用户名: 密码: 验证码:
MFC脱氮产电性能及电导率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和人们生活水平的提高,排入自然界的氮素总量迅猛增加,破坏了自然界原有的氮素循环,导致氮素循环中间产物(主要为氨、亚硝酸盐和硝酸盐)积累,造成环境污染,危害人类及生态系统。硝化、反硝化和厌氧氨氧化在氮素循环中发挥着重要作用,以此为基础的硝化工艺、反硝化工艺和厌氧氨氧化工艺是废水生物脱氮的主要技术。过程控制是生物脱氮工艺高效运行的基础。生物脱氮过程伴随着离子种类和数量的改变,可导致反应液电导率的改变。因此,有望以电导率指示生物脱氮过程性能,辅助过程控制。氨是微生物燃料电池(MFC)的潜在能源,构建氨氧化微生物燃料电池(AO-MFC)和厌氧氨氧化微生物燃料电池(ANAMMOX-MFC),不但能够同时实现治污和产电,还有望通过MFC的电信号变化实时反映生物脱氮过程性能,为过程控制提供信息。鉴上所述,笔者考察了生物脱氮过程性能与电导率变化的关系,研发了AO-MFC和ANAMMOX-MFC,并研究了其脱氮产电性能,主要结论如下:
     1)建立了硝化、反硝化、厌氧氨氧化过程性能与离子强度及电导率变化的关系。研究结果表明:电导率与模拟废水的离子强度近似成正比,与主要成分浓度呈显著的线性关系;电导率能反映生物脱氮工艺容积负荷与容积效能、进水浓度与出水浓度的大小;电导率可用于指示生物脱氮过程性能的变化,也可用于辅助生物脱氮的过程控制。
     2)探明了反硝化过程电导率变化的原因。反硝化过程消耗N03-,同时生成相同电荷数的HC03或CO32-,理论上反应后不引起电导率降低。碱度衡算发现:反硝化中产生C032-可引起反硝化过程电导率变化;相同离子电荷数的Na2CO3溶液电导率明显小于NaNO3溶液;反硝化中产生的部分C032-与废水中的Ca2+反应形成CaC03沉淀,进一步降低反应液电导率。
     3)研发了氨氧化微生物燃料电池,探明了溶解氧(DO)对硝化和产电性能的影响及其机理。研究结果表明:AO-MFC的最大氨氮转化率为99.7%。稳定产电期的输出电压为98.5±1.41mV,功率密度为9.70±0.27mW m-2。在AO-MFC系统中,氨释放的电子分别流向氨单加氧酶(AMO)、 Cyt aa3氧化酶和电极,依次用于触发氨氧化、合成ATP和产生电流,分子氧控制着三者之间的电子分配。DO浓度过高或过低都会削弱产电性能。
     4)研发了厌氧氨氧化微生物燃料电池,探明了其脱氮和产电性能。研究结果表明:以厌氧氨氧化富集培养物(ANAMMOX Enrichment Culture, AEC)作为催化剂,以铵盐和亚硝酸盐作为反应基质,/ANAMMOX-MFC可成功产电。ANAMMOX-MFC容积负荷(NLRs)和容积去除速率(NRRs)分别为1.72-2.57kg N m-3d-1、1.64-2.38kg N m-3d-1,氨氮和亚硝氮去除率分别为88.9%-98.3%、88.7%-97.2%。随着基质浓度的提高,ANAMMOX-MFC工作电压从12.8mV逐步增大至131mV,其面积功率密度和体积功率密度分别从0.17mWm-2、1.08mWm-3上升至183mW m-2、115mW m-3。停止基质供给,ANAMMOX-MFC产电性能急剧下降,恢复基质供给,产电性能迅速恢复。/ANAMMOX-MFC产电性能易受阴极表面MnO2沉积所影响。
Greatly developed economy and improved quality of people's life have led to the rapid increase of nitrogen discharge into the nature. The natural balance of nitrogen cycle has been broken due to the accumulation of intermediate products in nitrogen cycle (such as ammonium, nitrite and nitrate), hence polluting the environment and threatening the security of human beings and ecosystem. Nitrification, denitrification and ANAMMOX play key roles in nitrogen cycle, and the nitrification process, denitrification process and ANAMMOX process based on these biological reactions are the main nitrogen removal processes. Process control is the basis of high performance of nitrogen removal processes. In the process of biological nitrogen removal from wastewater, the type and quantity of ions change as the reaction progresses, which further results in the variation of conductivity. Therefore, the conductivity can serve as an indicator that reflects the process performance and assists in the process control of biological nitrogen removal. Ammonium is the energy substance of nitrifiers and ANAMMOX bacteria, and ammonium oxidation can release electrons, for this reason, ammonia can be a potential fuel for MFC. With the development of MFCs which are based on ammonium oxidation or ANAMMOX, we can not only achieve the goal of simultaneous biological nitrogen removal and electricity generation, but also take the advantage of the electrical signal of MFC as an potential indicator to reflect the process performance of biological nitrogen removal. In this study, the relationship of process performances of biological nitrogen removal and conductivity variation was investigated, and MFCs which are based on ammonium oxidation and ANAMMOX were developed to investigate the performance of simultaneous biological nitrogen removal and electricity generation. Some innovative finding have been made as follows:
     1) The relationships between process performance of biological nitrogen removal and the variations of conductivity and ionic strength were investigated. The conductivity could be used as an indicator to reflect the volumetric loading and volumetric efficiency, as well as the concentrations of influent and effluent. The conductivity was a suitable parameter for the process performance variation and could assist process control of biological nitrogen removal.
