Gu W W, Larabell C. Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 2005, 7: 55-76
    [19] Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005, 4(6): 435-446
    [20] Stavis S M, Edel J B, Samiee K T, et al. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab on a Chip, 2005, 5(3): 337-343
    [21] Pinaud F, Michalet X, Bentolila L A, et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials, 2006, 27(9): 1679-1687
    [22] Gao X H, Yang L L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 2005, 16(1): 63-72
    [23] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538-544
    [24] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018
    [25]唐爱伟,滕枫,王元敏等.Ⅱ-Ⅵ族半导体量子点的发光特性及其应用研究进展.液晶与显示, 2005, 20(4): 302-308
    [26]关柏鸥,汤国庆,韩关云等.半导体纳米材料的光学性能及研究进展.光电子·激光, 1998, 9(3): 260-263
    [27] Nirmal M, Dabbousi B O, Bawendi M G, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383(6603): 802-804
    [28] Kuno M, Fromm D P, Hamann H F, et al. Nonexponential“blinking”kinetics of single CdSe quantum dots: A universal power law behavior. Journal of Chemical Physics, 2000, 112(7): 3117-3120
    [29] Gomez D E, van Embden J, Mulvaney P, et al. Exciton-trion transitions in single CdSe-CdS core-shell nanocrystals. Acs Nano, 2009, 3(8): 2281-2287
    [30] Crouch C H, Sauter O, Wu X H, et al. Facts and artifacts in the blinking statistics of semiconductor nanocrystals. Nano Letters, 2010, 10(5): 1692-1698
    [31] Bharadwaj P, Novotny L. Robustness of quantum dot power-law blinking. Nano Letters, 2011, 11(5): 2137-2141
    [32] Lee S F, Osborne M A. Photodynamics of a single quantum dot: Fluorescence activation, enhancement, intermittency, and decay. Journal of the American Chemical Society, 2007, 129(29): 8936-8937
    [33] Cordero S R, Carson P J, Estabrook R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers. Journal of Physical Chemistry B, 2000, 104(51): 12137-12142
    [34] Nazzal A Y, Wang X Y, Qu L H, et al. Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films. Journal of Physical Chemistry B, 2004, 108(18): 5507-5515
    [35] Walker G W, Sundar V C, Rudzinski C M, et al. Quantum-dot optical temperature probes. Applied Physics Letters, 2003, 83(17): 3555-3557
    [36] Oda M, Tsukamoto J, Hasegawa A, et al. Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: Adsorption and desorption effects of polar molecules on nanocrystal surfaces. Journal of Luminescence, 2006, 119: 570-575
    [37] Muller J, Lupton J M, Rogach A L, et al. Air-induced fluorescence bursts from single semiconductor nanocrystals. Applied Physics Letters, 2004, 85(3): 381-383
    [38] Issac A, von Borczyskowski C, Cichos F. Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media. Physical Review B, 2005, 71(16): 161302-161302
    [39] Chen Y, Vela J, Htoon H, et al. "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. Journal of the American Chemical Society, 2008, 130(15): 5026-5027
    [40] Mahler B, Spinicelli P, Buil S, et al. Towards non-blinking colloidal quantum dots. Nature Materials, 2008, 7(8): 659-664
    [41] Hammer N I, Early K T, Sill K, et al. Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures. Journal of Physical Chemistry B, 2006, 110(29): 14167-14171
    [42] Wang X Y, Ren X F, Kahen K, et al. Non-blinking semiconductor nanocrystals. Nature, 2009, 459(7247): 686-689
    [43] Hohng S, Ha T. Near-complete suppression of quantum dot blinking in ambient conditions. Journal of the American Chemical Society, 2004, 126(5): 1324-1325
    [44] Fomenko V, Nesbitt D J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Letters, 2008, 8(1): 287-293
    [45] Biebricher A, Sauer M, Tinnefeld P. Radiative and nonradiative rate fluctuations of single colloidal semiconductor nanocrystals. Journal of Physical Chemistry B, 2006, 110(11): 5174-5178
