用户名: 密码: 验证码:
人源Survivin N-端剪切体的体外生物学和谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Survivin是凋亡抑制蛋白家族中分子量最小的蛋白,它具有特殊的分子结构以及复杂的功能,并主要在细胞周期中的G2/M期表达,在医学诊断中发现其在恶性肿瘤、胚胎及特异组织中均有很高的表达水平。Survivin在生物体内具有调节细胞分裂以及抗细胞凋亡的双重功能,其基因在生物体内的异常改变将会导致肌体细胞增生异常以及自身凋亡通路受阻。以往对Survivin的研究重点基本都集中其在生物体内的作用机理和功能,任何能对关键结构域的构象产生影响的物理、化学和生物学因素,都将对溶液中二聚体的活性和稳定性产生干扰。本实验室针对人源Survivin N-端参与二聚体形成和稳定BIR结构域的主要残基,通过分子克隆的方法在E.coli中构建了野生型Survivin及多种N-端剪切体,并对其进行表达和纯化。利用生物化学和超分子化学相结合的手段,对模拟生理环境下Survivin及其剪切体的二聚稳定性、热稳定性、抗凋亡活性等展开研究。主要研究内容及结论如下:(1)首次构建并在原核生物中表达了多种人源Survivin N-端剪切体,圆二色谱检测目的蛋白的二级结构,结果表明经过透析复性的剪切体蛋白与野生型的全长SurF二级结构一致;(2)利用HPLC检测SurF及其剪切体在溶液中的分子量,确定均以二聚体的形式存在,证明N-末端序列不是形成二聚体的必要条件,并利用单分子力谱抻拉二聚分子的两端,从数值上直观的比较了N-末端序列对于形成二聚体的影响,结果表明,N-端参与二聚体形成的氨基酸只提供少量的作用力;(3)利用类似三明治ELISA的方法,在体外检测了SurF及其剪切体对Smac/DIABLO结合活性的区别,以此来检验N-末端序列对于Survivin抗凋亡功能的影响。结果表明,N-末端参与二聚体形成的氨基酸对抗凋亡活性影响不大,而维持完整的BIR结构域对于其抗凋亡活性则是必需的;(4)本实验还利用变温荧光、圆二和红外光谱对人源Survivin及其N-端剪切体进行热稳定性影响的研究,并利用二维相关光谱揭示了温度扰动下Surivivn及其N-端剪切体去折叠过程中二级结构变化,结果表明N-末端序列,尤其是影响BIR结构域的氨基酸的截取,大大降低了Survivin分子的三级结构稳定性,而对二级结构的变化影响不大。
Survivin is selectively expressed in the G2/M phase of the cell cycle and overexpressed in most human neoplasms, embryos and malignant tissues but not in normal tissues. It is the smallest member of the inhibitor of apoptosis protein (IAP) family and has dual functions in suppressing apoptosis and playing a central role in cell division. Detection of Survivin has prognostic value for some tumor cells and appears to be involved in their resistance to anticancer agents and ionizing radiation. Thus, all these properties render this protein an attractive target for cancer therapy.
     The Survivin monomer is a 16.5 kDa protein of 142 amino acids. Structurally, it consists of an N-terminal single globular baculovirusⅠAP repeat (BIR) domain (M1-S88), a linker segment (V89-T97), and a long amphipathic C-terminal coiled-coilα-helix (L98-D142). The Survivin BIR domain contains a zinc-binding fold similar to that found in the X-linkedⅠAP (ⅪAP) BIR2 and BIR3 domains, including three Cys and a His that bind a zinc ion, but it lacks the RING finger motif found inⅪAP. The secondary structure of the Survivin BIR domain consists of a three-strandedβ-sheet and fourα-helices. Both X-ray crystal diffraction and NMR spectroscopy of Survivin in solution have confirmed that it exists in two forms which confer different functions in vivo. Survivin participates in cell division as a monomer, associating with Borealin and inner centromere protein (INCENP) to form a complex called the chromosomal passenger complex (CPC) which interacts with Aurora-B kinase as a key regulator of chromosome segregation and cytokinesis during the cell cycle. On the other hand, the bow-tie-shaped homodimer form of Survivin has anti-apoptotic functions. The dimer interface is extensive, involving residues 6-13 in the N-terminal portion and a 14-amino acid region encompassing residues 89-102 located just in and after the linker segment. Hydrophobic contacts mainly dominate the interaction surface with Leu98 protruding from one monomer and extending into a hydrophobic pocket formed by Leu6, Pro7, Trp10, Phe93, Phe101, and Leu102 in the other monomer. These contacts have been shown to be important for dimer formation and thus also for protein stability.
     Recently, there is emerging evidence that Survivin has attracted growing attention. There are multiple strategies to utilize Survivin gene as a cancer therapeutic target as Survivin is overexpressed in cancer but undetectable in normal, differentiated Adult tissues.
     In this study, soughting to an approach not only efficiency but also representative, we made three truncates of Survivin at its N-terminus depending on its structure and function characterization. First, residues 6-13 in the N-terminal portion are implicated in dimerization, especially the residue Leu6, so if cut off part of them may be fail to form a dimmer. Second, residue 5-14 is an epitope for HLA-A2. According to the two points we decide to make two N-terminal deletants of SurΔN7 and SurΔN13. In addition, as all know Arg18 of Survivin is another key residue with a buried side chain that stabilizes the N-terminal part of the BIR domain, so if cut off it may be gain a truncate of Survivin no integrity of the BIR domain, which is SurΔN18. We anticipated that the three truncates SurΔN7, SurΔN13 and SurAN18 can uniformly dimerize in solution. The soluble SurF and the inclusion deletant proteins were expressed in Escherichia coli and purified using affinity chromatography.
     The wild-type SurF and the deletants could all fold properly and have natural secondary structure in solution. Size-exclusion chromatography results showed that in the presence of reducing agent,β-ME, SurF and all the deletants were entirely dimeric, but the elution time was slightly different as the molecular mass varied. It can be concluded that the N-terminal residues, at least up to Arg18, were not essential for homodimerization. But the single-molecule force spectroscopy (SMFS) results exhibited that the dimeric unbinding forces of the various Survivin deletants, which quantitatively (directly) measured the effect of N-terminal sequences on the strength of the dimerization. From the histogram shown, the most probable unbinding force was 82.6 pN for SurF, 62.3 pN for SurΔN13, and 60.2 pN for SurΔN18, respectively. Although the unbinding force of the deletants decreased a lot, they had enough force to form homodimer.