     2) The reasons of conductivity variation in the process of denitrifiction was investigated. As NO3-was transformed to N2in denitrification, HCO3-or CO32-, which carried the same charge number as NO3-, were produced. Therefore it might not result in the conductivity variation. By investigating the alkalinity balance, the production of CO32-was found to be the main reason of conductivity variation in the process of denitrifiction. Firstly, the conductivity of Na2CO3solution was evidently smaller than that of the NaNO3solution which had the same ion charge number. Secondly, part of CO32-produced in denitrification could react with Ca2+in the wastewater which resulted in the formation of CaCO3precipitation, the conductivity was therefore further reduced.
     3) Based on inorganic fuel, an Ammonia-Oxidation Microbial Fuel Cell had been developed, and the influence and mechanism of dissolved oxygen (DO) on the performance of nitrification and electricity generation were investigated. The results showed that the maximum conversion percentage of ammonium-nitrogen (NH4+-N) was99.7%. The output voltage and the power density were98.5±1.41mV and9.70±0.27mW m-2in the stable phase of electricity generation. In the AO-MFC,the electrons originated from ammonia and flowed to ammonia monooxygenase (AMO, which catalyzes the conversion of ammonia to hydroxylamine),Cyt aa3oxidase (which catalyzes the reduction of oxygen) and electrode, which were used for triggering ammonia oxidation, synthesizing ATP and generating electricity. Molecular oxygen played a key role in the electron distribution among these three acceptors.DO concentration too high (>6.45mg L-1) or too low (<0.5mg L-1) could exert a great negative influence on the performance of electricity generation.4) An ANAMMOX-MFC based on anaerobic ammonium oxidation was developed, and its nitrogen removal and electricity production performance was tested. The results showed as follows:with ammonium and nitrite as substrates and ANAMMOX Enrichment Culture (AEC) as catalyst, the ANAMMOX-MFC could generate electricity. The volumetric nitrogen loading rates (NLRs) and volumetric nitrogen removal rates (NRRs) were1.72-2.57kg m-3d-1and1.64-2.38kg m-3d-1respectively, and most of the ammonium (88.9%-98.3%) and the nitrite (88.7%-97.2%) were removed. With the increasing substrates concentration, the output voltage of ANAMMOX-MFC went up from12.8mV to131mV, and the power density increased from0.17mW m-2(1.08mW m-3) to18.3mW m-2(115mW m-3). The output voltage dropped sharply after the breakoff of substrate supply, but once the substrate supply continued, its power generation performance recovered. The performance of electricity generation were found to be greatly influenced by the MnO2deposition on the cathode surface.
引文
[1]Lovley DR. Bug juice:Harvesting electricity with microorganisms[J]. Nature Reviews/Microbiology.2006,4:497-508.
    [2]Logan BE. Microbial fuel cells[M]. Hoboken, New Jersey, USA:John Wiley&Sons, Inc,2007.
    [3]Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology.2010,101(6):1533-1543.
    [4]Logan BE, Hamelers B, Rozendal RA, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology.2006,40(17): 5181-5192.
    [5]Potter MC. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London Series B-Containing Papers of A Biological Character.1911,84(571):260-276.
