用户名: 密码: 验证码:
葛根素的吸收动力学及对脑缺血损伤的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葛根素是一种多羟基黄酮类化合物,是临床治疗心脑血管病的常用药物之一。葛根素是P-gp的底物,这是造成其跨膜透过性低的重要原因之一。该药物口服吸收差,目前主要通过静脉注射给药,但葛根素注射剂具有较为严重的不良反应,临床应用受限。为了解决其口服生物利用度低的问题,有必要对P-gp抑制剂促进葛根素口服吸收的生物因素进行研究。但是传统的P-gp抑制剂如普罗帕酮、维拉帕米等具有严重的毒副作用(如心脏毒性),为寻求高效、低毒的P-gp抑制剂和有效地提高葛根素的口服吸收利用率,本论文对槲皮素(一种葛根素的结构类似物和P-gp抑制剂)影响葛根素的肠道吸收作用进行了系统研究。此外,还考察了其对葛根素跨膜分布于脑组织的影响,并初步探讨了葛根素保护缺血脑损伤的作用机制。
     利用大鼠离体肠囊外翻模型,观察槲皮素对葛根素从外翻肠囊黏膜侧到浆膜侧跨膜转运量的变化(吸收作用)和由浆膜侧向黏膜侧进行转运的量变过程(外排作用),并对组间计量资料进行统计学处理和分析。结果发现:①在缺乏P-gp抑制剂影响下,十二指肠、空肠和回肠段对葛根素的透膜吸收作用无明显差异,由于回肠的P-gp表达量最多,故选择回肠段作为评价不同P-gp抑制剂对小肠吸收葛根素和外排葛根素的影响;②吸收试验表明,维拉帕米和槲皮素于药后10min均可明显提高单位面积的葛根素累积吸收量(P<0.01),且各药物组对葛根素的吸收量均随时间延长而明显增加,作用一直延至药后120min。槲皮素高剂量对葛根素的透膜吸收作用明显强于阳性组维拉帕米,药后40min—120min两组比较均有显著意义(P<0.05),槲皮素对葛根素的促吸收作用具有一定的量效关系;③外排试验表明,从0-120min各组的浆膜侧葛根素浓度均随时间延长而明显减少,药后30min各药物组在各取样时间点均可明显增加浆膜侧的葛根素含量,抑制P-gp120min后,阳性组对单位面积葛根素外排剩余量提高率为138.79%,槲皮素高、中、低剂量组的提高率分别为219.06%、107.29%和60.43%。槲皮素高剂量的外排抑制作用强于维拉帕米(P<0.01),槲皮素对葛根素的外排抑制作用具有一定的量效关系;④葡萄糖吸收试验表明,0→120min内,肠浆膜侧内液具有明显的逆浓度差聚集葡萄糖的作用,均达3倍以上,证明所用的实验肠段具备组织完整性和生理活性。上述研究结果表明,槲皮素具有通过抑制P-gp而促进葛根素的肠道吸收作用。
     采用大鼠在体回肠单向灌流模型和重量法,进一步计算和表征葛根素的吸收百分率Pa%、吸收速率常数Ka值和表观吸收系数Peff值等相关肠道吸收速率和渗透性参数,结果发现:①葛根素在肠灌流液中6h内保持良好的稳定性,提示实验时程内进行葛根素含量测定其质量稳定可控;②各实验组的灌流出口液葛根素浓度与灌流进口液葛根素浓度之比(Cout/Cin)在取样的135min内基本保持一致,各组的组内净水流量NWF值均无显著差异,提示取样前的灌流平衡时间可使肠道的药物吸收及水分吸收达到平衡状态;③维拉帕米和槲皮素均可显著提高Ka、Peff和Pa%值(P<0.01),槲皮素高剂量的作用强于维拉帕米(P<0.01),槲皮素的作用具有一定的量效关系;④根据灌流液校正密度计算所得的Pa%、Ka、Peff值对于低吸收率药物,影响较大,为减少实验结果的系统误差,有必要对灌流进出液的密度进行修正。上述研究结果表明,槲皮素具有通过抑制P-gp而提高葛根素的肠道吸收速率和渗透性的作用。
     以小鼠整体动物实验结合前述的体外法和原位实验模型法对葛根素的肠道吸收作用进行初步体内评价。结果发现:①灌胃给予葛根素后其血药浓度经时变化规律符合二室模型,t1/2Ka=5.565±5.094min,Ka=0.152±0.084min-1;②与阴性组比较,维拉帕米和槲皮素组均具有明显增大吸收分数F值和显著增加AUC值的作用,分别将AUC(0-t)提高了33.03%和156.46%,将AUC(0-∞)提高了37.04%和164.27%,还分别将AUC(0-Tmax)提高了38.57%和110.28%,槲皮素组的AUC(0-t)、AUC(0-∞)和AUC(0-Tmax)均明显高于维拉帕米组(P<0.01);③槲皮素组对MRT(0-t)和MRT(0-∞)分别提高了23.60%和40.24%,作用强于维拉帕米组;④槲皮素组的Tmax与阴性组比较无显著意义,两者均大于维拉帕米组;⑤维拉帕米组和槲皮素组将Cmax分别提高了48.39%和50.26%(P<0.01);⑥统计矩所得参数与房室模型的相应参数相近,差异均无显著性意义。上述研究结果表明,葛根素口服吸收比较快,维拉帕米和槲皮素通过抑制P-gp均可明显提高葛根素的AUC值,槲皮素还可延长MRT值。
     以大鼠整体动物模型进一步评价葛根素在不同剂量条件下的体内吸收药动学特征,并重点考察P-gp泵抑制剂对其吸收作用的影响,结果发现:①灌胃给药后,低剂量葛根素和高剂量葛根素的体内吸收药动学特征近似,血药浓度经时变化规律均符合二室模型,低剂量组的t1/2Ka=19.511±3.268 min,Ka=0.036±0.006min-1,高剂量组的t1/2Ka=19.956±1.737 min,Ka=0.035±0.003min-1;②维拉帕米和槲皮素组均具有明显增大吸收分数F值和显著增加AUC值的作用。维拉帕米组分别将低、高剂量葛根素的房室模型AUC(0-t)提高了11.22%和49.76%,将AUC(0-∞)提高了17.58%和41.01%;槲皮素组分别将AUC(0-t)提高了22.31%和57.46%,将AUC(0-∞)提高了9.72%和46.07%,槲皮素还可延长MRT值;维拉帕米和槲皮素组分别将小剂量葛根素(5mg/kg)的AUC(0-Tmax)提高92.09%和198.64%(P<0.01),两组还分别将大剂量葛根素(10mg/kg)的AUC(0-Tmax)提高127.61%和69.96%(P<0.05)。统计矩所得参数与房室模型的相应参数相近。③对于低剂量或高剂量葛根素,维拉帕米和槲皮素对其AUC/D比值均有提高作用,槲皮素组的比值大于维拉帕米组。维拉帕米和槲皮素对高剂量葛根素AUC/D比值的增加值(对阴性组)均分别明显高于二者对低剂量葛根素的增加值,增加2-6.5倍不等。上述研究结果表明:不同剂量葛根素在肠道吸收比较快,其吸收药动学特征相似;相同浓度的同一种P-gp泵抑制剂对高剂量葛根素吸收的提高率明显大于其对低剂量葛根素吸收的提高率。这可能与大鼠小肠黏膜上局部的P-gp泵密度有限,当被P-gp泵抑制剂显著抑制后,其对高浓度底物(葛根素)的外排相对量比低浓度底物小,故导致高浓度底物相对较多比例被吸收,提示选择P-gp泵抑制剂与底物的恰当比例对促进药物的更好吸收具有重要的意义。
     采用小鼠模型观察P-gp抑制剂对葛根素跨膜进入脑组织的影响,结果发现:①葛根素与维拉帕米或槲皮素配伍用药时,维拉帕米组低、高剂量组分别将脑组织的葛根素含量提高28.65%和246.56%,槲皮素组低、高剂量组则分别提高106.67%和363.82%;②维拉帕米和槲皮素促葛根素的透膜作用均具有一定的量效关系,槲皮素的作用强于维拉帕米。上述研究结果表明,维拉帕米和槲皮素通过抑制P-gp而提高葛根素在脑组织的分布量,这为葛根素与P-gp抑制剂配伍使用以提高其防治脑血管病效果提供了药动学依据。