     IAP proteins play an important role in apoptosis as endogenous inhibitors of caspases. This inhibition can be relieved by a mitochondrial protein, Smac/DIABLO, which directly binds to IAPs and suppresses their function. Smac/DIABLO is the second mitochondrial protein, along with cytochrome c, released into the cytosol when cells undergo apoptosis. Unlike other IAPs, Survivin does not bind caspases directly, but it has been suggested to exert anti-apoptotic effects by physically binding to Smac/DIABLO and neutralizing its effect on other IAPs. NMR analysis has indicated that Smac/DIABLO binds across the thirdβ-strand of Survivin in solution. We also investigated the binding ability between Survivin or the deletants to Smac/DIABLO in vitro using a sandwich ELISA. Smac/DIABLO binding to SurF or the deletants increased gradually within a concentration range from 0 to 2.5μg/mL. The binding ability of SurAN7 to Smac/DIABLO was slightly lower but was generally not significantly different from SurF. The interaction of SurAN13 to Smac/DIABLO was significantly reduced but still present. However, SurAN18 completely lost the ability to bind Smac/DIABLO, and the result was the same as that of the negative control. The results from the ELISA binding assay revealed that the entire BIR domain, including the surface groove which binds Smac/DIABLO, was sensitive to alterations at the N-terminal residues 13-18, indicating that the N-terminal domain was requisite for the interaction and the dimer form was not sufficient for anti-apoptotic functions.
     We investigated the temperature-induced structural change; including both tertiary and secondary conformation transition of the four dimeric Survivins with different N-terminal deletion in aqueous solutions by using fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The target was to explore the contribution of the N-terminal residues to the whole molecule thermal stability of human Survivin.
     The longer N-terminal deletion, the less stability of tertiary structure was observed. In detail it should be noted that, for the transition temperature, large differences between SurAN7, SurAN13 and SurAN18, while only slight difference between SurF and SurAN7 were observed. The transition temperature of SurAN7 was 56.0℃. It was reasonable to observe the thermal stability of SurAN7 almost the same as SurF in which all the main residues participated in forming the essential hydrophobic pocket were retained only the Leu6 missing and no other important residues deletion. A slight decreasing result was observed for SurAN13, although all of the N-terminal residues (6-13) previously suggested being required for dimerization had been removed, as the interaction between two monomers decreased much which had been proved through SMFS experiments. The transition temperature of SurΔN13 was 52.0℃, which demonstrated that the N-terminal residues for dimerization were not necessary to the tertiary stability. Of note, deletion of the N-terminal sequence up to the conserved Arg18, residues determined to be important for stabilization of the BIR domain structure, resulted in a transition temperature of 46.0℃and confirmed that this protein was very instability in solution, because potentially without an intact BIR domain. In the NMR structure of the Survivin dimer, residues 14-18 were shown much influenced the BIR domain and furthermore the stability of the tertiary structure. Thus, it can be concluded that the N-terminal residues, at least up to Arg18, may be very essential for maintaining the BIR domain of human Survivin.
     Meanwhile, the stablity of secondary structure of SurF and the deletants varied little, that because with N-terminus deletion, the secondary structure basic invariably formed. The drastic structural transitions of proteins in aqueous solution have been revealed well by variable-variable two-dimensional (VV 2D) correlation spectra, and they have the same changed tendency. The VV 2D correlation spectra results for SurF reveals that the secondary structural variations in the intensity occured for the bands due toβ-structures (1686,1675 and 1666 cm-1), then shifts to a-helical (1653 cm-1), followed by that in the bands assigned toβ-sheet-rich aggregate (1619 cm-1) and random coil (1642 cm-1). Here, it was shown that in the main unfolding of SurF or the N-terminal deletants was initiated with the structural changes of the more temperature-sensitiveβ-sheet and P-turns, followed by the less temperature-sensitive a-helical component, and the formation ofβ-sheet-rich aggregate and disordered structure. Furthermore, the comparison of power spectra indicated that the content of 1619 cm-1 became more extensive with the longer N-terminus deletion. It could be concluded that in the main unfolding the less stability of protein render it prone to aggregate with more N-terminal residues deletion.
     To summarize above, we have successfully constructed three human Survivin N-terminal deletants. Our quantitative SMFS analysis showed that N-terminal deletions of Survivin caused dramatically reductions in the unbinding force of the homodimer. We have determined that the N-terminal sequences were not essential for dimer formation, but the N-terminal amino acids 13-18 were critical for Smac/DIABLO binding. We have also determined that the N-terminal sequences up to Arg18 were essential for the molecular stability. With the N-terminal deletion, the tertiary structural stability degraded, but the secondary structural stability varied a little. It could be concluded that the N-terminal residues might influence the tertiary structure but the secondary ones, although more aggregates were formed for the longer N-terminal deletants during the main unfolding.
引文
[1]BIRNBAUM MJ, CLEM RJ, MILLER LK, ET AL. An apoptosis-inhibiting gene forms a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 1994,68:2521-2528.
    [2]ALTIERI DC, MARCHISIO PC. Survivin apoptosis:an interloper between cell death and cell proliferation in cancer. Lab Invest,1999; 79:1327-1333.
    [3]LI F, AMBROSINI G, CHU EY. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature,1998,396:580-584.
    [4]AMBROSINI G, ADIDA C, ALTIERI DC, ET AL. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med,1997,3,917-921.
    [5]WHEATLEY, S.P., I.A. MCNEISH. Survivin:A protein with dual roles in mitosis and apoptosis. Int Rev Cytol,2005,247:35-88.
    [6]SHIUN-KWEI CHIOU, MICHAEL K. JONES. Survivin—an anti-apoptosis protein:its biological roles and implications for cancer and beyond. Med Sci Monit,2003,9(4):43-47.
    [7]CROOK NE, CLEM RJ, MILLER LK. An apoptosis-inhibiting gene with a zinc finger-like motif. J Virol,1993,67:2168-2174.
    [8]CHANTALAT L, SKOUFIAS DA, KLEMAN JP. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell,2000,6:183-189.
    [9]MARK A. VERDECIA, HAN-KUEI HUANG. Structure of the human anti-apoptotic protein survivin reveals a demeric arrangement. Nature Structural Biology.2000; 7,7.
    [10]VERDECIA MA, BOWMAN ME, LU KP, HUNTER T, NOEL JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol,2000,7(8):639-43.
    [11]CHAOHONG SUN, DAVID NETTESHEIM. Survivin and Its Binding Interface with Smac/Diablo. Biochemistry 2005,44,11-17.
    [12]SHI Y. Survivin structure:crystal unclear. Nat Struct Biol.2000,7(8):620-3.
    [13]VAGNARELLI P., EARNSHAW WC. Chromosomal passengers:the four-dimensional regulation of mitotic events. Chromosoma,2004,113,211-222.
    [14]VADER G, MEDEMA RH. The chromosomal passenger complex:guiding Aurora-B through mitosis. J. Cell Biol.2006,173,833-837.
    [15]A. AROCKIA JEYAPRAKASH, ULF R. KLEIN. Structure of a Survivin-Borealin-INCENP Core Complex Reveals How Chromosomal Passengers Travel Together. Cell,2007,131 (19),271-285.
    [16]BOURHIS E, HYMOWITZ SG, COCHRAN AG. The mitotic regulator Survivin binds as a monomer to its functional interactor Borealin. J Biol Chem. 2007,30;282(48):35018-23.
    [17]MAHOTKA C, WENZEL M, SPRINGER E. Survivin-AEx3 and Survivin-2B:two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res,1999,59:6097-6102.
    [18]KRIEG, A., MAHOTKA, C., KRIEG, T., GRABSCH, H., MULLER, W., TAKENO, S., SUSCHEK, C. V., HEYDTHAUSEN, M., GABBERT, H. E., AND GERHARZ, C. D. Expression of different survivin variants in gastric carcinomas:First clues to a role of survivin-2B in tumour progression. Br. J. Cancer 2002,86,737-743.