    [6]Cohen B. Thirty-second annual meeting of the society of american bacteriologists[J]. Journal of Bacteriology.1931,21(1):1-60.
    [7]Khera J, Chandra A. Microbial fuel cells:Recent trends[J]. Proceedings of the National Academy of Sciences India Section a-Physical Sciences.2012,82(1): 31-41.
    [8]Lewis K. Symposium on bioelectrochemistry of microorganisms.4. Biochemical fuel cells[J]. Bacteriological Reviews.1966,30(1):101-113.
    [9]Kim BH, Kim HJ, Hyun MS, et al. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens[J]. Journal of Microbiology and Biotechnology.1999,9(2):127-131.
    [10]Du ZW, Li HR, Gu TY. A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances.2007,25(5):464-482.
    [11]Logan BE. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews/Microbiology.2009,7:375-381.
    [12]Rabaey K, Verstraete W. Microbial fuel cells:Novel biotechnology for energy generation[J]. Trends in Biotechnology.2005,23(6):291-298.
    [13]Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology.2006,14(12):512-518.
    [14]Lovley DR. Microbial fuel cells:Novel microbial physiologies and engineering approaches[J]. Current Opinion in Biotechnology.2006,17(3):327-332.
    [15]Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe(Ⅲ) and graphite electrodes [J]. Applied and Environmental Microbiology.2004,70(2):1234-1237.
    [16]He Z, Kan JJ, Wang YB et al. Electricity production coupled to ammonium in a microbial fuel cell[J]. Environmental Science & Technology.2009,43(9): 3391-3397.
    [17]Schaetzle O, Barriere F, Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells:Electron transfer from micro-organisms to electrodes for green electricity [J]. Energy & Environmental Science.2008,1(6):607-620.
    [18]Yuan Y, Chen Q, Zhou SG et al. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell[J]. Journal of Hazardous Materials.2011,187(1-3):591-595.
    [19]Abrevaya XC, Sacco N, Mauas PJD et al. Archaea-based microbial fuel cell operating at high ionic strength conditions [J]. Extremophiles.2011,15(6): 633-642.
    [20]李颖,孙永明,孔晓英,等.微生物燃料电池中产电微生物的研究进展[J].微生物学通报.2009,36(09):1404-1409.
    [21]Liu M, Yuan Y, Zhang L-x et al. Bioelectricity generation by a Gram-positive Corynebacterium sp strain MFC03 under alkaline condition in microbial fuel cells[J]. Bioresource Technology.2010,101(6):1807-1811.
    [22]McGrath JE, Harfoot CG. Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas[J]. Applied and Environmental Microbiology.1997,63(8):3333-3335.
    [23]Logan BE, Zuo Y, Xing DF et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell[J]. Applied and Environmental Microbiology.2008,74(10):3130-3137.
    [24]Borole AP, O'Neill H, Tsouris C et al. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum[J]. Biotechnology Letters.2008, 30(8):1367-1372.
    [25]Kodama Y, Watanabe K. Rhizomicrobium electricum sp nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell[J]. International Journal of Systematic and Evolutionary Microbiology.2011,61(8):1781-1785.
    [26]Rabaey K, Van de Sompel K, Maignien L et al. Microbial fuel cells for sulfide removal[J]. Environmental Science & Technology.2006,40(17):5218-5224.
    [27]Tomashevskaia LG, Alferov SV, Tomashevskii AA et al. Power characteristics of the microbial fuel cell based on Gluconobacter cell suspension and 2,6-dichlorophenolindophenol as the electron transport mediator[M]. Hauppauge:Nova Science Publishers, Inc,2008.
    [28]Finneran KT, Johnsen CV, Lovley DR. Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)[J]. International Journal of Systematic and Evolutionary Microbiology.2003,53(3):669-673.
    [29]Chopra AK, Xu XJ, Ribardo D et al. The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages[J]. Infection and Immunity.2000, 68(5):2808-2818.
    [30]Rabaey K, Boon N, Siciliano SD et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology.2004,70(9):5373-5382.
    [31]Zhang T, Zhang L, Su W et al. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells[J]. Bioresource Technology.2011, 102(14):7099-7102.
    [32]Myers CR, Nealson KH. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(iv) and iron(iii) in Shewanella putrefaciens MR-1[J]. Journal of Bacteriology.1990,172(11):6232-6238.