     通过闭夹大脑中动脉制作局部特定区域急性脑缺血大鼠模型及缺血再灌注损伤模型,观察葛根素对大鼠急性脑缺血及缺血再灌注损伤后HSP70蛋白及Fas蛋白表达的影响,探讨葛根素保护脑缺血损伤的作用机制。结果发现:①葛根素对急性缺血性损伤的保护作用可能主要通过上调HSP70蛋白的表达而实现,与Fas蛋白的表达及细胞凋亡等相关不强;②葛根素对脑缺血再灌注损伤的保护作用除与上调HSP70表达相关外,还可能与其下调Fas蛋白的表达和减少细胞凋亡有关。结果表明,葛根素对急性脑缺血及缺血再灌注所致的脑细胞损伤均有保护作用,其保护作用机制在急性缺血性损伤期及再灌注损伤期可能因其损伤机理不同而有所不同。
     综上所述,槲皮素可通过抑制P-gp泵的外排作用而提高葛根素的肠道吸收速率和渗透性,促进其肠道吸收,使AUC值明显增加,从而证明槲皮素是一种高效、低毒的P-gp抑制剂,可显著提高葛根素的口服生物利用度;进一步研究发现,相同浓度的同一种P-gp泵抑制剂对高剂量葛根素吸收的提高率明显大于其对低剂量葛根素吸收的提高率,提示选择P-gp泵抑制剂与底物的恰当比例对促进药物的更好吸收具有重要的意义。此外,槲皮素还可抑制脑部的P-gp进而提高葛根素在脑组织中的分布。药效学研究表明,葛根素可通过上调HSP70蛋白的表达和下调Fas蛋白的表达而对脑缺血损伤起保护作用,但其保护作用机制在急性缺血性损伤期及再灌注损伤期可能因其损伤机理不同而有所不同。
Puerarin belongs to a member of flavanoid family with polyhydroxy and can be highly effective against angiocardiopathy and cerebrovascular diseases with properties of holding pharmacokinetics of rapid absorption from the intestine and presenting in brain organ tissue across the blood brain barrier. Puerarin is a substrate of p-glycoprotein (P-gp), which is a leading cause for low permeability across intestine mucous membrane and responsible for its poor oral bioavailability due to the excretion action of p-glycoprotein from serosal to mucosal in the intestine. Intravenous injection of puerarin was widely used for clinical treatment, but it caused many severe adverse reactions and had been limited to use in clinic. To solve this problem, it is necessary to study the biological impact factors on improving oral bioavailability of puerarin by inhibition of p-glycoprotein. The traditional P-gp inhibitors may lead to various toxic effects on the patients, e.g. propafenone and verapamil damage to the heart. In order to develop an efficient but low toxic P-gp inhibitor to improve oral bioavailability of puerarin, the present paper broadly explored the effects of quercetin (another member of flavanoid family) on improving oral bioavailability of puerarin by inhibition of intestinal P-gp and on the distribution of puerarin to the brain tissue and the protecting mechanism of puerarin on the brain neurocytes of rats after ischemia brain injuries.
     The intestinal absorption and excretion of puerarin on the influence of the p-glycoprotein inhibitors, quercetin and verapamil were observed using rat intestinal everted gut sac in vitro. The results indicated that the three intestine segments of duodenum, jejunum and ileum had no difference in the absorption rate of puerarin without the action of any the p-glycoprotein inhibitor. Considering that the expression of p-glycoprotein in rat intestine is the highest in the ileum among the three intestine segments, we selected it as the abserved segment in our experiment of intestinal everted gut sac in vitro. Puerarin was absorbed greatly from mucosal to serosal and excreted less from serosal to mucosal in the ileum in the presence of quercetin or verapamil. The elevating percentages were 219.06%、107.29% and 60.43% in quercetin groups with high, middle and low doses, and 138.79% in verapamil group respectively. These actions were greater in the quercetin group with high dose than those in the verapamil group (P<0.01). Meanwhile these actions were observed with a dose-effect relationship in the quercetin groups.
