用户名: 密码: 验证码:
多糖纳米薄膜材料的AFM研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米薄膜是指尺寸在纳米量级的分子颗粒构成的薄膜或者层厚在纳米量级的单层或多层薄膜。纳米具有独特的光学、力学、电磁学特性,因而在重工业、轻工业、军事、石化等领域表现出了广泛的应用前景。作为纳米薄膜的一种,有机纳米薄膜经过几十年的发展,在生物、医药、光学器件等领域又展示了其独特的应用潜力。纳米尺度有机薄膜的研究,涉及了微观领域分子自组装的探索,分子间弱相互作用力的研究,生物大分子复合体及超分子体系聚合或装配动力学、结构及其与功能相互关系的研究等。这些问题的成功解决为阐明生命活动的本质规律提供途径,成为生命科学领域中急需解决的、重大基础性课题。
     多糖纳米薄膜,作为一种新兴的有机纳米薄膜,它在生物医学巨大的应用潜力,其制备过程和应用领域都值得我们去探索。纳米材料有着与常规材料不同的性质。其薄膜厚度、粗糙度、弹性强度、硬度和表面摩擦力等特性成为常规技术不能实现的。由于纳米材料表面是纳米级厚度和平整度,使得其性质的表征成为了研究热点和难点。众多高精度的技术和仪器都用来研究纳米薄膜,比如小角度散射、X射线衍射、原子力显微镜和扫描电镜等。在众多先进仪器中,原子力显微镜由于其在测量薄膜性能上表现的独特功能,被广大科研工作者所采用。
     本文,我们用不同的方法制备出壳聚糖,黄原胶及其复合多糖纳米薄膜材料并利用AFM对其做了表征。壳聚糖和黄原胶作为两种多糖,其应用不仅涉及到医药、食品、化工、化妆品、水处理,而且已经广泛的应用于生物、医学等领域。由于它们具有较好的生物功能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注。比如,壳聚糖聚糖被用于DNA、基因以及心脏病药的载体。而黄原胶则是一种很好的食品添加剂。如今,壳聚糖与黄原胶的复合物被认为是一种良好的药物载体弥补了壳聚糖作为药物载体的缺陷,具有广阔的应用前景。在实验中,我们制备了壳聚糖和黄原胶的纳米薄膜,以及其复合纳米薄膜材料,并对其力学特性做了研究。主要完成工作如下:
     1、利用分子自组装方法制备黄原胶和壳聚糖薄膜材料,并利用AFM观察黄原胶和壳聚糖薄膜的特性,研究其自组装特性。在试验中,我们得到壳聚糖和黄原胶的多孔薄膜和致密薄膜。
     2、通过结合旋涂法和AFM技术制备超薄壳聚糖生物薄膜,该方法的制备出的生物薄膜同分子自组装法制备的壳聚糖薄膜相比,不但保证了壳聚糖薄膜材料的厚度为2nm左右,而结合旋涂法和AFM技术制备的壳聚糖薄膜节省了制备薄膜的时间,同时也能实时观察薄膜的变化情况。
     3、在前两步内容的基础上我们制备了壳聚糖-黄原胶复合薄膜材料并对其形成机理做了探究。实验结果表明,带有正电性的壳聚糖溶液将带有负电性的黄原胶纤维解螺旋,并形成新型的壳聚糖-黄原胶复合材料。
     4、利用皮牛级别分辨率的单分子力谱对多孔材料的力学性质的研究。实验中发现黄原胶多孔薄膜材料的力谱是由复杂的力学指纹组成,其力学特性不同于单根纤维。通过深入分析发现,复杂力谱是由三种基本力谱随机组合而成的。
Organic nanofilm is a kind of nanofilm refers to the unit composed of thin-film or single or multi-layerfilm are organic molecules or nanoscale particles whose size is in nanometer scale. It has uniquemechanical, optical, and electromagnetic characteristics, and thus demonstrated in the field of heavyindustry, optical industry, military petrochemical and other broad application prospects. After decadesof development, nanofilms also demonstrate its potential applications in biology, medicine, optical andother fields. In addition, the research of nano-scale organic thin-film, involving the exploration ofmolecular self-assembly, the study of weak interactions between molecules, aggregation or assembly of thecomplex of biological macro molecules and super molecular systems dynamics, structure and function ofthe relationship between research and so on. The successfully resolving of the issues will provide approachto address the nature of law in the field of life sciences, and become a major topic.