    [46] He H, Qian H F, Dong C Q, et al. Single nonblinking CdTe qnantnm dots synthesized in aqueous thiopropionic acid. Angewandte Chemie-International Edition, 2006, 45(45): 7588-7591
    [47] Hamada M, Nakanishi S, Itoh T, et al. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles. Acs Nano, 2010, 4(8): 4445-4454
    [48] Chen H P, Gai H W, Yeung E S. Inhibition of photobleaching and blue shift in quantum dots. Chemical Communications, 2009, (13): 1676-1678
    [49]杨广烈.荧光与荧光显微镜.光学仪器, 2001, 23(2): 18-29
    [50] Steyer J A, Almers W. A real-time view of life within 100 nm of the plasma membrane. Nature Reviews Molecular Cell Biology, 2001, 2(4): 268-275
    [51] Sako Y, Minoguchi S, Yanagida T. Single-molecule imaging of EGFR signaling on the surface of living cells. Nature Cell Biology, 2000, 2(3): 168-172
    [52] Yao G, Fang X H, Yokota H, et al. Monitoring molecular beacon DNA probe hybridization at the single-molecule level. Chemistry-a European Journal, 2003, 9(22): 5686-5692
    [53] Chan V, Graves D J, Fortina P, et al. Adsorption and surface diffusion of DNA oligonucleotides at liquid/solid interfaces. Langmuir, 1997, 13(2): 320-329
    [54] Funatsu T, Harada Y, Tokunaga M, et al. Imaging of single fluorescentmolecules and individual ATP turnovers by single myosin moleculers in aqueous-solution. Nature, 1995, 374: 555-559
    [55] Xu X H, Yeung E S. Direct measurement of single-molecule diffusion and photodecomposition in free solution. Science, 1997, 275(5303): 1106-1109
    [56] Chan H M, Chan L S, Wong R N S, et al. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy. Analytical Chemistry, 2010, 82(16): 6911-6918
    [57] Kuno M, Fromm D P, Gallagher A, et al. Fluorescence intermittency in single InP quantum dots. Nano Letters, 2001, 1(10): 557-564
    [58] Shimizu K T, Neuhauser R G, Leatherdale C A, et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Physical Review B, 2001, 63(20): 205316-205316
    [59] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016
    [60] Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. Journal of the American Chemical Society, 1999, 121(35): 8122-8123
    [61] Grunwald D, Hoekstra A, Dange T, et al. Direct observation of single protein molecules in aqueous solution. ChemPhysChem, 2006, 7(4): 812-815
    [62] Mahtab R, Harden H H, Murphy C J. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: Thermodynamics of "inorganic protein"-DNA interactions. Journal of the American Chemical Society, 2000, 122(1): 14-17
    [63] Pathak S, Choi S K, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. Journal of the American Chemical Society, 2001, 123(17): 4103-4104
    [64] Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19(7): 631-635
    [65] Yiidiz I, Tomasulo M, Raymo F M. A mechanism to signal receptor-substrate interactions with luminescent quantum dots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(31): 11457-11460
    [66] Patolsky F, Gill R, Weizmann Y, et al. Lighting-up the dynamics oftelomerization and DNA replication by CdSe-ZnS quantum dots. Journal of the American Chemical Society, 2003, 125(46): 13918-13919
    [67] Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor. Nature Materials, 2005, 4(11): 826-831
    [68] Zhang C Y, Hu J. Single Quantum dot-based nanosensor for multiple DNA detection. Analytical Chemistry, 2010, 82(5): 1921-1927
    [69] Oh E, Hong M Y, Lee D, et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Journal of the American Chemical Society, 2005, 127(10): 3270-3271
    [70] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2003, 2(9): 630-638
    [71] Choi J H, Chen K H, Strano M S. Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection. Journal of the American Chemical Society, 2006, 128(49): 15584-15585
    [72] Ishii D, Kinbara K, Ishida Y, et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature, 2003, 423(6940): 628-632
    [73] Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 2003, 21(1): 41-46