     The test results of intestinal absorption of glucose showed that glucose concentration accumulated in serosal side were over 3-fold higher than that in mucosal side during the testing time course of 120min. This indicated that the testing intestinal segments were intact and active physiologically with the function of accumulation of glucose against its concentration.
     Absorption rate constant(Ka), effective permeability (Peff) and absorption rate(Pa%) of puerarin in each group were calculated using rat intestinal perfusion in situ model and gravimetric method. The results showed that the perfused solution dissolved with puerarin was stable with 6h, indicating that determination of puerarin was under qualified control during the testing time course, and that the values of Cout/Cin and NWF had no difference among the collecting time points in each group, which indicated that drug absorption and water absorption rates had reached equilibrium state after pre-perfusion for 1h. The parameters of Ka, Peff and Pa% were elevated significantly in the quercetin group and verapamil group respectively (P<0.01), which indicated that intestinal absorption of puerarin was obviously improved by the effects of P-gp inhibitors on intestinal absorption rate and permeability. These actions were greater in the quercetin group with high dose than those in verapamil group (P<0.01). To avoid systematic error, it is necessary to calculate these values with correct densities among groups.
     The results of mice model in vivo showed that plasma drug concentration of puerarin vs time conformed to two-compartment model after administration of puerarin intragastrically, with the properties of quick absorption (t1/2Ka=5.565±5.094min, Ka=0.152±0.084min-1), rapid and broad distribution to the tissues and fast elimination from the body. The absorption of puerarin in the quercetin group was greater than that in the verapamil group and this action enlarged a longer time in the former group as well. The results of statistical moment indicated that F(absorption fraction), AUC(area under the plasma concentration time curve) and MRT(mean residence time) values were increased by quercetin or verapamil respectively. The elevating percentages of AUC(0-t)s were 33.03% and 156.46% in verapamil group and quercetin group respectively, and AUC(0-∞)s were 37.04%和164.27% respectively, and AUC(0-Tmax)s were 38.57% and 110.28% in the two groups respectively. The elevating percentages of MRT(0-t) and MRT(0-∞) were 23.60% and 40.24% in quercetin group, respectively. The Cmax values were elevated by 48.39% and 50.26% in verapamil group and quercetin group respectively. The results indicated that absorption of puerarin was obviously improved by the effects of P-gp inhibitors on mice in vivo.
     The results of rat model in vivo indicated that the pharmacokinetics features in the puerarin group with a low dose were as similar as those in the puerarin group with a high dose, showing that plasma drug concentration of puerarin vs time conformed to two-compartment model after administration of puerarin intragastrically, with the properties of quick absorption (t1/2Ka=19.511±3.268min and Ka=0.036±0.006min-1 in the puerarin group with a low dose, t1/2Ka=19.956±1.737min and Ka=0.035±0.003min-1 in the puerarin group with a high dose), rapid and broad distribution to the tissues and fast elimination from the body. F values(absorption fraction) were greatly increased in both verapamil and quercetin groups. AUC(0-t) of verapamil group with puerarin in a low dose or in a high dose was elevated by 11.22% or 49.76%, and AUC(0-∞)s of those were elevated by 17.58% and 41.01%, respectively. AUC(0-t) of quercetin group with puerarin in a low dose or in a high dose was elevated by 22.31% or 57.46%, and AUC(0-∞)s of those were elevated by 9.72% and 46.07%, respectively. AUC(0-Tmax)s were raised by 92.09% and 198.64% respectively in verapamil group and quercetin group both with a low dose of puerarin (5mg/kg), and were raised by 127.61% and 69.96% respectively in the two groups with a high dose of puerarin (10mg/kg). The AUC values were significantly increased in both quercetin and verapamil groups and MRT value was increased by the quercetin group as well.
     To compare the difference between the two negative groups with puerarin in low or high dose respectively and compare the difference between the two groups exerted by the same P-gp inhibitor in the same dose, we observed the effects of inhibitors on AUC/D(dose) values of puerarin with different doses. The results showed that quercetin and verapamil could both increase the AUC/D value either in the group with puerarin in low or high dose, but the increasing rate in the the group with puerarin in high dose was greater than that in low dose, from 2-6.5 fold. These indicate that the absorption rate of puerarin with high dose were greater than that of puerarin with low dose under the same influence of P-gp inhibitor. This fact can be explained by the reason that the excretion rate of puerarin in high dose is relatively less than that of puerarin in low dose because of full occupation of P-gp receptor in local intestinal mucosa, indicating the significance to chose a suitable rate of P-gp receptor to the substrate puerarin.
     P-glycoprotein expresses highly on the contacting interface between endothelial cell of cerebullar blood circulation and periphery blood circulation, which plays an important role in inhibiting some P-gp sunstrates transportation to the brain tissue. Thus inhibition of P-gp could have beem considered to be an effective route to improve the P-gp sunstrates across cerebullar membrane and treat cerebrovascular diseases efficiently. The presencent study observed the distribution of puerarin to brain tissues of mice under the influence of the two P-gp inhibitors and the results showed that either quercetin or verapamil could increase the quantity of puerarin transported to the brain tissues. The elevating percentages were 28.65% and 246.56% in verapamil groups with a low dose and a high dose and the elevating percentages were 106.67% and 363.82% in quercetin groups with a low dose and a high dose respectively. The two P-gp inhibitors had dose-effect relationship respectively and the action of quercetin was stronger than that of verapamil. The results provide the experimental pharmacokinetics data for the potential treatment of cerebrovascular diseases with the comitant use of puerarin and its P-gp sunstrate.