     Polysaccharide nanofilm,as a organic nanofilm, has been focused because of the huge potentialapplication in biomedical field. The preparation and application of organic nano-thin film are urgently to beexplored. Nanomaterials have the unique properties in contrast to conventional materials. For example, theproperties of nano-film, including thickness, roughness, elastic strength, hardness and surface friction,cannot be achieved by conventional techniques. And the atomic-level flatness and nano-scale thickness,making the characterization of its nature to become a hot and difficult issue. A number of high-precisiontechnologies and equipments have been used in the measuremnt, such as small angle scattering, X-raydiffraction, atomic force microscopy, scanning electron microscopy and other means. Among manyadvanced instruments, atomic force microscope are accepted due to its unique performance in themeasurement of thin films.
     Chitosan and xanthan gum are two polysaccharides, the application not only refer to medicine, food,chemicals, cosmetics, water treatment, but also in biology, medicine and other fields. They have attractedwidespread concerns because of the excellent performance in life scicence, such as have goodbio-functional and compatibility, blood compatibility, security, microbial degradation. Chitosan has beenused as the carrier of DNA, genes, and heart disease drugs, and xanthan gum is a good food additive. Today, the complex of chitosan and xanthan gum is considered to be a good drug delivery system to make up forthe defects of the chitosan, and it has broad application prospects.
     In our experiments, we use different methods of preparation of two polysaccharidenano-film materialsand composite nanofilm material (chitosan and xanthan gum). And we explored the mechanical properties.
     The contents are listed as follows:
     1. The preparation xanthan gum and chitosan film material by molecular self-assembly method, thecharacterization of film by using AFM, studying the self-assembly properties. In the trial, theporous film and dense film of chitosan and xanthan gum were obtained.
     2. The preparation of ultrathin chitosan biofilms prepared by the combination of spin-coatingmethod and the AFM technology. The method not only to ensure the thickness of2nm, but alsosave the time of the preparation, As well the changes of film can be observed in real time.
     3. The preparation of the composite films of chitosan and xanthan gum, and the exploration of themechanism. The results show that, with the positively charged chitosan molecules unwindsnegatively charged xanthan gum fiber into helices, and finally the two polysaccharides form ofnew chitosan-xanthan composite.
     4. The characterization of xanthan scaffold structure by using Pico-Newton level of single moleculeforce spectroscopy(SMFS). It was found that the force spectrum of xanthan scaffold structure is acomplex mechanical fingerprint, and its mechanical properties different from the single fiber.Through in-depth analysis we found that the complex force spectrum consists of three basic forcespectrums randomly.
引文
[1]韩凤云.张华山.王伟平.董殿波美味牛肝菌产胞外多糖分批发酵的动力学模型研究.安徽农业科学,2010(9).
    [2]李静.连宾.胡鹏刚.细菌多糖及其在食品工业中的应用.食品科学,2006(11).
    [3]沈海军.穆先才.纳米薄膜的分类、特性、制备方法与应用.纳米材料与技术,2005(11).
    [4]杨定宇.蒋孟衡.杨军.有机薄膜发光器件的研究进展.半导体技术,2007(7).
    [5]梁宁.杨磊.李静.多糖研究进展.吉林农业,2011(5).
    [6]李松.吴青华.陈畅.多糖抗肿瘤活性的最新研究进展.中国生化药物杂志,2007.
    [7]唐星华.沈明才.壳聚糖及其衍生物应用研究进展.日用化学工业,2005(2).