    [74] Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology, 2003, 21(1): 47-51
    [75] Kim B Y S, Jiang W, Oreopoulos J, et al. Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Letters, 2008, 8(11): 3887-3892
    [76] Ravindran S, Kim S, Martin R, et al. Quantum dots as bio-labels for the localization of a small plant adhesion protein. Nanotechnology, 2005, 16(1): 1-4
    [77] Etxeberria E, Gonzalez P, Baroja-Fernandez E. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments.Plant Signaling & Behavior, 2006, 1(4): 196-200
    [78] Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12617-12621
    [79] Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300(5624): 1434-1436
    [80] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    [81] Gao X H, Nie S M. Molecular profiling of single cells and tissue specimens with quantum dots. Trends in Biotechnology, 2003, 21(9): 371-373
    [82] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22(8): 969-976
    [83] Hoshino A, Hanaki K, Suzuki K, et al. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochemical and Biophysical Research Communications, 2004, 314(1): 46-53
    [84] Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice. Bioconjugate Chemistry, 2004, 15(1): 79-86
    [85] van Sark W G J H M, Frederix P L T M, Van den Heuvel D J, et al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. Journal of Physical Chemistry B, 2001, 105(35): 8281-8284
    [86] Kuno M, Fromm D P, Johnson S T, et al. Modeling distributed kinetics in isolated semiconductor quantum dots. Physical Review B, 2003, 67(12): 125304-125304
    [87] Verberk R, van Oijen A M, Orrit M. Simple model for the power-law blinking of single semiconductor nanocrystals. Physical Review B, 2002, 66(23): 233202-233202
    [88] Stefani F D, Zhong X H, Knoll W, et al. Memory in quantum-dot photoluminescence blinking. New Journal of Physics, 2005, 7: 197-197
    [89] Cherniavskaya O, Chen L W, Brus L. Imaging the photoionization of individual CdSe/CdS core?shell nanocrystals on n- and p-type silicon substrates with thin oxides. Journal of Physical Chemistry B, 2004, 108(16): 4946-4961
    [90] Park S J, Link S, Miller W L, et al. Effect of electric field on thephotoluminescence intensity of single CdSe nanocrystals. Chemical Physics, 2007, 341(1-3): 169-174
    [91] Tang J, Marcus R A. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. Journal of Chemical Physics, 2005, 123(5): 054704-054704
    [92] Frantsuzov P A, Marcus R A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Physical Review B, 2005, 72(15): 155321-155321
    [93] Brokmann X, Hermier J P, Messin G, et al. Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Physical Review Letters, 2003, 90(12): 120601-120601
    [94] Chung I H, Bawendi M G. Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots. Physical Review B, 2004, 70(16): 165304-165304
    [95] Kuno M, Fromm D P, Hamann H F, et al. "On"/"off" fluorescence intermittency of single semiconductor quantum dots. Journal of chemical physics, 2001, 115(2): 1028-1040
    [96] Bu X B, Chen H P, Gai H W, et al. Scattering imaging of single quantum dots with dark-field microscopy. Analytical chemistry, 2009, 81(17): 7507-7509
    [97] Han R, Zhang Y W, Dong X L, et al. Spectral imaging of single molecules by transmission grating-based epi-fluorescence microscopy. Analytica Chimica Acta, 2008, 619(2): 209-214
    [98] Krauss T D, O'Brien S, Brus L E. Charge and photoionization properties of single semiconductor nanocrystals. Journal of Physical Chemistry B, 2001, 105(9): 1725-1733
    [99] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B, 1997, 101(46): 9463-9475
    [100] Katari J E B, Colvin V L, Alivisatos A P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry, 1994, 98(15): 4109-4117