     The present study was designed to investigate the possible properties of the injured brain neurocytes, the expression of HSP70 (heat shock protein70) and Fas protein after acute local ischemia brain injury and local cerebral ischemia-reperfusion injury in rats and to investigate the protecting mechanism of puerarin on the brain neurocytes of rats in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury using rat models of acute local cerebral ischemia and ischemia-reperfusion made by ligatting the middle cerebral artery.
     The results showed that puerarin had the protective actions in both processes of acute cerebral ischemia and cerebral ischemia-reperfusion. The protecting mechanism varied with the difference of neurocyte injuries:1. In the process of acute cerebral ischemia, the protecting effect of puerarin mainly related to up-regulation of HSP70 expression, while not correlated to the expression of Fas protein.2. In the period of cerebral ischemia-reperfusion, the protecting effect of puerarin related to both processes of up-regulation of HSP70 expression and down regulation of Fas expression.3. The neuroprotective effects of puerarin in the duration of acute cerebral ischemia exerted the actions of improving the level of stress and promoting the recovery of degenerated protein. During cerebral ischemia-reperfusion, puerarin acted on not only these effects, but reducing neurocyte apoptosis.
     Summarily, the effects of quercetin on improving oral bioavailability of puerarin are associated with its inhibition of intestinal P-gp, which elevates absorption rate and permeability of puerarin across the intestine and enhances its AUC values in rats' plasma. These indicate that quercetin is an efficient and low toxic P-gp inhibitor to improve oral bioavailability of puerarin. Furthermore, the identical P-gp inhibitor with the same dose could both increase the AUC/D value either in the group with puerarin in a low or high dose, but the increasing rate in the the group with puerarin in a high dose was greater than that in a low dose, indicating the importance of selecting a suitable ratio between P-gp inhibitor and its substrate in improving oral bioavailability of puerarin. In addition to these action, quercetin could increase the quantity of puerarin transported to the brain tissues, providing the experimental pharmacokinetics data for the potential treatment of cerebrovascular diseases with the comitant use of puerarin and its P-gp sunstrate. The results of pharmacodynamics study showed that puerarin had the protective actions in both processes of acute cerebral ischemia and cerebral ischemia-reperfusion. The protecting mechanism related to up-regulation of HSP70 expression and/or down regulation of Fas expression, which varied with the periods of cerebral ischemia and ischemia-reperfusion injuries and the difference of neurocyte injuries.
引文
1 刘昌孝.药物代谢动力学.湖南科学技术出版社.1979:174.
    2 王成,刘玉玲,谷士杰.葛根素的溶解性及络合助溶的研究.中国药学杂志,1993,28(5):294.
    3 崔升淼,赵春顺,何仲贵.葛根素在Caco-2细胞模型中的吸收特性.中草药,2007,38(6):836-839.
    4 崔升淼,赵春顺,何仲贵.大鼠肠管外翻模型对葛根素吸收机制的研究[J].时珍国医国药,2008,19(7):1715-1716.
    5吴燕红,苏子仁,陈建南,等.从小鼠体内血药浓度时间曲线与组织分布特征评价葛根素的给药途径[J].中药新药与临床药理,2005,16(2):112~115.
    6陈俊萍.葛根素葡萄糖注射液引起寒战、胸闷一例报告[J].青海医药杂志,2006,36(9):20.
    7黄雪融,郑荣远,金嵘,等.葛根素注射剂与发热相关性的回顾性队列研究[J].药物流行病学杂志,2005,14(2):73—75.
    8 王德才,吴从平.葛根素注射剂致溶血反应44例分析[J].中国药房,2009,20(12):943—945.
    9王卫卫,于志良,王明华,等.葛根素注射液致过敏性休克1例[J].中国医院药学杂志,2009,29(9):780.
    10张赞玲,尹桃.葛根素注射液引起死亡3例[J].药物不良反应杂志,2004,(1):41-42.
    11 全心荣.葛根素不良反应63例文献分析[J].现代中西医结合杂志,2005,14(1):140.
    12张丽娜,史惠卿,陆国庆,等.葛根素注射液不良反应60例分析[J].中国药物应用与监测,2004,(3):28—30.
    13周毅生,贾永艳,申小清,等.葛根素固体分散体的制备及其体外研究.中国药学杂志,2003,38(1):42—44.
    14 由立红,邹英华,景秋芳,等.葛根素缓释复合骨架片理化性质的研究.沈阳药科大学学报,2002,19(3):168~172.
    15 Dong-Qin Q, Gui-Xia X, Xiang-Gen W.Formulation development and pharmacokinetics of puerarin self-emulsifying drug delivery systems[J]. PDA J Pharm Sci Technol,2007, 61(1):37-43.
    16 Ai-Zheng Chen, Yi Li, Foo-Tim Chau, et al.Microencapsulation of puerarin nanoparticles by poly(1-lactide) in a supercritical CO2 process[J]. Acta Biomaterialia, 2009,5(8):2913-2919.
    17 Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes[J]. Annu Rev Pharmacol Toxicol,2001,41:535-567.
    18 Ieiri I, Takane H, Otsubo K. The MDR1(ABCB) gene polymorphism and its clinical implications [J]. Clin Pharmacokinet,2004,43(9):553-576.
    19 Shufeng Zhou, Lee Yong Lim, Balram Chowbay.Herbal Modulation of P-Glycoprotein[J]. Drug Metabolism Reviews,2004,36(1):57-104.
    20周冬菊,赵会英,杨英禄.大鼠小肠对葛根素吸收的动力学研究.北京化工大学学报,2006,33(5):106—112
    21 Prasain JK, Peng N, Acosta E, Moore R, Arabshahi A, Meezan E, Barnes S, Wyss JM.Pharmacokinetic study of puerarin in rat serum by liquid chromatography tandem mass spectrometry[J].Biomed Chromatogr,2007,21(4):410-4.
    22 Hongfei Wu, Chuanhua Lu, An Zhou, Zhiwei Min, Yulian Zhang.Enhanced Oral Bioavailability of Puerarin Using Microemulsion Vehicle[J]. Drug Development and Industrial Pharmacy,2009,35(2):138-144.