    [8]欧阳健明LB膜原理及应用.暨南大学出版社1999.8
    [9]邓穗平.蔡继业.磷脂自组装膜的原子力显微镜研究进展.生物医学工程学杂志2008(4).
    [10] F. S. Ligler, B. M. Lingerfelt, R. P. Price and P. E. Schoen, Langmuir,2001,17,5082-5084
    [11] Iijima, M.; Shinozaki, M.; Hatakeyama, T.; Takahashi, M.; Hatakeyama, H. Carbohydrate Polymers2007,68,701.
    [12] Capron, I.; Alexandre, S.; Muller, G. Polymer1998,39,5725
    [13] G.Binnig, H.Rohrer, C.Gerber, E.Weibel. Appl.Phys.Lett.,1982,40:178
    [14] Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Science1997,276,1109.
    [15] Lee, G. U.; Chrisey, L. A.; Colton, R. J. Science1994,266,771.
    [16] Liu, N. N.; Bu, T. J.; Song, Y.; Zhang, W.; Li, J. J.; Zhang, W. K.; Shen,J. C.; Li, H. B. Langmuir2010,26,9491.
    [17] Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Science1997,275,1295.
    [18] Li, H. B.; Rief, M.; Oesterhelt, F.; Gaub, H. E.; Zhang, X.; Shen, J. C. Chem Phys Lett1999,305,197.
    [19] Xu, Q.; Zhang, W.; Zhang, X. Macromolecules2001,35,871.
    [20] Liu, C. J.; Wang, Z. Q.; Zhang, X. Macromolecules2006,39,3480.
    [21] Mingdong, D.; et al. Nanotechnology2008,19,384013.
    [22] Sandal, M.; Valle, F.; Tessari, I.; Mammi, S.; Bergantino, E.; Musiani, F.; Brucale, M.; Bubacco, L.;Samori, B. PLoS Biol2008,6, e6.
    [23] Guzmán, D. L.; Roland, J. T.; Keer, H.; Kong, Y. P.; Ritz, T.; Yee, A.; Guan, Z. Polymer2008,49,3892.
    [24] Harder, A.; Walhorn, V.; Dierks, T.; Fernàndez-Busquets, X.; Anselmetti, D. Biophysical Journal2010,99,3498.
    [25] Fisher, T. E.; Marszalek, P. E.; Fernandez, J. M. Nat Struct Biol2000,7,719.
    [26] Binig G, Q. C., Gerber C Phys Rev Lett1986,56,930.
    [27]曾洁铭.曾耀英.蔡继业.原子力显微镜在生命科学中的应用.中国病理生理杂志,2001
    [28] Butt H J, Downing K H, Hansma P K. Biophysical J.1990,58,1473
    [29] Wigren R, Elwing H, Erlandson R, Welin S, Lundstrom I. FEBS Letters.1991,280,225
    [30] Keller R W, Keller D J, Bear D, Vasenka J, Bustamante C. Ultramicroscopy.1992,42,1173
    [31] Arakawa H, Umemura K, Ikai A. Nature.1992,358,171
    [32] Kobayashi M, Sumitomo K, Torimitsu K. Ultramicroscopy,2007,107,184
    [33] De Souza Pereira R, Da Silva MN, Cotta MA. Febs Lett,2003,552,155
    [34] D.M.Czajkowsky, H.Iwamoto,T.L.Cover,Z.Shao. Proc.Natl.Acad.Sci,1999,96,2001
    [35] A.A.Baker, W.Helbert, J.Sugiyama, M.J.MileS.J.Struet.Biol.,1997,119,129
    [36] D.J.Muller, H.J.Sass, Muller, G.Buldt, A. Engel. J. Mol.Biol,1999,285,1903
    [37] J.B.Heymann, D.J.Muller, E.Landau, J.Rosenbuseh, E.pebay-Peroulla, G.Buldt, A.Engel. J.Struet.Biol,1999,128,243
    [38] M.Pfeiffer, T.Rink, K.Gerwert,D.Oesterhelt, H-J.Steinhoff.J.Mol.Biol,1999,287,163
    [39] D.J.Muller, A.Engel, J.Carraseosa, M.VelleZ. EMBOJ,1997,16,101
    [40] Fritzsche W, Takac L, Henderson E. Critical Reviews in Eukaryotic Gene W Expressior,1997,7,231
    [41] J.Vesenka, M.Guthold, C.L.Tang, D.Keller, E.Delaine, C. Bustamante., Ultramicroscopy,1992,42-44,1243
    [42] Kirby A R, Gunning A P. Morris V J.biopolymers.1996,38,355.