    [19]BADRAN, A., YOSHIDA, A., ISHIKAWA, K., GOI, T., YAMAGUCHI, A., UEDA, T., AND INUZUKA, M. Identification of a novel splice variant of the human anti-apoptopsis gene survivin. Biochem. Biophys. Res. Commun.2004, 314,902-907.
    [20]LI, F. Role of survivin and its splice variants in tumorigenesis. Br. J. Cancer 2004,92,212-216.
    [21]CONWAY, E. M., POLLEFEYT, S., CORNELISSEN, J., DE BAERE, I., STEINER-MOSONYI, M., ONG, K., BAENS, M., COLLEN, D., AND SCHUH, A. C. Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood 2000,95,1435-1442.
    [22]INGO TAMM, YAN WANG, ED SAUSVILLE, ET AL. IAP-Family Protein Survivin Inhibits Caspase Activity and Apoptosis Induced by Fas (CD95), Bax, Caspases, and Anticancer Drugs. Cancer Res,1998,58:5315-5320.
    [23]MARUSAWA H, MATSUZAWA S, WELSH K, HUA ZOU, ROBERT ARMSTRONG, INGO TAMM, JOHN C. REED. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J,2003,22:2729-2740.
    [24]VERHAGEN AM, EKORT PG, PAKUSCH M, ET AL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell,2000,102(1),43-53.
    [25]DU C, FANG M, LI Y. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000,102(1):33-42.
    [26]ZHIYIN SONG, XUEBIAO YAO, MIAN WU. Direct Interaction between Survivin and Smac/DIABLO Is Essential for the Anti-apoptotic Activity of Survivin during Taxol-induced Apoptosis. J. Biol. Chem.2003,278(25) 23130-23140.
    [27]SRINIVASULA, SM, HEGDE R, ET AL. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature,2001,410,112-116.
    [28]SUZUKI A, ITO T, KAWANO H, ET AL. Survivin initiates cell cycle entry by the competitive interation with Cdk4/p16 (INK4a) and Cdk2/cyclin E comolex activation. Oncogene,2000,19 (29):3225-3234.
    [29]DANIEL S, O'CONNOR, ET AL. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. PNAS,2000,97 (24),13103-13107.
    [30]SUZUKI A, ITO T, KAWANO H, ET AL. Survivin initiates procaspase3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene,2000,19 (10):1346-1353.
    [31]SHIN S, SUNG BJ, ET AL. An Anti-apoptotic Protein Human Survivin Is a Direct Inhibitor of Caspase-3 and -7. Biochemistry,2001,40,1117-1123.
    [32]DAMON P. BANKS, JANET PLESCIA, ALTIERI, ET AL. Survivin does not inhibit caspase-3 activity. Blood,2000,96:4002-4003.
    [33]Y. HUANG, Y. PARK, ET AL. Structural Basis of Caspase Inhibition by XIAP Differential Roles of the Linker versus the BIR Domain. Cell,2001,104 (5),781-790.
    [34]ECKELMAN BP, SALVESEN GS, AND SCOTT FL. Human inhibitor of apoptosis protein:Why XIAP is the black sheep of the family. EMBO Rep,2006, 7:988-994.
    [35]LI C, WU Z, ET AL. Chemically synthesized human survivin does not inhibit caspase-3. Protein Sci,2008,17(9):1624-1629.
    [36]ALAIN C. MITA, MONICA M. MITA, STEFFAN T. NAWROCKI, FRANCIS J. GILES. Survivin:key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 2008,14(16):5000-5005.
    [37]TANAKA TU, ET AL. Chromosome biorientation on the mitotic spindle. B Biol. Sci.2005,360,581-589.
    [38]LENS SMA, RODRIGUEZ JA, VADER G, SPAN SW, ET AL. Uncoupling the Central Spindle-associated Function of the Chromosomal Passenger Complex from Its Role at Centromeres. Mol Biol Cell,2006,17,1897-1909.
    [39]FORTUGNO P, WALL NR, GIODINI A, ET AL. Survivin exisis in immuno-chemically distinct subcellular pools and is involved in spindle microtubule functionl. Cell Soi,2002,115(3):575-585.
    [40]SHIRLEY KK, CAROLIN BIER, ET AL. The Survivin-Crml interaction is essential for chromosomal passenger complex localization and function. EMBO Rep.,2006,7(12):1259-1265.
    [41]CARVALHO, A., CARMENA, M., SAMBADE, C., EARNSHAW, W. C., AND WHEATLEY, S. P. Survivin is required for stable checkpoint activation in response to loss of spindle tension in HeLa cells. J. Cell Sci.2003,116, 2987-2998.
    [42]HONDA, R., KORNER, R., AND NIGG, E. A. Exploring the functional interactions between aurora B, INCENP, and survivin in mitosis. Mol. Biol. Cell 2003,14,3325-3341.
    [43]LENS, S. M., AND MEDEMA, R. H. The survivin/Aurora B complex:Its role in coordinating tension and attachment. Cell Cycle 2003,2,507-510.
    [44]LENS, S. M. A., WOLTHUIS, R. M. F., KLOMPMAKER, R., KAUW, J., AGAMI, R., BRUMMELKAMP, T., KOPS, G., MEDEMA, R. H. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J.2003,22,2934-2947.
    [45]RUCHAUD S, CARMENA M, EARNSHAW WC. Chromosomal passengers:conducting cell division. Nat Rev Mol Cell Biol.2007, 8(10):798-812.
    [46]CAO L, YAN X, WU Y, HU H, LI Q, ZHOU T, JIANG S, YU L. Survivin mutant (Surv-DD70,71AA) disrupts the interaction of Survivin with Aurora B and causes multinucleation in HeLa cells. Biochem Biophys Res Commun.2006, 28;346(2):400-7.
    [47]GIET R, PETRETTI C, PRIGENT C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol,2005,15,241-250.
    [48]SUN SC, WEI L, LI M, LIN SL, XU BZ, LIANG XW, KIM NH, SCHATTEN H, LU SS, SUN QY. Perturbation of survivin expression affects chromosome alignment and spindle checkpoint in mouse oocyte meiotic maturation. Cell Cycle.2009,15;8(20):3365-72.
    [49]LENS SM, VADER G, MEDEMA RH. The case for Survivin as mitotic regulator. Curr Opin Cell Biol.2006,18(6):616-22.
    [50]RITA C, CLAIRE M, ET AL. Separating the Anti-apoptotic and Mitotic Roles of Survivin. J. Biol Chem,2006,281,44,33450-33456.
    [51]KA YASELEUK F, NURS AL TZ, POLAT A, ET AL. Expression of survivin, bdl-2, p53 and bax in breast carcinoma and duetal intraepithelial neoplasia. J Exp Clin Cancer Res,2004,23(1):105.
    [52]O'CONNOR DS, SCHECHNER JS, ET AL. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol,2000, 156(2):393-398.
    [53]HARFOUEHE R, HASSESSIAN HM, GUO Y, ET AL. Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res,2002,64(1):13-17.