    23 Quan DQ, Xu GX, Wu XGStudies on preparation and absolute bioavailability of a self-emulsifying system containing puerarin[J].Chem Pharm Bull,2007,55(5):800-803.
    24 Qin Feng, Huang Xi, Zhang Hong-Min, et al.Pharmacokinetic comparison of puerarin after oral administration of Jiawei-Xiaoyao-San to healthy volunteers and patients with functional dyspepsia:influence of disease state[J]. Journal of Pharmacy and Pharmacology,2009,61(1):125-129.
    25 Elias Meezan, Elisabeth M. Meezan, Kenneth Jones, et al. Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice[J].Journal of Agricultural and Food Chemistry,2005,53 (22):8760-8767.
    26 Prasain, N. Peng, R. Moore, A. Arabshahi, S. Barnes, J. Wyss.Tissue distribution of puerarin and its conjugated metabolites in rats assessed by liquid chromatography-tandem mass spectrometry[J].Phytomedicine,2009,16(1):65-71.
    27 Fuzheng Ren, Qiufang Jing, Yongjia Shen, Hongmei Ma and Jingbin Cui. Quantitative determination of puerarin in dog plasma by HPLC and study on the relative bioavailability of sustained release tablets[J].Journal of Pharmaceutical and Biomedical Analysis,2006,41(2):549-553.
    28 Qunwei Zhang, Chuanhua Lu, Shuangying Gui, et al. Comparative study of puerarin tissue distribution in mice following administration as a nanoemulsion and a nanosuspension[J]. Asian Journal of Pharmaceutical Sciences,2010,5(1):26-34.
    29 Kitagawa S., Nabekura T., Kamiyama S.Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells[J]. J Pharm Pharmacol.,2004,56(8):1001-1005.
    30 Conseil G., Baubichon-Cortay H., Dayan G., et al.Flavonoids:a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein[J]. Proc. Natl. Acad. Sci. U.S.A.,1998,95(17):9831-9836.
    31 De Wet H, McIntosh DB, Conseil G, et al.Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein: structure-activity relationships for flavonoid binding[J]. Biochemistry,2001, 40(34):10382-10391.
    32 Wang RB, Kuo CL, Lien LL, et al.Structure-activity relationship:analyses of P-glycoprotein substrates and inhibitors[J].J Clin Pharm Ther.,2003,28(3):203-228.
    33 Shuji KITAGAWA, Tomohiro NABEKURA, Tomoharu TAKAHASHI, et al. Structure-Activity Relationships of the Inhibitory Effects of Flavonoids on P-Glycoprotein-Mediated Transport in KB-C2 Cells[J]. Biol. Pharm. Bull,2005,28(12): 2274-2278.
    34吴立军主编.天然药物化学[M].人民卫生出版社,2005年第4版:173—178.
    35 Zhang W, Han Y, Lim SL, Lim LY.Dietary regulation of P-gp function and expression[J]. Expert Opin Drug Metab Toxicol.2009,5(7):789-801.
    36 Xu X, Zhang S, Zhang L, Yan W, Zheng X.The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats[J]. Planta Med, 2005,71(7):585-91.
    37 Li-Ping Yan & Yu-Lan Zhuang & Shun-Wan Chan & Shi-Lin Chen & Gang-Gang Shi.Analysis of the mechanisms underlying the endothelium-dependent antivasoconstriction of puerarin in rat aorta[J].Naunyn-Schmied Arch Pharmacol,2009, 379:587-597.
    38 Yan LP, Chan SW, Chan AS, et al.Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats[J]. Life Sci.,2006,79(4):324-330.
    39 Han RM, Tian YX, Becker EM, et al.Puerarin and conjugate bases as radical scavengers and antioxidants:molecular mechanism and synergism with beta-carotene[J]. J Agric Food Chem.,2007,55(6):2384-2391.
    40 Qin Gao, Bo Yang, Zhi-guo Ye, Jue Wang, Iain C. Bruce and Qiang Xia.Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin[J]. European Journal of Pharmacology,2007,574(2-3):179-184.
    41 Zhu JH, Wang XX, Chen JZ, et al.Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood[J]. Acta Pharmacol Sin.,2004, 25(8):1045-1051.
    42 Wen A, Yang J, Jia Y, Yang Z, Tian Y, Wu Y, Wang Z, He Z.A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of hydroxysafflor yellow A in human plasma:application to a pharmacokinetic study[J].J Chromatogr B Analyt Technol Biomed Life Sci.2008,876(1):41-46.
    43 Penetar DM, Teter CJ, Ma Z, Tracy M, Lee DY, Lukas SE.Pharmacokinetic profile of the isoflavone puerarin after acute and repeated administration of a novel kudzu extract to human volunteers[J].J Altern Complement Med.2006,12(6):543-8.
    44 Cui S, Zhao C, Tang X, Chen D, He Z.Study on the bioavailability of puerarin from Pueraria lobata isoflavone self-microemulsifying drug-delivery systems and tablets in rabbits by liquid chromatography-mass spectrometry[J].Biomed Chromatogr,2005, 19(5):375-378.
    45 Y. Li, W. S. Pan, S. L. Chen, H. X. Xu, D. J. Yang, A. S. C. Chan.Pharmacokinetic, Tissue Distribution, and Excretion of Puerarin and Puerarin-Phospholipid Complex in Rats[J]. Drug Development and Industrial Pharmacy,2006,32(4):413-422.
    46 Liu R, Xing D, Lu H, et al.Pharmacokinetics of puerarin and ginsenoside Rgl of CBN injection and the relation with platelet aggregation in rats[J]. Am J Chin Med.,2006, 34(6):1037-1045.
    47 Mi Ja Chung, Nak-Ju Sung, Cheon-Seok Park, Dong-Keon Kweon, Alberto Mantovani, Tae-Wha Moon, Sung-Joon Lee and Kwan-Hwa Park.Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice[J]. European Journal of Pharmacology,2008,578(2-3):159-170.