    [33]Liang P, Wang H-Y, Huang X et al. Influence of environmental factors on electricity production by microbial fuel cell inoculation Shewanella baltica[J]. Environmental Science.2009,30(7):2148-2152.
    [34]Newton GJ, Mori S, Nakamura R et al. Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells[J]. Applied and Environmental Microbiology.2009, 75(24):7674-7681.
    [35]Huang J, Sun B, Zhang X. Electricity generation at high ionic strength in microbial fuel cell by a newly isolated Shewanella marisflavi EP1[J]. Applied Microbiology and Biotechnology.2010,85(4):1141-1149.
    [36]Biffinger JC, Fitzgerald LA, Ray R et al. The utility of Shewanella japonica for microbial fuel cells[J]. Bioresource Technology.2011,102(1):290-297.
    [37]Yang Y, Sun G, Guo J et al. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions[J]. Bioresource Technology.2011,102(14):7093-7098.
    [38]McKinlay JB, Zeikus JG. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli[J]. Applied and Environmental Microbiology.2004,70(6):3467-3474.
    [39]Delaney GM, Bennetto HP, Mason JR et al. Electron-transfer coupling in microbial fuel-cells.2. performance of fuel-cells containing selected microorganism mediator substrate combinations[J]. Journal of Chemical Technology and Biotechnology.1984,34(1):13-27.
    [40]Xu S, Liu H. New exoelectrogen Citrobacter sp SX-1 isolated from a microbial fuelcell[J]. Journal of Applied Microbiology.2011,111(5):1108-1115.
    [41]Rezaei F, Xing D, Wagner R et al. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell[J]. Applied and Environmental Microbiology.2009,75(11):3673-3678.
    [42]Zhang J-T, Zhou S-G, Zhang L-X et al. Mechanisms of bioelectricity generation in Enterobacter aerogenes-based microbial fuel cells[J]. Environmental Science.2009,30(4):1215-1220.
    [43]Vega CA, Fernandez I. Mediating effect of ferric chelate compounds in microbial fuel-cells with Lactobacillus plantatarum, Streptococcus lactis, and Erwinia dissolvens[J]. Bioelectrochemistry and Bioenergetics.1987,17(2): 217-222.
    [44]Zhang L, Zhou S, Zhuang L et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochemistry Communications.2008,10(10): 1641-1643.
    [45]Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes [J]. Applied and Environmental Microbiology.2003, 69(3):1548-1555.
    [46]Ratledge C, Kristiansen B, eds. Basic biotechnology[M]. UK:Cambridge University Press,2001,531-557.
    [47]Holmes DE, Nicoll JS, Bond DR et al. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell[J]. Applied and Environmental Microbiology.2004,70(10):6023-6030.
    [48]Bond DR, Holmes DE, Tender LM et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science.2002,295(5554): 483-485.
    [49]Cooney MJ, Roschi E, Marison IW et al. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans:Evaluation for use in a biofuel cell[J], Enzyme and Microbial Technology.1996,18(5):358-365.
    [50]Fedorovich V, Knighton MC, Pagaling E et al. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell[J]. Applied and Environmental Microbiology.2009,75(23): 7326-7334.
    [51]Park HS, Kim BH, Kim HS et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell[J]. Anaerobe.2001,7(6):297-306.
    [52]Niessen J, Schroder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch[J]. Electrochemistry Communications.2004,6(9):955-958.
    [53]Finch AS, Mackie TD, Sund CJ et al. Metabolite analysis of Clostridium acetobutylicum:Fermentation in a microbial fuel cell[J]. Bioresource Technology.2011,102(1):312-315.
    [54]Zhu L, Chen H, Huang L et al. Electrochemical analysis of Clostridium propionicum and its acrylic acid production in microbial fuel cells [J]. Engineering in Life Sciences.2011,11(3):238-244.
    [55]Wrighton KC, Agbo P, Warnecke F et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells[J]. Isme Journal. 2008,2(11):1146-1156.
    [56]Rabaey K, Boon N, Hofte M et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology. 2005,39(9):3401-3408.
    [57]Nimje VR, Chen C-Y, Chen C-C et al. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell[J]. Journal of Power Sources. 2009,190(2):258-263.
    [58]Bond DR, Lovley DR. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans[J]. Applied and Environmental Microbiology.2005,71(4):2186-2189.
    [59]Berchmans S, Prasad D, Arun S et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors & Bioelectronics.2007,22(11):2604-2610.