    [43] G.M.Hand, D.J.Muller, B.Nieho1Son, A.Engel, G.E.Sosinsky.J.Mol.Biol,2001,315,587
    [44]M.KamermanS, I.Fahrenfort, K.SchultZ, U.Janssen-Bienhold, T.Sjoerdsma, R.We1ler. Science,2001,292,1178
    [45] J.1.Kourie, H.B.Wood. Prog.Biophys.Mol.Biol,2000,73:91
    [46] I.Reviakine, W.Bergsma-Schutter, C.MaZeres-Dubut, N.Govorukhina, A.Brisson. J.Struet.Biol,2000,131:234
    [47] A.L, Martin, M.C.Davies, B.J.Raekstraw, C.J.Roberts, S.Stolnik, S.J.B.Tendler, P.M.Williams. FEBSLetters,2000,480:106
    [48]Janshoff A, Neitzert M, Oberd rfer Y, et al. Force spectroscopy of molecular systems-single moleculespectroscopy of polymers and biomolecules. Angew Chem Int Ed,2000,38,3212~3237
    [49] Bustamante C, Smith S B, Liphardt J, et al. Single-molecule studies of DNA mechanics.Curr Opin Struct Biol,2000,10,279~285
    [50] Strick T R, Allemand J F, Bensimon D, et al. Stress-induced structural transitions in DNA andproteins. Annu Rev Biophys Biomol Struct,2000,29,523~543
    [51] Clausen-Schaumann H, Seitz M, Krautbauer R, et al. Force spectroscopy with single bio-molecules.Curr Opin Chem Biol,2000,4,524~530
    [52]Merkel R. Force spectroscopy on single passive biomolecules and single biomolecular bonds. PhysicsReports,2001,346,343~385
    [53]Senden T J. Force microscopy and surface interactions. Curr Opin in Colloid&Interface Sci,2001,6,95~101
    [54] Yip C M. Atomic force microscopy of macromolecular interac-tions. Curr Opin Struct Biol,2001,11,567~572
    [55]Hugel T, Seitz M. The study of molecular interactions by AFM force spectroscopy. MacromolRapid Commun,2001,22,989~1016
    [56]Allison D P, Hinterdorfer P, Han W H. Biomolecular force measurements and the atomic forcemicroscope. Curr Opin in Biotech,2002,13,47~51
    [57] R.Matthias,C.S.Hauke,H.E.Gaub.,1999,6,346
    [58] Anika, S. M.; Suzanne, P. J. Nanotechnology2007,18,044010.
    [59] Li, H.; Rief, M.; Oesterhelt, F.; Gaub, H. E. Advanced Materials1998,10,316.
    [60] Govedarica, B.; Sovány, T.; Pintye-Hódi, K.; karabot, M.; Baumgartner, S.; Mu evi, I.; Sr i,S. European Journal of Pharmaceutics and Biopharmaceutics.