    [54]OHASHI H, TAKAGI H, ET AL. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by coverning survivin expression and suppression of caspase-3 activing. Circ Res,2004,94(6):785-793.
    [55]SARELA AI, MACADAM RC, FARMERY SM, ET AL. Expression of the antipoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut,2000,46 (5):650.
    [56]XIAOYUAN C, LONGBANG C, JINGHUA W, XIAOXIANG G, HUAICHENG G, QUN Z, HAIZHU S. Survivin:a potential prognostic marker and chemoradiotherapeutic target for colorectal cancer. Ir J Med Sci.2010, 179(3):327-35.
    [57]SHARIAT SF, KARAKIEWICZ PI, GODOY G, KARAM JA, ASHFAQ R, FRADET Y, ISBARN H, MONTORSI F, JELDRES C, BASTIAN PJ, NIELSEN ME, MULLER SC, SAGALOWSKY AI, LOTAN Y. Survivin as a prognostic marker for urothelial carcinoma of the bladder:a multicenter external validation study. Clin Cancer Res.2009,15;15(22):7012-9.
    [58]KOCH CA, VORTMEYER AO, DIALLO R, ET AL. Survivin:a novel neuroendocrine marker for pheochromocytoma. Eur J Endocrinol,2002,146(3): 381-388.
    [59]SHARIAT SF, LOTAN Y, SABOORIAN H, ET AL. Survivin expression is associated with feartures of biologically aggressive prostate carcinoma [J]. Cancer,2004,10(4):751-757.
    [60]ADIDA, C., HAIOUN, C., GAULARD, P., LEPAGE, E., MOREL, P., BRIERE, J., DOMBRET, H., REYES, F., DIEBOLD, J., GISSELBRECHT, C., SALLES, G., ALTIERI, D. C., AND MOLINA, T. J. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood 2000,96, 1921-1925.
    [61]LORENZO LO MUZIO, STAFANIA STAIBANO, GIUSEPPE PANNONE, MICHELE D. MIGNOGNA, ADA MARIGGIO, GAETANO SALVATORE, PAOLO CHIEFFI, DINA TRAMONTANO, GAETANO DE ROSA AND DARIO C. ALTIERI. Expression of the Apoptosis Inhibitor Survivin in Aggressive Squamous Cell Carcinoma Experimental and Molecular Pathology 2001,70(3):249-254.
    [62]YUAN QZ, WANG CT, MAO YQ, ZHANG P, SHI HS, LI ZY, PAN L, YU DD, LENG F, CHEN X, YING W, XU JH, LI W, WU F, WEN Y, MA TT, WEI YQ. Enhanced tumor radio sensitivity by a survivin dominant-negative mutant. Oncol Rep.2010,23(1):97-103.
    [63]DE MARIA S, PANNONE G, BUFO P, SANTORO A, SERPICO R, METAFORA S, RUBINI C, PASQUALI D, PAPAGERAKIS SM, STAIBANO S, DE ROSA G, FARINA E, EMANUELLI M, SANTARELLI A, MARIGGIO MA, LO RUSSO L, LO MUZIO L. Survivin gene-expression and splicing isoforms in oral squamous cell carcinoma. J Cancer Res Clin Oncol.2009, 135(1):107-16.
    [64]ATLASI Y, MOWLA SJ, ZIAEE SA. Differential expression of survivin and its splice variants, survivin-DeltaEx3 and survivin-2B, in bladder cancer. Cancer Detect Prev.2009,32(4):308-13.
    [65]GROSSMAN D, KIM PJ, SCHECHNER JS, ET AL. Inhibition of melamoma growth in vivo by survivin targeting. Proc Natl Aead Sci USA,2001, 98:635-640.
    [66]SHAPIRO GI, ET AL. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol [J]. Clin Cancer Res,2004,10: 4270-4275.
    [67]WU JG, LING X, PAN DL, ET AL. Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence selective DNA-binding antitumor agent, hedamycin:evidence of survivin down-regulation associated with drug sensitivity. JBC,2005,5.
    [68]WU J, APONTES P, SONG L, LIANG P, YANG L, LI F. Molecular mechanism of upregulation of survivin transcription by the AT-rich DNA-binding ligand, Hoechst33342:evidence for survivin involvement in drug resistance. Nucleic Acids Res.2007,35(7):2390-402.
    [69]ZHAO W, BAO P, QI H, YOU H. Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncol Rep.2010,23(1):279-86.
    [70]AMBROSINI G, ADIDA C, SIRUGO G, ET AL. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. Biol Chem,1998, 173(18):11177-11182.
    [71]PENNATI M, BINDA M, DECESARE M, ET AL. Ribozyme mediated down-regulation of survivin expression sensitizes human melanoma cells topotecan in vitro and in vivo. Carcinogenesis,2004,25(7):1129-1136.
    [72]YONESAKA K, TAMURA K, ET AL. Small interfering RNA targeting survivin sensitizes lung cancers cell with mutant p53 to adriamycin. Int J Cancer, 2006,118(4):812-820.
    [73]XIANG R, MIZUTANI N, LUO Y, ET AL. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res,2005,65(2):553-561.
    [74]杨亚莉,丁振宁,李秋,等。用脂质体包裹重组survivin腺病毒治疗肿瘤的实验研究。四川大学学报(医学版),2006,37(5):704-707。
    [75]SUGA K, YAMAMOTO T, YAMADA Y, ET AL. Correlation between transcriptional expression of survivin isoforms and clinicopathological finding in human colorectal carcinomas. Oncol Rep,2005,13(5):891.
    [1]WHEATLEY, S.P., I.A. MCNEISH. Survivin:A protein with dual roles in mitosis and apoptosis. Int Rev Cytol,2005,247:35-88.
    [2]SHIUN-KWEI CHIOU, MICHAEL K. JONES. Survivin—an anti-apoptosis protein:its biological roles and implications for cancer and beyond. Med Sci Monit,2003,9(4):43-47.
    [3]SHARIAT SF, LOTAN Y, SABOORIAN H, SABOORIAN H, KHODDAMI SM, ROEHRBORN CG, SLAWIN KM, ASHFAQ R. Survivin expression is associated with features of biologically aggressive prostate carcinoma [J]. Cancer, 2004,10(4):751-757.
    [4]KANWAR RK, CHEUNG CH, CHANG JY, KANWAR JR. Recent advances in anti-survivin treatments for cancer. Curr Med Chem.2010;17(15):1509-15.
    [5]XIAOYUAN C, LONGBANG C, JIANGHUA W, XIAOXIANG G, HUAICHENG G, QUN Z, HAIZHU S. Survivin:a potential prognostic marker and chemoradiotherapeutic target for colorectal cancer. Ir J Med Sci.2010, 179(3):327-35.
    [6]AMBROSINI G, ADIDA C, ALTIERI DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med,1997,3,917-921.
    [7]MARK A. VERDECIA, HAN-KUEI HUANG. Structure of the human anti-apoptotic protein survivin reveals a demeric arrangement. Nature Structural Biology.2000,7; 7.
    [8]ZHIYIN SONG, XUEBIAO YAO, MIAN WU. Direct interaction between Survivin and Smac/DIABLO is essential for the anti-apoptotic activity of Survivin during Taxol-induced apoptosis. J. Biol. Chem.2003,278(25) 23130-23140.