    [101] Henglein A. Mechanism of reactions on colloidal microelectrodes and size quantization effects. Topics in Current Chemistry, 1988, 143: 113-180
    [102] Cleland W W. Dithiothreitol new protective reagent for SH groups.Biochemistry, 1964, 3(4): 480-482
    [103] Mickey B, Howard J. Rigidity of microtubules is increased by stabilizing agents. Journal of Cell Biology, 1995, 130(4): 909-917
    [104] van Sark W G J H M, Frederix P L T M, Bol A A, et al. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. Chemphyschem, 2002, 3(10): 871-879
    [105] Heilemann M, van de Linde S, Mukherjee A, et al. Super-resolution imaging with small organic fluorophores. Angewandte Chemie-International Edition, 2009, 48(37): 6903-6908
    [106] Song L L, Varma C A G O, Verhoeven J W, et al. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophysical Journal, 1996, 70(6): 2959-2968
    [107] Widengren J, Chmyrov A, Eggeling C, et al. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. Journal of Physical Chemistry B, 2007, 111(3): 429-440
    [108] Gell C, Bormuth V, Brouhard G J, et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods in cell biology, 2010, 95: 221-245
    [109] Heilemann M, Margeat E, Kasper R, et al. Carbocyanine dyes as efficient reversible single-molecule optical switch. Journal of the American Chemical Society, 2005, 127(11): 3801-3806
    [110]朱若华,晋卫军.室温磷光分析法原理与应用.北京:科学出版社, 2006, 159-160
    [111] Ulrich A S. Biophysical aspects of using liposomes as delivery vehicles. Bioscience Reports, 2002, 22(2): 129-150
    [112] Chonn A, Cullis P R. Recent advances in liposome technologies and their applications for systemic gene delivery. Advanced Drug Delivery Reviews, 1998, 30(1-3): 73-83
    [113]郭仁宏,王金万.紫杉醇脂质体的研究进展.中国肿瘤, 2008, 17(8): 698-703
    [114] Bangham A D, Standish M M, Watkins J C, et al. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 1965, 13(1): 238-252
    [115]王汝兴,张宇丽.脂质体的研究进展及其制备方法.承德医学院学报, 2008,25(2): 183-186
    [116] Szoka F, Qlsom F, Heath T, et al. Preparation of unilamellar liposomes of intermediate size (0.1-0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochimica et biophysica acta, 1980, 601(3): 559-571
    [117]全东琴,苏德森,顾学裘.药物载体空白脂质体前体的制备及性质的研究.沈阳药科大学学报, 1999, 16(3): 160-164
    [118] Allen T M, Chonn A. Large Unilamellar liposomes with low uptake into the reticuloendothelial system. Febs Letters, 1987, 223(1): 42-46
    [119] Galian R E, de la Guardia M. The use of quantum dots in organic chemistry. Trac-Trends in Analytical Chemistry, 2009, 28(3): 279-291
    [120] Colvin V L. The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 2003, 21(10): 1166-1170
    [121] Derfus A M, Chan W C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 2004, 4(1): 11-18
    [122] Lovric J, Bazzi H S, Cuie Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine-Jmm, 2005, 83(5): 377-385
    [123] Han S G, Castranova V, Vallyathan V. Comparative cytotoxicity of cadmium and mercury in a human bronchial epithelial cell line (BEAS-2B) and its role in oxidative stress and induction of heat shock protein 70. Journal of Toxicology and Environmental Health-Part a-Current Issues, 2007, 70(9-10): 852-860
    [124] Struck D K, Pagano R E. Insertion of fluorescent phospholipids into the plasma-membrane of a mammalian-cell. Journal of Biological Chemistry, 1980, 255(11): 5404-5410
    [125] Muller W J, Zen K, Fisher A B, et al. Pathways for uptake of fluorescently labeled liposomes by alveolar type-II cells in culture. American Journal of Physiology-Lung Cellular and Molecular Physiology, 1995, 269(1): 11-19
    [126] Barber K, Mala R R, Lambert M P, et al. Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neuroscience Letters, 1996, 207(1): 17-20
    [127] Chen C S, Yao J, Durst R A. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles. Journal of Nanoparticle Research, 2006, 8(6): 1033-1038

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700