    [60]Siu CPB, Chiao M. A microfabricated PDMS microbial fuel cell[J]. Journal of Microelectromechanical Systems.2008,17(6):1329-1341.
    [61]Baronian KHR, Haslett ND, Rawson FJ et al. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst[J]. Biosensors & Bioelectronics.2011,26(9):3742-3747.
    [62]Prasad D, Arun S, Murugesan A et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors & Bioelectronics.2007,22(11):2604-2610.
    [63]Sharma V, Kundu PP. Biocatalysts in microbial fuel cells[J]. Enzyme and Microbial Technology.2010,47(5):179-188.
    [64]Michael TM, John MM, David AS et al. Brock biology of microorganisms. 20th ed[M]. San Francisco:Pearson Education, Inc,2010.
    [65]George MG, ed. Bergey's mannual of systematic bacteriology.2nd ed[M]. Volume One, ed. David RB and Richard WC. New York:Springer-Verlag New York, Inc,2001.
    [66]George MG, ed. Bergey's mannual of systematic bacteriology.2nd ed[M]. Volume Two, ed. Don JB, Noel RK, and James TS. New York: Springer-Verlag New York, Inc,2001.
    [67]Aidan C P, ed. Bergey's mannual of systematic bacteriology.2nd ed[M]. Volume Three, ed. Paul DV, et al. New York:Springer-Verlag New York, Inc, 2001.
    [68]Aidan C P, ed. Bergey's mannual of systematic bacteriology.2nd ed[M]. Volume Four, ed. Noel RK, et al. New York:Springer-Verlag New York, Inc, 2001.
    [69]郑平.环境微生物学[M].杭州:浙江大学出版社,2002.
    [70]Chirag KS, Yagnik BN. Bioelectricity Production using microbial fuel cell[J]. Research Journal of Biotechnology.2013,8(3):84-90.
    [71]Gralnick JA, Newman DK. Extracellular respiration[J]. Molecular Microbiology.2007,65(1):1-11.
    [72]Lower BH, Hochella MF, Lower SK. Putative mineral-specific proteins synthesized by a metal reducing bacterium[J]. American Journal of Science. 2005,305(6-8):687-710.
    [73]Hartshorne RS, Reardon CL, Ross D et al. Characterization of an electron conduit between bacteria and the extracellular environment[J]. Proceedings of the National Academy of Sciences of the United States of America.2009, 106(52):22169-22174.
    [74]Schicklberger M, Bucking C, Schuetz B et al. Involvement of the Shewanella oneidensis decaheme cytochrome MtrA in the periplasmic stability of the beta-barrel protein MtrB[J]. Applied and Environmental Microbiology.2011, 77(4):1520-1523.
    [75]Shi L, Chen BW, Wang ZM et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC:Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1[J]. Journal of Bacteriology.2006, 188(13):4705-4714.
    [76]Baron D, LaBelle E, Coursolle D et al. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1[J]. Journal of Biological Chemistry.2009,284(42):28865-28873.
    [77]Butler JE, Young ND, Lovley DR. Evolution of electron transfer out of the cell: Comparative genomics of six Geobacter genomes[J]. BMC Genomics.2010, 11:40.
    [78]Yang YG, Xu MY, Guo J et al. Bacterial extracellular electron transfer in bioelectrochemical systems[J]. Process Biochemistry.2012,47(12): 1707-1714.
    [79]Lovley DR. The microbe electric:Conversion of organic matter to electricity[J]. Current Opinion in Biotechnology.2008,19(6):564-571.
    [80]Stams AJM, de Bok FAM, Plugge CM et al. Exocellular electron transfer in anaerobic microbial communities[J]. Environmental Microbiology.2006,8(3): 371-382.
    [81]Inoue K, Leang C, Franks AE et al. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens[J]. Environmental Microbiology Reports.2011, 3(2):211-217.
    [82]Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in Anaerobic Respiration[J]. Applied and Environmental Microbiology.2012,78(4):913-921.
    [83]Reguera G, McCarthy KD, Mehta T et al. Extracellular electron transfer via microbial nanowires[J]. Nature.2005,435(7045):1098-1101.
    [84]Watanabe K, Manefield M, Lee M et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology.2009,20(6):633-641.
    [85]Marsili E, Baron DB, Shikhare ID et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America.2008,105(10): 3968-3973.