    48 Yue PF, Yuan HL, Yang M, et al.Preparation, characterization, and pharmacokinetic evaluation of puerarin submicron emulsion[J]. PDA J Pharm Sci Technol.2008, 62(1):32-45.
    49 Di-Cai Li, Xian-Ke Zhong, Zhi-Ping Zeng, et al. Application of targeted drug delivery system in Chinese medicine[J]. Journal of Controlled Release,2009,138(2):103-112.
    50 Cui S, Zhao C, Chen D, et al.Self-microemulsifying drug delivery systems (SMEDDS) for improving in vitro dissolution and oral absorption of Pueraria lobata isoflavone[J]. Drug Dev Ind Pharm,2005,31(4-5):349-56.
    51 Ai-Zheng Chen, Yi Li, Foo-Tim Chau,et al.Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles[J].The Journal of Supercritical Fluids,2009,49(3):394-402.
    52 WenJun Zhang, ShenShen Yang, HaiBin He, et al.Technology for improving the bioavailability of small molecules extracted from traditional Chinese medicines[J].Expert Opinion on Drug Delivery,2009,6(11):1247-1259.
    53 Tang Jing-ling,Sun Jin,He Zhong-Gui.Self-Emulsifying Drug Delivery Systems: Strategy for Improving Oral Delivery of Poorly Soluble Drugs[J].Current Drug Therapy,2007,2(1):85-93.
    54 Yumoto R., Murakami T., Takano M. Differential effect of acute hepatic failure on in vivo and in vitro P-glycoprotein functions in the intestine[J]. Pharm. Res.,2003, 20(5):765-771.
    55 Cao X, Yu LX, Barbaciru C,et al.Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability[J].Mol. Pharm.,2005, 2(4):329-340.
    56 Komiya I, Park JY, Kamani A,et al.Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes[J].International journal of Pharmaceutics,1980,4(3):249-262.
    57 Chan K, Liu ZQ, Jiang ZH,et al. The effects of sinomenine on intestinal absorption of paeoniflorin by the everted rat gut sac model[J]. J Ethnopharmacol,2006, 103(3):425-432.
    58 Ballent M, Lifschitz A, Virkel G, et al. Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin:in vitro and in vivo assessments[J]. Drug Metab Dispos.2006,34(3):457-463.
    59 Fojo,A.T.,Ueda,K.,Slamon,D.J.et al.Expression of multidrug-resistance gene in human tumors and tissues[J].Proc.Natl.Acd.Sci.USA,1987,84:265-269.
    60 Trezise AE, Romano PR, Gill DR, et al. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression[J].EMBO J.,1992, 11(12):4291-4303.
    61 Tian, R.,Koyabu,N.,Takanaga,H.,et al.Effects of grapefruit juice and orange juice on the intestinal efflux of P-glycoprotein substrates[J].Pharm.Res.,2002,19:802-809
    62 Yumoto,R.,Murakami,T.,Nakamoto,Y.,et al.Transport of Rhodamine 123, a P-Glycoprotein Substrate,across Rat Intestine and Caco-2 Cell Monolayers in the Presence of Cytochrome P-450 3A-Related Compounds[J]. J.Pharmacol.Exp.Ther., 1999,289:149-155.
    63 李高,方超.药物肠道吸收的生物学研究方法[J].中国药学杂志,2002,37:726-729.
    64 Lennernas H. Animal data:the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo[J]. Adv Drug Deliv Rev.,2007, 59(11):1103-1120.
    65 Praveen V. Balimane, Saeho Chong, Richard A. Morrison. Current methodologies used for evaluation of intestinal permeability and absorption[J]. Journal of Pharmacological and Toxicological Methods,2000,44:301-312.
    66 Cook TJ, Shenoy SS. Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat[J]. Toxicology,2003,184(2-3):125-133.
    67 Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo[J]. Eur J Pharm Sci, 2005,25(4-5):445-453.
    68 Mouly S, Paine MF. P-glycoprotein increases from proximal to distal regions of human small intestine[J]. Pharm Res,2003,20(10):1595-1599.
    69 Siegmund W, Ludwig K, Engel G, et al. Variability of intestinal expression of P-glycoprotein in healthy volunteers as described by absorption of talinolol from four bioequivalent tablets[J]. J Pharm Sci.,2003,92(3):604-610.
    70 Varma MV, Panchagnula R. prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability[J]. J Pharm Sci.,2005, 94(8):1694-1704.
    71 Stephens RH, O'Neill CA, Warhurst A, et al. Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia[J]. J Pharmacol. Exp. Ther.,2001,296(2):584-591.
    72 Yamazaki M, Neway WE, Ohe T, et al. In vitro substrate identification studies for P-glycoprotein-mediated transport:species difference and predictability of in vivo results[J]. J Pharmacol. Exp. Ther.,2001,296(3):723-735.
    73黄沛,杨中林.不同纯度葛根素提取物的大鼠小肠吸收动力学研究[J].海峡药学,2008,20(3):43-45
    74 De Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood-brain barrier[J]. Annu Rev Pharmacol Toxicol,2003,43:629~656.
    75 Kim DJ, Kim DI, Byun JS, et al.Simple microwire and microcatheter mechanical thrombolysis with adjuvant intraarterial urokinase for treatment of hyperacute ischemic stroke patients[J]. Acta Radiol.,2008,49(3):351-357.
    76 Han MK, Kim SH, Ko SB, et al.Combined intravenous and intraarterial revascularization therapy using MRI perfusion/diffusion mismatch selection for acute ischemic stroke at 3-6 h after symptom onset[J]. Neurocrit Care.,2008,8(3):353-359.
    77 Tullius SG, Nieminen-Kelha M, Buelow R, et al.Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1[J].Transplantation.,2002, 74(5):591-598.
    78 Williams AJ, Berti R, Dave JR, et al. Delayed treatment of ischemia/reperfusion brain injury:extended therapeutic window with the proteosome inhibitor MLN519[J]. Stroke, 2004,35(5):1186-1191.