    [61] Miklo′s S. Z. Kellermayer, La′szlo′Grama, A′rpa′d Karsai, A Reversible Mechanical Unzipping ofAmyloid β-Fibrils, The journal of biological chemistry.2005
    [62] Chad McAllister, Mikhail A. Karymov, Yoshiko Kawano, Protein Interactions and MisfoldingAnalyzed by AFM Force Spectroscopy. J. Mol. Biol.2005
    [64]CH, C., S. T, and Y. T, ph-sensitive swelling of a polyelectrolyte comples gelprepared from xanthan and chitosan. Bioscience, Biotechnology, and Biochemistry,1995.59,3
    [65]Chu, C.-H., H. Kumagai, and K. Nakamura, Application of polyelectrolyte complexgel composed of xanthan and chitosan to the immobilization of corynebacteriumglutamicum. Journal of Applied Polymer Science,1996.60,1041~1047.
    [66]Chellat, F., et al., Study of biodegradation behavior of chitosan–xanthanmicrospheres in simulated physiological media. Journal of Biomedical Materials Research,2000.53,592~599.
    [67]Phaechamud, T. and G.C. Ritthidej, Sustained-release from Layered Matrix SystemComprising Chitosan and Xanthan Gum. Drug Development and Industrial Pharmacy,2007.33,595~605.
    [1] S. Geresh and S. A. Malis, Bioresource Technology,1991,38,195-201.
    [2] L. Diez, Z. Guadalupe, B. Ayestaran and F. Ruiz-Larrea, Journal of Agricultural and Food Chemistry,2010,58,7731-7739.
    [3] M. Y. K. Leung, C. Liu, J. C. M. Koon and K. P. Fung, Immunology Letters,2006,105,101-114.
    [4]沈海军.穆先才.纳米薄膜的分类、特性、制备方法与应用[D].纳米材料与技术,2005(11).
    [5] C. F. Hu, J. H. Li, D. Y. Yang, Y. J. Pan and H. T. Wan, Journal of Natural Products,2010,73,1489-1493.
    [6] F. Di Renzo, R. Valentin, M. Boissiere, A. Tourrette, G. Sparapano, K. Molvinger, J. M. Devoisselle, C.Gerardin and F. Quignard, Chemistry of Materials,2005,17,4693-4699.
    [7] O. G. Jones, J. Adamcik, S. Handschin, S. Bolisetty and R. Mezzenga, Langmuir,2010,26,17449-17458
    [8] G. Skjak-Braek, T. Anthonsen, and P. Sandford, editors, Chitin and Chitosan, pages51-69. ElsevierScience Publishers Ltd, Northern Ireland,1989.
    [9] E. Kohr. Chitin: Fulˉlling a Biomaterials Promise. Elsevier, Netherlands,2001.
    [10] M. Y. Cheng, J. U. Deng, F. Yang, Y. D. Gong, N. M. Zhao and X. F. Zhang, Biomaterials,2003,24,2871-2880.
    [11] M. Hiorth, I. Tho and S. A. Sande, European Journal of Pharmaceutics and Biopharmaceutics,2003,56,175-182.
    [12] A. P. Martinez-Camacho, M. O. Cortez-Rocha, J. M. Ezquerra-Brauer, A. Z. Graciano-Verdugo, F.Rodriguez-Felix, M. M. Castillo-Ortega, M. S. Yepiz-Gomez and M. Plascencia-Jatomea,Carbohydrate Polymers,2010,82,305-315.
    [13] M. Vargas, A. Albors, A. Chiralt and C. Gonzalez-Martinez, Food Hydrocolloids,2009,23,536-547.
    [14] Q. Wang, Z. F. Dong, Y. M. Du and J. F. Kennedy, Carbohydrate Polymers,2007,69,336-343.
    [15] Mika Iijima, Mariko Shinozaki, Tatsuko Hatakeyama, Carbohydrate Polymers,2007,68,701–707
    [16] Noda, S., Funami, T., Nakauma, M., Food Hydrocolloids,2008,22,1148–1159.
    [17] Tadashi Yoshida, Masato Takahashi, Tatsuko Hatakeyama, Polymers1998,39,1119.
    [18] Lee, K. Y.; Mooney, D. J. Chemical Reviews2001,101,1869.
    [19]Awad, H. A.; Butler, D. L.; Harris, M. T.; Ibrahim, R. E.; Wu, Y.; Young, R. G.; Kadiyala, S.; Boivin, G.P. Journal of Biomedical Materials Research2000,51,233.