    [86]Bock E, Schmidt I, Stuven R et al. Nitrogen loss caused by Denitrifying nitrosomonas cells using ammonium or hydrogen as electron-donors and nitrite as electron-acceptor[J]. Archives of Microbiology.1995,163(1):16-20.
    [87]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [88]Thamdrup B. New pathways and processes in the global nitrogen cycle[J]. Annual Review of Ecology, Evolution, and Systematics.2012,43:407-428.
    [89]Min B, Kim JR, Oh SE et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research.2005,39(20):4961-4968;
    [90]Kim JR, Zuo Y, Regan JM et al. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater [J]. Biotechnology and Bioengineering.2008,99(5):1120-1127.
    [91]Zhan GQ, Zhang LX, Li DP et al. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell[J]. Bioresource Technology.2012,116:271-277.
    [92]Faraghi N, Ebrahimi S. Nitrite as a candidate substrate in microbial fuel cells[J]. Biotechnology Letters.2012,34(8):1483-1486.
    [93]Blake RC, Howard GT, McGinness S. Enhanced yields of iron-oxidizing bacteria by in-situ electrochemical reduction of soluble iron in the growth-medium[J]. Applied and Environmental Microbiology.1994,60(8): 2704-2710.
    [94]Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology.2004,6(6):596-604.
    [95]Clauwaert P, Rabaey K, Aelterman P et al. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology.2007,41(9): 3354-3360.
    [96]Chen GW, Choi SJ, Lee TH et al. Application of biocathode in microbial fuel cells:Cell performance and microbial community[J]. Applied Microbiology and Biotechnology.2008,79(3):379-388.
    [97]Virdis B, Rabaey K, Yuan Z et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water Research.2008,42(12):3013-3024.
    [98]Virdis B, Rabaey K, Rozendal RA et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research. 2010,44(9):2970-2980.
    [99]Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization[J]. Applied and Environmental Microbiology.2004,70(3):1641-1650.
    [100]Yamanaka T, Shinra M. Cytochrome c552 and cytochrome c554 derived from Nitrosomonas europaea:Purification, properties, and their function in hydroxylamine oxidation[J]. Journal of Biochemistry.1974,75(6):1265-1273.
    [101]Dworkin M, Falkow S, Rosenberg E et al, eds. The Prokaryotes.3rd ed[M]. New York:Springer Science+Business Media, LLC,2006.
    [102]Aleem MIH. Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1968,162(3):338-347.
    [103]Aleem MIH, Sewell DL. Mechanism of nitrite oxidation and oxidoreductase-systems in Nitrobacter agilis[J]. Current Microbiology.1981, 5(5):267-272.
    [104]Yamanaka T, Yoshikazu T, Yoshihiro F. Nitrobacter agilis cytochrome c550: Isolation, physicochemical and enzymatic properties and primary structure[J]. Plant & Cell Physiology.1982,23(3):441-449.
    [105]Balows A, Trueper HG, Dworkin M et al., eds. The Proaryotes[M]. Berlin: Springer Verlag,1992.
    [106]Szatkowska B, Trela J, Plaza E. Partial nitritation/ANAMMOX and CANON nitrogen removal systems followed by conductivity measurements [A]. Integration and optimisation of urban sanitation systems[C]. Stockholm: Swedish seminars,2005,109-117.
    [107]Gut L, Plaza E, Trela J et al. Combined partial nitritation/ANAMMOX system for treatment of digester supernatant[J]. Water Science and Technology. 2006,53(12):149-159.
    [108]Xie Z, Chen H, Zheng P et al. Influence and mechanism of dissolved oxygen on the performance of ammonia-oxidation microbial fuel cell[J]. International Journal of Hydrogen Energy.2013,38(25):10607-10615.
    [109]陈建伟,郑平,丁爽,等.高效气升循环式短程硝化工艺性能[J].化工学报.2010,61(03):740-746.
    [110]Wang L, Zheng P, Chen TT et al. Performance of autotrophic nitrogen removal in the granular sludge bed reactor[J]. Bioresource Technology.2012, 123:78-85.
    [111]APHA. Standard methods for the examination of water and wastewater.12th ed[M]. Washington DC, USA:American Public Health Association,1998.
    [112]张吉强,郑平,张萌,等.AD-MFC中甲醇与硝酸盐的偶合过程与作用机制[J].化工学报.2013,09(64):3404-3411.