    [9]YUAN QZ, WANG CT, MAO YQ, ZHANG P, SHI HS, Lli ZY, PAN L, YU DD, LENG F, CHEN X, YING W, XU JH, LI W, WU F, WEN Y, MA TT, WEI YQ. Enhanced tumor radiosensitivity by a survivin dominant-negative mutant. Oncol Rep.2010,23(1):97-103.
    [10]YUE Z, CARVALHO A, XU Z, YUAN X, CARDINALE S, RIBEIRO S, LAI F, OGAWA H, GUDMUNDSDOTTIR E, GASSMANN R, MORRISON CG, RUCHAUD S, Earnshaw WC. Deconstructing Survivin:comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line. J Cell Biol.2008 Oct 20; 183(2):279-96.
    [11]OGURA A, WATANDBE Y, IIZUKA D, YASUI H, AMITANI M, KOBAYASHI S, KUWABARA M, INANAMI O. Radiation-induced apoptosis of tumor cells is facilitated by inhibition of the interaction between Survivin and Smac/DIABLO. Cancer Lett.2008,18;259(1):71-81.
    [12]SONG Z, LIU S, HE H, HOTI N, WANG Y, FENG S, WU M. A single amino acid change (Asp 53--> Ala53) converts Survivin from anti-apoptotic to pro-apoptotic. Mol Biol Cell.2004,15(3):1287-96.
    [13]ZHANG R, WANG T, LI KN, QIN WW, Chen R, Wang K, Jia LT, Zhao J, Wen WH, Meng YL, Yao LB, Yang AG. A survivin double point mutant has potent inhibitory effect on the growth of hepatocellular cancer cells. Cancer Biol Ther.2008 Apr;7(4):547-54.
    [14]TU SP, CUI JT, LISTON P, HUAJIANG X, XU R, LIN MC, ZHU YB, ZOU B, NG SS, JIANG SH, XIA HH, WONG WM, CHAN AO, YUEN MF, LAM SK, KUNG HF, WONG BC. Gene therapy for colon cancer by adeno-associated viral vector-mediated transfer of survivin Cys84Ala mutant. Gastroenterology.2005,128(2):361-75.
    [15]CAO L, YAN X, WU Y, HU H, LI Q, ZHOU T, JIANG S, YU L. Survivin mutant (Surv-DD70,71AA) disrupts the interaction of Survivin with Aurora B and causes multinucleation in HeLa cells. Biochem Biophys Res Commun.2006, 28;346(2):400-7.
    [16]SUN C, NETTESHEIM D, LIU Z, OLEJNICZAK ET. Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry.2005, 11:44(1):11-7.
    [17]CHANTALAT L, SKOUFIAS DA, KLEMAN JP. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell,2000,6:183-189.
    [18]CROOK NE, CLEM RJ, MILLER LK. An apoptosis-inhibiting gene with a zinc finger-like motif. J Virol,1993,67:2168-2174.
    [19]LUQUE LE, GRAPE KP, JUNKER M. A highly conserved arginine is critical for the functional folding of inhibitor of apoptosis (IAP) BIR domains. Biochemistry.2002,19;41(46):13663-71.
    [20]MIYATA T, HARAKUNI T, SUGAWA H, SATTABONGKOT J, KATO A, TACHIBANA M, TORII M, TSUBOI T, ARAKAWA T. Adenovirus-vectored Plasmodium vivax ookinete surface protein, Pvs25, as a potential transmission-blocking vaccine. Vaccine.2011,24;29(15):2720-6.
    [21]SCHLEGEL S, KLEPSCH M, GIALAMA D, WICKSTROM D, SLOTBOOM DJ, DE GIER JW. Revolutionizing membrane protein overexpression in bacteria. Microb Biotechnol.2010,3(4):403-11.
    [22]BHATT FH, JEFFERY CJ. Expression, detergent solubilization, and purification of a membrane transporter, the MexB multidrug resistance protein. J Vis Exp.2010,3;(46). pii:2134. doi:10.3791/2134.
    [23]GEILER-SAMEROTTE KA, DION MF, BUDNIK BA, WANG SM, HARTL DL, DRUMMOND DA. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A.2011,11;108(2):680-5.
    [24]SU Z, ZHOU X, LOUKIN SH, HAYNES WJ, SAIMI Y, KUNG C. The use of yeast to understand TRP-channel mechanosensitivity. Pflugers Arch.2009, 458(5):861-7.
    [25]ARDIANI A, HIGGINS JP, HODGE JW. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res.2010, 10(8):1060-9.
    [26]WEYN C, VANDERWINDEN JM, RASSCHAERT J, ENGLERT Y, FONTAINE V. Regulation of human papillomavirus type 16 early gene expression in trophoblastic and cervical cells. Virology.2011,30;412(1):146-55.
    [27]LOCHNER M, BERARD M, SAWA S, HAUER S, GABORIAU-ROUTHIAU V, FERNANDEZ TD, SNEL J, BOUSSO P, CERF-BENSUSSAN N, EBERL G. Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Thl7 cells. J Immunol.2011, 1;186(3):1531-7.
    [28]KANEDA K, ISA K, YANAGAWA Y, ISA T. Nigral inhibition of GABAergic neurons in mouse superior colliculus. J Neurosci.2008, 22;28(43):11071-8.
    [29]XU ZR, YANG YM, GUI QF, ZHANG LN, HU L. Expression, purification, and characterization of recombinant lumbrokinase PI239 in Escherichia coli. Protein Expr Purif.2010,69(2):198-203.
    [30]YANG T, YANG L, CHAI W, LI R, XIE J, NIU B. A strategy for high-level expression of a single-chain variable fragment against TNFa by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr Purif.2011,76(1):109-14.
    [31]AL-SHEIKH A, AHMAD S, KHAN ZU. Modification of an expression vector for efficient recombinant production and purification of mitogillin of Aspergillus fumigatus expressed in Escherichia coli. Protein Expr Purif.2011, 76(1):90-6.
    [32]ZHAO W, WANG L, ZHANG L, YUAN C, KUO PC, GAO C. Differential expression of intracellular and secreted osteopontin isoforms by murine macrophages in response to toll-like receptor agonists. J Biol Chem.2010, 2;285(27):20452-61.
    [33]WANG S, MBOUDJEKA I, GOGUEN JD, Lu S. Antigen engineering can play a critical role in the protective immunity elicited by Yersinia pestis DNA vaccines. Vaccine.2010,23;28(8):2011-9.
    [34]FIGUEREDO S, MASTROIANNI JR, TAI KP, OUELLETTE AJ. Expression and purification of recombinant alpha-defensins and alpha-defensin precursors in Escherichia coli. Methods Mol Biol.2010,618:47-60.
    [35]CASARTELLI N, GUIVEL-BENHASSINE F, BOUZIAT R, BRANDLER S, SCHWARTZ O, MORIS A. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. J Exp Med.2010,18;207(1):39-49.
    [1]PUCHNER EM, GAUB HE. Force and function:probing proteins with AFM-based force spectroscopy. Curr Opin Struct Biol.2009,19(5):605-14.