    [20] Perka, C.; Schultz, O.; Spitzer, R.-S.; Lindenhayn, K.; Burmester, G.-R.; Sittinger, M. Biomaterials2000,21,1145.
    [21] Yanqing Li, Yinli Li, Yuhen Yao, Colloids and Surfaces B: Biointerfaces74(2009)136–139.
    [22] Sara A. DiBenedetto, Antonio Facchetti, Mark A. Ratner, Adv. Mater.2009,21,1407–1433
    [23] F. S. Ligler, B. M. Lingerfelt, R. P. Price and P. E. Schoen, Langmuir,2001,17,5082-5084.
    [1] Sandford, P., Chitosan: Commercial uses and potential applications.1989: p.51-69.
    [2] Thacharodi, D. and K.P. Rao, Development and in vitro evaluation of chitosan-basedtransdermal drug delivery systems for the controlled delivery of propranololhydrochloride. Biomaterials,1995.16(2): p.145-148.
    [3] Patel, V.R. and M.M. Amiji, Preparation and Characterization of Freeze-driedChitosan-Poly(Ethylene Oxide) Hydrogels for Site-Specific Antibiotic Delivery in the Stomach.Pharmaceutical Research,1996.13(4): p.588-593.
    [4] Risbud, M.V., et al., pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogelsas controlled release system for antibiotic delivery. Journal of Controlled Release,2000.68(1): p.23-30.
    [5] Makarand V. Risbud, R.R.B., Polyacrylamide-Chitosan Hydrogels: In VitroBiocompatibility and Sustained Antibiotic Release Studies. Drug Delivery,2000.7(2): p.69-75.
    [6] Gupta, K.C. and M.N.V.R. Kumar, Studies on semi-interpenetrating polymer network beads ofchitosan–poly(ethylene glycol) for the controlled release of drugs. Journal of Applied Polymer,Science,2001.80(4): p.639-649.
    [7] Magnin, D., et al., Physicochemical and structural characterization of a polyionicmatrix of interest in biotechnology, in the pharmaceutical and biomedical fields.Carbohydrate Polymers,2004.55(4): p.437-453.
    [8] Eugene, K., Chapter4-Biocompatibility Issues, in Chitin.2001, Elsevier Science Ltd: Oxford. p.55-62.
    [9] Funami, T., et al., Molecular structures of gellan gum imaged with atomic forcemicroscopy (AFM) in relation to the rheological behavior in aqueous systems in thepresence of sodium chloride. Food Hydrocolloids,2009.23(2): p.548-554.
    [10] Capron, I., S. Alexandre, and G. Muller, An atomic force microscopy study ofthe molecular organisation of xanthan. Polymer,1998.39(23): p.5725-5730.
    [11] Iijima, M., et al., AFM studies on gelation mechanism of xanthan gumhydrogels. Carbohydrate Polymers,2007.68(4): p.701-707.
    [12] Li, Y., et al., Two-dimensional scaffold layer formations on a solid surface throughxanthan polysaccharide: Temperature effect. Colloids and Surfaces B: Biointerfaces,2009.74(1): p.136-139.
    [13] Sworn, G., Handbook of hydrocolloids, chapter Xanthan gum. CRC Press,2000: p.103-115.
    [14] Jansson, P.E., L. Kenne, and B. Lindberg, Structure of extracellular polysaccharidefrom Xanthomonas campestris. Carbohydr Res,1975.45: p.275-82.
    [15] Melton, L.D., et al., Covalent structure of the extracellular polysaccharide from Xanthomonascampestris: evidence from partial hydrolysis studies. Carbohydr Res,1976.46(2): p.245-57.
    [16] Chellat, F.; Tabrizian, M.; Dumitriu, S.; Chornet, E.; Rivard, C. H.; Yahia, L. H. Journal of BiomedicalMaterials Research2000,53,592.