    [113]厉巍,郑平,谢作甫,等.高效反硝化分段组合式反应器运行性能[J].化工学报.2013,64(04):1276-1282.
    [114]Li W, Zheng P, Wang L et al. Physical characteristics and formation mechanism of denitrifying granular sludge in high-load reactor[J]. Bioresource Technology.2013,142:683-687.
    [115]Van Langerak EPA, Gonzalez-Gil G, Van Aelst A et al. Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors[J]. Water Research.1998,32(4): 1255-1263.
    [116]Li W, Zheng P, Guo J et al. Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate[J]. Bioresource Technology.2014,154:44-50.
    [117]van de Graaf AA, Mulder A, Debruijn P et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology.1995,61(4):1246-1251.
    [118]Strous M, Fuerst JA, Kramer EHM et al. Missing lithotroph identified as new planctomycete[J]. Nature.1999,400(6743):446-449.
    [119]van der Star WRL, Abma WR, Blommers D et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale ANAMMOX reactor in Rotterdam[J]. Water Research.2007,41(18): 4149-4163.
    [120]Gerardi MH. Nitrification and denitrification in the activated sludge process[M]. New York:John Wiley,2002.
    [121]Jetten MSM, Wagner M, Fuerst J et al. Microbiology and application of the anaerobic ammonium oxidation ('ANAMMOX') process[J]. Current Opinion in Biotechnology.2001,12(3):283-288.
    [122]Jetten MSM, van Niftrik L, Strous M et al. Biochemistry and molecular biology of ANAMMOX bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology.2009,44(2-3):65-84.
    [123]Strous M, Heijnen JJ, Kuenen JG et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology.1998,50(5): 589-596.
    [124]van Niftrik L, Geerts WJC, van Donselaar EG et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan, glycogen storage, and localization of cytochrome c proteins [J]. Journal of Bacteriology.2008,190(2):708-717.
    [125]Trigo C, Campos JL, Garrido JM et al. Start-up of the ANAMMOX process in a membrane bioreactor[J]. Journal of Biotechnology.2006,126(4):475-487.
    [126]Strous M, Kuenen JG, Jetten MSM. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology.1999,65(7): 3248-3250.
    [127]Dapena-Mora A, Fernandez I, Campos JL et al. Evaluation of activity and inhibition effects on ANAMMOX process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology.2007,40(4):859-865.
    [128]Wiesmann U. Biological nitrogen removal from wastewater[J]. Biotechnics/Wastewater.1994,51:113-154.
    [129]Duce R, LaRoche J, Altieri K et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science.2008,320(5878):893-897.
    [130]EPA. Nitrogen control[M]. Washington (DC):US EPA,1993.
    [131]Schmidt I, Sliekers O, Schmid M et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews.2006,27(4):481-492.
    [132]Zheng P, Lin F-m, Hu B-1 et al. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge[J]. Journal of Environmental Sciences-China.2004,16(1):13-16.
    [133]Zheng P, Lin F-m, Hu B-1 et al. Performance of ANAMMOX granular sludge bed reactor started up with nitrifying granular sludge[J]. Journal of Environmental Sciences-China.2004,16(2):339-342.
    [134]Tang C-j, Zheng P, Mahmood Q. The shear force amendments on the slugging behavior of upflow ANAMMOX granular sludge bed reactor[J]. Separation and Purification Technology.2009,69(3):262-268.
    [135]Chen J, Zheng P, Yu Y et al. Promoting sludge quantity and activity results in high loading rates in ANAMMOX UBF[J]. Bioresource Technology.2010, 101(8):2700-2705.
    [136]Tang C-J, Zheng P, Hu B-L et al. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels[J]. Journal of Hazardous Materials.2010,181(1-3):19-26.
    [137]Ellis TG. Encyclopedia of life support system (EOLSS):Chemistry of wastewater[M]:UK:Oxford,2004.
    [138]Hamelers HVM, Rozendal RA, Buisman CJN. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environmental Science & Technology.2006,40(17):5206-5211.
    [139]Tang CJ, Zheng P, Wang CH et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research.2011,45(1): 135-144.
    [140]Hu BL, Zheng P, Tang CJ et al. Identification and quantification of ANAMMOX bacteria in eight nitrogen removal reactors[J]. Water Research. 2010,44(17):5014-5020.
    [141]詹亚力.高锰酸钾作阴极的微生物燃料电池[J].高等学校化学学报.2008,29(3):559-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700