    [2]GIANNOTTI MI, VANCSO GJ. Interrogation of single synthetic polymer chains and polysaccharides by AFM-based force spectroscopy. Chemphyschem.2007, 12;8(16):2290-307.
    [3]TARANTA M, BIZZARRI AR, CANNISTRARO S. Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy. J Mol Recognit.2008,21(1):63-70.
    [4]VERBELEN C, DUPRES V, RAZE D, BOMPARD C, LOCHT C, DUFREENE YF. Interaction of the mycobacterial heparin-binding hemagglutinin with actin, as evidenced by single-molecule force spectroscopy. J Bacteriol.2008, 190(23):7614-20.
    [5]LIU W, PARPURA V. Single molecule probing of SNARE proteins by atomic force microscopy. Ann N Y Acad Sci.2009,1152:113-20.
    [6]ZHU Y, BOGOMOLOVAS J, LABEIT S, GRANZIER H. Single molecule force spectroscopy of the cardiac titin N2B element:effects of the molecular chaperone alphaB-crystallin with disease-causing mutations. J Biol Chem.2009, 15;284(20):13914-23.
    [7]HEUS HA, VAN VUGT-JONKER AJ, ZIMMERMANN JL, PUCHNER EM, GANB HE. AFM-based single-molecule force spectroscopy of RNA unfolding. Anal Biochem.2011,11.
    [8]FUHRMANN A, SCHOENING JC, ANSELMETTI D, STAIGER D, ROS R. Quantitative analysis of single-molecule RNA-protein interaction. Biophys J. 2009,17;96(12):5030-9.
    [9]SHI X, CHEN F, YU J, XU Y, ZHANG S, CHEN YG, FANG X. Study of interaction between Smad7 and DNA by single-molecule force spectroscopy. Biochem Biophys Res Commun.2008,26;377(4):1284-7.
    [10]KESSLER M, GAUB HE. Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by AFM. Structure.2006, 14(3):521-7.
    [11]YU J, MALKOVA S, LYUBCHENKO YL. Alpha-synuclein misfolding: single molecule AFM force spectroscopy study. J Mol Biol.2008, 26;384(4):992-1001.
    [12]LIM TS, VEDULA SR, HUNZIKER W, LIM CT. Kinetics of adhesion mediated by extracellular loops of claudin-2 as revealed by single-molecule force spectroscopy. J Mol Biol.2008,5;381(3):681-91.
    [13]ZHANG Y, YU Y, JIANG Z, XU H, WANG Z, ZHANG X, ODA M, ISHIZUKA T, JIANG D, CHI L, FUCHS H. Single-molecule study on intermolecular interaction between C60 and porphyrin derivatives:toward understanding the strength of the multivalency. Langmuir.2009, 16;25(12):6627-32.
    [14]DUPRES V, VERBELEN C, RAZE D, LAFONT F, DUFREENE YF. Force spectroscopy of the interaction between mycobacterial adhesins and heparan sulphate proteoglycan receptors. Chemphyschem.2009,13;10(9-10):1672-5.
    [15]SUZUKI A, HAYASHIDA M, ITO T, KAWANO H, NAKANO T, MIURA M, AKAHANE K, SHIRAKI K. Survivin initiates cell cycle entry by the competitive interation with Cdk4/pl6 (INK4a) and Cdk2/cyclin E comolex activation. Oncogene,2000,19 (29):3225-3234.
    [16]O'CONNOR DS, GROSSMAN D, PLESCIA J, LI F, ZHANG H, VILLA A, TOGNIN S, MARCHISIO PC, ALTIERI DC. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. PNAS,2000,97 (24), 13103-13107.
    [17]SUZUKI A, ITO T, KAWANO H, HAYASHIDA M, HAYASAKI Y, TSUTOMI Y, AKAHANE K, NAKANO T, MIURA M, SHIRAKI K. Survivin initiates procaspase3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene,2000,19(10):1346-1353.
    [18]SHIN S, SUNG BJ, CHO YS, KIM HJ, HA NC, HWANG JI, CHUNG CW, JUNG YK, OH BH. An anti-apoptotic protein human survivin is a direct Inhibitor of caspase-3 and-7. Biochemistry,2001,40,1117-1123.
    [19]BANKS DP, PLESCIA J, ALTIERI DC, CHEN J, ROSENBERG SH, ZHANG H, NG SC. Survivin does not inhibit caspase-3 activity. Blood,2000,96: 4002-4003.
    [20]LI C, WU Z, LIU M, PAZGIER M, LU W. Chemically synthesized human survivin does not inhibit caspase-3. Protein Sci,2008,17(9):1624-1629.
    [21]WANG HX, CHEN G, LI GL, JIANG YJ. Expression and significance of Survivin and Smac in ovarian mucinous tumors. Zhonghua Bing Li Xue Za Zhi. 2010,39(6):387-90.
    [22]CHEN P, LI J, GE LP, DAI CH, LI XQ. Prognostic value of survivin, X-linked inhibitor of apoptosis protein and second mitochondria-derived activator of caspases expression in advanced non-small-cell lung cancer patients. Respirology.2010,15(3):501-9.
    [23]OIKAWA T, UNNO Y, MATSUNO K, SAWADA J, OGO N, TANAKA K, ASAI A. Identification of a small-molecule inhibitor of the interaction between Survivin and Smac/DIABLO. Biochem Biophys Res Commun.2010, 5;393(2):253-8.
    [24]DAI CH, LI J, SHI SB, YU LC, GE LP, CHEN P. Survivin and Smac gene expressions but not livin are predictors of prognosis in non-small cell lung cancer patients treated with adjuvant chemotherapy following surgery. Jpn J Clin Oncol. 2010,40(4):327-35.
    [25]SUN C, NETTESHEIM D, LIU Z, OLEJNICZAK ET. Survivin and its binding interface with Smac/Diablo. Biochemistry 2005,44,11-17.
    [26]LAURA E. LUQUE, KATRINA P. GRAPE, MATTHEW JUNKER. A highly conserved arginine is critical for the functional folding of inhibitor of apoptosis (IAP) BIR domains. Biochemistry 2002,41,13663-13671.
    [27]SRIMATHI T, ROBBINS SL, DUBAS RL, HASEGAWA M, INOHARA N, PARK YC. Monomer/dimer transition of the caspase-recruitment domain of human Nodl. Biochemistry.2008,5;47(5):1319-25.
    [28]BAEZ M, CABRERA R, GUIXE V, BABUL J. Unfolding pathway of the dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli. Biochemistry.2007,22;46(20):6141-8.
    [29]PIRZER T, HUGEL T. Atomic force microscopy spring constant determination in viscous liquids. Rev Sci Instrum.2009,80(3):035110.
    [30]NINGNING LIU, TIANJIA BU, YU SONG, WEI ZHANG, JINJING LI, WENKE ZHANG and JIACONG SHEN, HONGBIN LI. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy. Langmuir,2010,26 (12),9491-9496.
    [31]ZHANG W, MACHON C, ORTA A, PHILLIPS N, ROBERTS CJ, ALLEN S, SOULTANAS P. Single-molecule atomic force spectroscopy reveals that DnaD forms scaffolds and enhances duplex melting. J Mol Biol.2008, 28;377(3):706-14.