    79 Yoon W, Seo JJ, Cho KH, et al.Symptomatic middle cerebral artery stenosis treated with intracranial angioplasty:experience in 32 patients[J]. Radiology.2005, 237(2):620-626.
    80 Dossche KM, Schepens MA, Morshuis WJ, et al.Antegrade selective cerebral perfusion in operations on the proximal thoracic aorta[J].Ann Thorac Surg.,1999, 67(6):1904-1910.
    81 Horn P, Scharf J, Pena-Tapia P, et al.Risk of intraoperative ischemia due to temporary vessel occlusion during standard extracranial-intracranial arterial bypass surgery[J]. J Neurosurg.,2008,108(3):464-469.
    82 Lin TN, Cheung WM, Wu JS, et al.15d-prostaglandin J2 protects brain from ischemia-reperfusion injury[J]. Arterioscler Thromb Vasc Biol.,2006,26(3):481-487.
    83 Quinn TJ, Dawson J, Lees KR.Past, present and future of alteplase for acute ischemic stroke[J].Expert Rev Neurother.,2008,8(2):181-192.
    84 Sobrado M, Lopez MG, Carceller F, et al.Combined nimodipine and citicoline reduce infarct size, attenuate apoptosis and increase bcl-2 expression after focal cerebral ischemia[J]. Neuroscience.,2003,118(1):107-113.
    85 Cho S, Szeto HH, Kim E, et al.A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36[J].J Biol Chem.,2007, 282(7):4634-4642.
    86 Wen J, Watanabe K, Ma M, et al.Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats[J].Biol Pharm Bull., 2006,29(4):713-718.
    87 Yeung DK, Leung SW, Xu YC, et al.Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery[J]. Eur J Pharmacol.,2006,552(1-3):105-111.
    88 Zhao T, Han J, Chen Y, et al. The mechanism of 3-methoxy puerarin on decreasing the cerebral ischemia-reperfusion injury in rats[J]. Asia Pac J Clin Nutr.,2007, 16(Suppl 1):302-304.
    89 Zhang SY, Chen G, Wei PF, et al.The effect of puerarin on serum nitric oxide concentration and myocardial eNOS expression in rats with myocardial infarction[J]. J Asian Nat Prod Res.,2008,10(3-4):373-381.
    90 Keyler DE, Baker JI, Lee DY, et al.Toxicity study of an antidipsotropic Chinese herbal mixture in rats:NPI-028[J]. J Altern Complement Med.,2002,8(2):175-183.
    91 Prasain JK, Jones K, Brissie N, et al.Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem.,2004, 52(12):3708-3712.
    92 Wu B, Liu M, Liu H, et al.Meta-analysis of traditional Chinese patent medicine for ischemic stroke[J].Stroke,2007,38(6):1973-1979.
    93曹建忠,刘书山,杨光田.鼠急性全脑缺血再灌注后葛根素对海马CA1区Bcl-2、Bax表达的影响[J].中国药理学通报,2003,19(11):1281-1283.
    94李华,柳忠兰.葛根素对烟熏大鼠脑细胞凋亡及Fas蛋白表达的影响[J].中国神经免疫学和神经病学杂志,2004,11(1):57-58.
    95张均田.现代药理实验方法学[M].北京:北京医科大学中国协和医科大学联合出版社,1998:1241-1250.
    96 Barinaga M. Stroke-damaged neurons may commit cellular suicide[J].Science.,1998, 281(5381):1302-1303.
    97 Swartz KJ.Modulation of Ca2+ channels by protein kinase C in rat central and peripheral neurons:disruption of G protein-mediated inhibition[J].Neuron,1993, 11(2):305-320.
    98 Kloner RA.Does reperfusion injury exist in humans? [J] J Am Coll Cardiol.,1993, 21(2):537-545.
    99 Martinou JC, Dubois-Dauphin M, Staple JK, et al.Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia[J].Neuron,1994,13(4):1017-1030.
    100 Krajewski S, Tanaka S, Takayama S, et al.Investigation of the subcellular distribution of the bcl-2 oncoprotein:residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes[J]. Cancer Res.,1993,53(19):4701-4714.
    101 Jacobson MD.Reactive oxygen species and programmed cell death[J].Trends Biochem Sci.,1996,21(3):83-86.
    102 Li Y, Chopp M, Zhang ZG, et al.P53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats[J].Stroke,1994, 25(4):849-855.
    103 Barinaga M. Death by dozens of cuts[J].Science,1998,280(5360):32-34.
    104 Hengartner MO. Apoptosis.Death cycle and Swiss army knives [J].Nature,1998, 391(6666):441-442.
    105 Yang E, Korsmeyer SJ.Molecular thanatopsis:a discourse on the BCL2 family and cell death[J]. Blood,1996,88(2):386-401.
    106 Ignatowicz E, Vezzani AM, Rizzi M,et al.Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis[J]. Neuroreport.,1991, 2(11):651-654.
    107 Charriaut-Marlangue C, Ben-Ari Y. Cerebral ischemia:is cell death a type of apoptosis? [J].Arch Pediatr.1996,3(Suppl 1):245-247.
    108 Rosomoff HL, Kochanek PM, Clark R, et al.Resuscitation from severe brain trauma[J]. Crit Care Med.1996,24(2 Suppl):S48-56.
    109 Volpe BT, Wessel TC, Mukherjee B, et al.Temporal pattern of internucleosomal DNA fragmentation in the striatum and hippocampus after transient forebrain ischemia[J]. Neurosci Lett.1995,186(2-3):157-160.
    110 Li Y, Chopp M, Jiang N, et al.Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat[J]. J Cereb Blood Flow Metab. 1995,15(3):389-397.
    111 Linnik MD, Miller JA, Sprinkle-Cavallo J, et al.Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion[J]. Brain Res Mol Brain Res.1995,32(1):116-124.