    [17] Magnin, D.; Lefebvre, J.; Chornet, E.; Dumitriu, S. Carbohydrate Polymers2004,55,437.
    [18] Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Eur J Pharm Biopharm2004,57,19.
    [19] Phaechamud, T.; Ritthidej, G. C. Drug Development and Industrial Pharmacy2007,33,595.
    [20] Michaels, A.S. and R.G. Miekka, The Journal of Physical Chemistry,1961.65(10): p.1765-1773.
    [1] Marcos, M.; Cano, P.; Fantazzini, P.; Garavaglia, C.; Gomez, S.; Garrido, L. Magnetic ResonanceImaging2006,24,89.
    [2] Lee, H.-W.; Yang, W.; Ye, Y.; Liu, Z.-r.; Glushka, J.; Yang, J. J. Biochimica et Biophysica Acta (BBA)-Proteins&Proteomics2002,1598,80.
    [3] Cai, W.; Wong, D.; Kinberger, G. A.; Kwok, S. W.; Taulane, J. P.; Goodman, M. Bioorganic Chemistry2007,35,327.
    [4] Zhao, Y.; Tanaka, M.; Kinoshita, T.; Higuchi, M.; Tan, T. Journal of Controlled Release2010,142,354.
    [5] Verma, D.; Katti, K. S.; Katti, D. R. Materials Science and Engineering: C2009,29,2079.
    [6] Iijima, M.; Shinozaki, M.; Hatakeyama, T.; Takahashi, M.; Hatakeyama, H. Carbohydrate Polymers2007,68,701.
    [7] Capron, I.; Alexandre, S.; Muller, G. Polymer1998,39,5725.
    [8] Binig G, Q. C., Gerber C Phys Rev Lett1986,56,930.
    [9] Guzmán, D. L.; Roland, J. T.; Keer, H.; Kong, Y. P.; Ritz, T.; Yee, A.; Guan, Z. Polymer2008,49,3892.
    [10] Harder, A.; Walhorn, V.; Dierks, T.; Fernàndez-Busquets, X.; Anselmetti, D. Biophysical Journal2010,99,3498.
    [11] Fisher, T. E.; Marszalek, P. E.; Fernandez, J. M. Nat Struct Biol2000,7,719.
    [12] Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Science1997,276,1109.
    [13] Lee, G. U.; Chrisey, L. A.; Colton, R. J. Science1994,266,771.
    [14] Liu, N. N.; Bu, T. J.; Song, Y.; Zhang, W.; Li, J. J.; Zhang, W. K.; Shen, J. C.; Li, H. B. Langmuir2010,26,9491.
    [15] Alexej Kedrov, Susanne Wegmann, Sander H.J. Smits, Journal of Structural Biology,2007,159,290–301
    [16] Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Science1997,275,1295.
    [17] Li, H. B.; Rief, M.; Oesterhelt, F.; Gaub, H. E.; Zhang, X.; Shen, J. C. Chem Phys Lett1999,305,197.
    [18] Xu, Q.; Zhang, W.; Zhang, X. Macromolecules2001,35,871.
    [19] Liu, C. J.; Wang, Z. Q.; Zhang, X. Macromolecules2006,39,3480.
    [20] Mingdong, D.; et al. Nanotechnology2008,19,384013.
    [21] Sandal, M.; Valle, F.; Tessari, I.; Mammi, S.; Bergantino, E.; Musiani, F.; Brucale, M.; Bubacco, L.;Samori, B. PLoS Biol2008,6, e6.
    [22] Li, H.; Rief, M.; Oesterhelt, F.; Gaub, H. E. Advanced Materials1998,10,316.
    [23] Govedarica, B.; Sovány, T.; Pintye-Hódi, K.; karabot, M.; Baumgartner, S.; Mu evi, I.; Sr i, S.European Journal of Pharmaceutics and Biopharmaceutics.
    [24] Capron, I.; Alexandre, S.; Muller, G. Polymer1998,39,5725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700