    [32]MULLER DJ, DUFRENE YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol.2008,3(5):261-9.
    [33]THORSTEN HUGEL, MARKUS SEITZ. The study of molecular interactions by AFM force spectroscopy. Macromolecular Rapid Communications. 2001,22;13:989-1016.
    [34]WENKE ZHANG, XI ZHANG. Single molecule mechanochemistry of macromolecules. Progress in Polymer Science.2003,28;8,:1271-1295.
    [35]G. NEUERT, C. ALBRECHT, E. PAMIR and H.E. GAUB. Dynamic force spectroscopy of the digoxigenin-antibody complex. FEBS Lett 2006,580;2(23): 505-509.
    [36]YU J, MALKOVA S, LYUBCHENKO YL. Alpha-synuclein misfolding: single molecule AFM force spectroscopy study. J Mol Biol.2008, 26;384(4):992-1001.
    [37]DIETZ H, RIEF M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci U S A.2004, 16;101(46):16192-7.
    [38]OESTERHELT F, OESTERHELT D, PFEIFFER M, ENGEL A, GAUB HE, MULLER DJ. Unfolding pathways of individual bacteriorhodopsins. Science. 2000,7;288(5463):143-6.
    [39]AINAVARAPU SR, BRUJIC J, HUANG HH, WIITA AP, LU H, LI L, WALTHER KA, CARRION-VAZQUEZ M, LI H, FERNANDEZ JM. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys J.2007, 1;92(1):225-33.
    [40]BAROUCH DH, PAU MG, CUSTERS JH, KOUDSTAAL W, KOSTENSE S, HAVENGA MJ, TRUITT DM, SUMIDA SM, KISHKO MG, ARTHUR JC, KORIOTH-SCHMITZ B, NEWBERG MH, GORGONE DA, LIFTON MA, PANICALI DL, NABEL GJ, LETVIN NL, GOUDSMIT J. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol.2004,15;172(10):6290-7.
    [41]SUMIDA SM, TRUITT DM, LEMCKERT AA, VOGELS R, CUSTERS JH, ADDO MM, LOCKMAN S, PETER T, PEYERL FW, KISHKO MG, JACKSON SS, GORGONE DA, LIFTON MA, ESSEX M, WALKER BD, GOUDSMIT J, HAVENGA MJ, BAROUCH DH. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol.2005, 1;174(11):7179-85.
    [42]SONG Z, YAO X, WU M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem.2003,20;278(25):23130-40.
    [43]OGURA A, WATANABE Y, IIZUKA D, YASUI H, AMITANI M, KOBAYASHI S, KUWABARA M, INANAMI O. Radiation-induced apoptosis of tumor cells is facilitated by inhibition of the interaction between Survivin and Smac/DIABLO. Cancer Lett.2008,18;259(1):71-81.
    [44]DU C, FANG M, LI Y, LI L, WANG X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell.2000,7;102(1):33-42.
    [45]SONG Z, LIU S, HE H, HOTI N, WANG Y, FENG S, WU M. A single amino acid change (Asp 53 --> Ala53) converts Survivin from anti-apoptotic to pro-apoptotic. Mol Biol Cell.2004,15(3):1287-96.
    [46]WENDT MD, SUN C, KUNZER A, SAUER D, SARRIS K, HOFF E, YU L, NETTESHEIM DG, CHEN J, JIN S, COMESS KM, FAN Y, ANDERSON SN, ISAAC B, OLEJNICZAK ET, HAJDUK PJ, ROSENBERG SH, ELMORE SW. Discovery of a novel small molecule binding site of human survivin. Bioorg Med Chem Lett.2007,1;17(11):3122-9.
    [47]CEBALLOS-CANCINO G, ESPINOSA M, MALDONADO V, MELENDEZ-ZAJQLA J. Regulation of mitochondrial Smac/DIABLO-selective release by survivin. Oncogene.2007,29;26(54):7569-75.
    [48]MARK A. VERDECIA, HAN-KUEI HUANG. Structure of the human anti-apoptotic protein survivin reveals a demeric arrangement. Nature Structural Biology.2000; 7,7.
    [49]RIEDL SJ, RENATUS M, SCHWARZENBACHER R, ZHOU Q, SUN C, FESIK SW, LIDDINGTON RC, SALVESEN GS. Structural basis for the inhibition of caspase-3 by XIAP. Cell.2001,9;104(5):791-800.
    [50]WU JW, COCINA AE, CHAI J, HAY BA, SHI Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell.2001, 8(1):95-104.
    [51]DOUGHERTY DA. Cation-pi interactions in chemistry and biology:a new view of benzene, Phe, Tyr, and Trp. Science.1996,12;271(5246):163-8.
    [52]GALLIVAN JP, DOUGHERTY DA. Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A.1999,17;96(17):9459-64.
    [53]LIU Z, SUN C, OLEJNICZAK ET, MEADOWS RP, BETZ SF, OOST T, HERRMANN J, WU JC, FESIK SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature.2000, 21-28;408(6815):1004-8.
    [54]WU G, CHAI J, SUBER TL, WU JW, DU C, WANG X, SHI Y. Structural basis of IAP recognition by Smac/DIABLO. Nature.2000, 21-28;408(6815):1008-12.
    [55]SUN C, NETTESHEIM D, LIU Z, OLEJNICZAK ET. Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry. 2005,11;44(1):11-7.
    [1]FORMAN JR, CLARKE J. Mechanical unfolding of proteins:insights into biology, structure and folding. Curr Opin Struct Biol.2007,17(1):58-66.
    [2]SANTUCCI R, SINIBALDI F, FIORUCCI L. Protein folding, unfolding and misfolding:role played by intermediate States. Mini Rev Med Chem.2008, 8(1):57-62.
    [3]LEVITSKY DI, PIVOVAROVA AV, MIKHAILOVA VV, NIKOLAEVA OP. Thermal unfolding and aggregation of actin. FEBS J.2008,275(17):4280-95. Epub 2008 Jul 14.
    [4]GAO YS, SU JT, YAN YB. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods. Int J Mol Sci.2010,25;11(7):2584-96.
    [5]MUKHERJEE S, WAEGELE MM, CHOWDHURY P, GUO L, GAI F. Effect of macro molecular crowding on protein folding dynamics at the secondary structure level. J Mol Biol.2009,16;393(1):227-36.
    [6]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999.
    [7]CUERVO AM, WONG ES, MARTINEZ-VICENTE M. Mov DISORD. Protein degradation, aggregation, and misfolding.2010,25 Suppl 1:S49-54.
    [8]COLLAWN JF, FU L, BEBOK Z. Targets for cystic fibrosis therapy:proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator. Expert Rev Proteomics.2010,7(4):495-506.
    [9]FINDER VH. Alzheimer's disease:a general introduction and pathomechanism. J Alzheimers Dis.2010,22 Suppl 3:5-19.
    [10]FERNANDEZ-BORGES N, DE CASTRO J, CASTILLA J. In vitro studies of the transmission barrier. Prion.2009,3(4):220-3.
    [11]CANCHI DR, GARCIA AE. Backbone and side-chain contributions in protein denaturation by urea. Biophys J.2011,16;100(6):1526-33.
    [12]DI STASIO E, DE CRISTOFARO R. The effect of shear stress on protein conformation:Physical forces operating on biochemical systems:The case of von Willebrand factor. Biophys Chem.2010,153(1):1-8.
    [13]SREEDHARA A, FLENGSRUD R, LANGSRUD T, KAUL P, PRAKASH V, VEGARUD GE. Structural characteristic, pH and thermal stabilities of apo and holo forms of caprine and bovine lactoferrins. Biometals.2010,23(6):1159-70.
    [14]SIDDIQUI KS, POLJAK A, DE FRANCISCI D, GUERRIERO G, PILAK O, BURG D, RAFTERY MJ, PARKIN DM, TREWHELLA J, CAVICCHIOLI R. A chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Eng Des Sel.2010,23(10):769-80.
    [15]DAVIS PJ, WILLIAMS SC. Protein modification by thermal processing. Allergy.1998,53(46 Suppl):102-5.
    [16]GLAD WIN ST, EVANS PA. Structure of very early protein folding intermediates:new insights through a variant of hydrogen exchange labelling. Fold Des.1996, 1(6):407-17.
    [17]BARTH A, ZSCHERP C. What vibrations tell us about proteins. Q Rev Biophys.2002,35(4):369-430.
    [18]ASHBROOK SE. Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei. Phys Chem Chem Phys.2009,28;11(32):6892-905.
    [19]ZANNI MT, HOCHSTRASSER RM. Two-dimensional infrared spectroscopy:a promising new method for the time resolution of structures. Curr Opin Struct Biol.2001,11(5):516-22.
    [20]GAO YL, JU XR. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores. J Microbiol Methods.2008,72(1):20-8.
    [21]MOZHAEV VV, HEREMANS K, FRANK J, MASSON P, BALNY C. High pressure effects on protein structure and function. Proteins.1996,24(1):81-91.
    [22]ZANNI MT, GE NH, KIM YS, HOCHSTRASSER RM. Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination. Proc Natl Acad Sci U S A. 2001,25;98(20):11265-70.
    [23]SEGTNAN VH, SASIC S, ISAKSSON T, OZAKI Y. Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis. Anal Chem.2001,73(13):3153-61.
    [24]OZAKI, Y.; NODA, I. Two-dimensional correlation spectroscopy: Kobe-Sanda, Japan, August-September 1999, American Institute of Physics: Melville, N.Y.,2000.
    [25]NODA, I.; OZAKI, Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy; John Wiley & Sons: Chichester, West Sussex, England; Hoboken, NJ,2004.
    [26]BOGUSLAWA CZARNIK-MATUSEWICZ, KOICHI MURAYAMA, YUQING WU, YUKIHIRO OZAKI. Two-dimensional attenuated total reflection/infrared correlation spectroscopy of adsorption-induced and concentration-dependent spectral variations of β-lactoglobulin in aqueous solutions. J. Phys. Chem. B,2000,104 (32),7803-7811.
    [27]VAN MIERLO CP, STEENSMA E. Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy:the flavodoxin story. J Biotechnol.2000,26;79(3):281-98.
    [28]GUZZI R, SPORTELLI L, SATO K, CANNISTRARO S, DENNISON C. Thermal unfolding studies of a phytocyanin. Biochim Biophys Acta.2008, 1784(12):1997-2003.
    [29]WANG, L. X., WU, Y. Q., MEERSMAN, F. Clarification of the thermally-induced pretransition of ribonuclease A in solution by principal component analysis and two-dimensional correlation infrared spectroscopy. Vib. Spectrosc.2006,42,201-205
    [30]CHANTALAT L, SKOUFIAS DA, KLEMAN JP, JUNG B, DIDEBERG O, MARGOLIS RL. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell.2000,6(1):183-9.
    [31]VERDECIA MA, HUANG H, DUTIL E, KAISER DA, HUNTER T, NOEL JP. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol.2000,7(7):602-8.
    [32]SUN C, NETTESHEIM D, LIU Z, OLEJNICZAK ET. Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry. 2005,11;44(1):11-7.
    [33]LUQUE LE, GRAPE KP, JUNKER M. A highly conserved arginine is critical for the functional folding of inhibitor of apoptosis (IAP) BIR domains. Biochemistry.2002,19;41(46):13663-71.
    [34]ARRONDO, J.L.R., MUGA, A., CASTRESANA, J., GONI, F.M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol.1993,59:23-56.
    [35]SILVA JL, FOGUEL D, ROYER CA. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci.2001,26(10):612-8.
    [36]HERBERHOLD H, WINTER R. Temperature-and pressure-induced unfolding and refolding of ubiquitin:a static and kinetic Fourier transform infrared spectroscopy study. Biochemistry.2002,19;41(7):2396-401.
    [37]TORRENT J, RUBENS P, RIBO M, HEREMANS K, VILANOVA M. Pressure versus temperature unfolding of ribonuclease A:an FTIR spectroscopic characterization of 10 variants at the carboxy-terminal site. Protein Sci.2001, 10(4):725-34.
    [38]MEERSMAN F, HEREMANS K. High pressure induces the formation of aggregation-prone states of proteins under reducing conditions. Biophys Chem. 2003, 1;104(1):297-304.
    [39]KRIMM. S., J. BANDEKAR. Vibrational spectroscopy and conformations of peptides, polypeptides and proteins. Adv. Protein Chem.1986,38:181-364.
    [40]AUSILI A, COBUCCI-PONZANO B, DI LAURO B, D'AVINO R, PERUGINO G, BERTOLI E, SCIRE A, ROSSI M, TANFANI F, MORACCI M. A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures. Proteins.2007, 1;67(4):991-1001.
    [41]MEERSMAN F, HEREMANS K. Temperature-induced dissociation of protein aggregates:accessing the denatured state. Biochemistry.2003, 9;42(48):14234-41.
    [42]SONG Z, YAO X, WU M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem.2003,20;278(25):23130-40.
    [43]I. NODA, Generalized Two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Applied Spectroscopy,1993, 47(9):1329-1336.
    [44]NODA, I., DOWREY, A. E., MARCOTT, C., STORY, G. M., OZAKI, Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc.2000,54, 236A.
    [45]MORITA, S.; SHINZAWA, H.; NODA, I.; OZAKI, Y., Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Appl. Spectrosc.2006,60,398.
    [46]MARABOTTI A, SCIRE A, STAIANO M, CRESCENZO R, AURILIA V, TANFANI F, D'AURIA S. Wild-type and mutant bovine odorant-binding proteins to probe the role of the quaternary structure organization in the protein thermal stability. J Proteome Res.2008,7(12):5221-9.
    [47]GAO Y, ZHANG H, ZHANG M, ZHANG H, YU X, KONG W, ZHA X, WU Y. N-terminal deletion effects of human survivin on dimerization and binding to Smac/DIABLO in vitro. J Phys Chem B.2010,2; 114(47):15656-62.
    [48]BARTH A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007,1767(9):1073-101.
    [49]ISAO NODA, Two-dimensional infrared (2D IR) spectroscopy:Theory and applications. Applied Spectroscopy,1990,44(4):550-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700