    112 Sato K, Saito H, Matsuki N.HSP70 is essential to the neuroprotective effect of heat-shock[J]. Brain Res.,1996,740(1-2):117-123.
    113 陈君.热休克蛋白70家族的功能和在神经保护中的作用[J].国外医学麻醉学与复苏分册,2003,24(3):154-157.
    114 Nishi S, Taki W, Uemura Y,et al. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model[J]. Brain Res.,1993,615(2):281-288.
    115 Giffard RG, Yenari MA.Many mechanisms for hsp70 protection from cerebral ischemia[J]. J Neurosurg Anesthesiol.,2004,16(1):53-61.
    116 Tsuchiya D, Hong S, Matsumori Y, et al.Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures[J]. Neurosurgery.2003,53(5):1179-1187.
    117张凤英,刘军,匡培根,等.东菱克栓酶对缺血再灌注热休克蛋白70的影响[J].中国新药杂志,1998,7(1):56-58.
    118李源,陈振需,谢安,等.川芎嗪对脑缺血—再灌注损伤热休克蛋白70表达的影响[J].中华内科杂志,1998,37(5):333-335.
    119 Brodie C, Blumberg PM.Regulation of cell apoptosis by protein kinase C delta[J]. Apoptosis,2003,8(1):19-27.
    120 Anantharam V, Kitazawa M, Wagner J,et al.Caspase-3-dependent proteolytic cleavage of protein kinase C delta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl[J]. J Neurosci., 2002,22(5):1738-1751.
    121 Bright R, Raval AP, Dembner JM, et al.Protein kinase C delta mediates cerebral reperfusion injury in vivo[J]. J Neurosci.,2004,24(31):6880-6888.
    122 Martin-Villalba A, Herr I, Jeremias I, et al.CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons[J]. J Neurosci.,1999,19(10):3809-3817.
    123 Watanabe-Fukunaga R, Brannan CI, Copeland NG, et al.Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis[J]. Nature,1992, 356(6367):314-317.
    124 Giirsoy-Ozdemir Y, Can A, Dalkara T.Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia[J]. Stroke,2004,35(6):1449-1453.
    125 Tamura A, Graham DI, McCulloch J, et al. Focal cerebral ischaemia in the rat:1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab.,1981, 1(1):53-60.
    126 Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat[J]. Stroke,1979,10(3):267-272.
    127 Li Y, Chopp M, Jiang N, et al.Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats[J]. Stroke,1995,26(7):1252-1258.
    128杨光田,曹建忠,刘书山,等.葛根素在大鼠脑复苏时对海马CA1区神经元凋亡相关基因的影响[J].中国急救医学,2002,22(7):393-394.
    129李雪莉,孙圣刚.葛根素对帕金森病保护作用的实验研究[J].脑与神经疾病杂志,2002,10(1):7-9
    130王艳苹,陈茂星,刘伦翠.葛根素注射液治疗缺血性脑血管病临床观察[J].牡丹江 医学院学报,2002,23(2):14-15.
    131 孔凡华,刘萍.葛根素注射液治疗脑梗塞[J].河南中医学院学报,2004,19(5):50-51.
    132 Mistry P, Stewart AJ, Dangerfield W, et al. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potentmodulator, XR9576[J]. Cancer Res,2001,61(2):749-758.
    1 Lennernas H. Animal data:the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo[J]. Adv Drug Deliv Rev.,2007, 59(11):1103-1120.
    2 Jiangeng Huang, Luqin Si, Lingli Jiang, et al. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism[J]. International Journal of Pharmaceutics,2008,356(1-2):351-353.
    3 Ling Wang, Xuehua Jiang, Weijuan Xu, et al.Complexation of tanshinone IIA with 2-hydroxypropyl-β-cyclodextrin:Effect on aqueous solubility, dissolution rate, and intestinal absorption behavior in rats[J]. International Journal of Pharmaceutics,2007, 341(1-2):58-67.
    4 Barthe L, Woodley JF, Kenworthy S, et al.An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine[J]. Eur J Drug Metab Pharmacokinet.1998,23(2):313-323.
    5 Stanley G. Schultz, Peter F. Curran, Ronald A. Chez,et al.Fuisz.Alanine and Sodium Fluxes Across Mucosal Border of Rabbit Ileum[J]. J Gen Physiol,1967, 50(5):1241-1260.
    6 J. Guo, Q. Ping, G. Jiang,, et al. Transport of leuprolide across rat intestine, rabbit intestine and Caco-2 cell monolayer[J]. International Journal of Pharmaceutics,2004, 278(2):415-422.
    7 Melissa H. Wong, Peter Oelkers, Ann L. Craddock,, et al.Expression Cloning and Characterization of the Hamster Ileal Sodium-dependent Bile Acid Transporter[J]. The Journal of Biological Chemistry.1994,269(2):1340-1347.
    8 Chan K, Liu ZQ, Jiang ZH,et al. The effects of sinomenine on intestinal absorption of paeoniflorin by the everted rat gut sac model[J]. J Ethnopharmacol,2006,03(3):425-432.
    9 Ballent M, Lifschitz A, Virkel G, et al. Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin:in vitro and in vivo assessments[J]. Drug Metab Dispos. 2006,34(3):457-463.
    10 Brown JR, Collett JH, Attwood D, et al. Influence of monocaprin on the permeability of a diacidic drug BTA-243 across Caco-2 cell monolayers and everted gur sacs[J]. Int J Pharm.2002,245(1-2):133-142.
    11 Lambert GP, Gisolfi CV, Berg DJ, et al. Selected contribution:Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress[J]. J Appl Physiol. 2002,92(4):1750-1761.
    12 Leppert PS, Fix JA. Use of everted intestinal rings forin vitro examination of oral absorption potential [J] J Pharm Sci,1994,83(7):976-981.
    13 Cornaire G, Woodley JF, Saivin S, et al. Effect of polyoxyl 35 castor oil and Polysorbate 80 on the intestinal absorption of digoxin in vitro.[J] Arzneimittelforschung. 2000,50(6):576-579.
    14 Paula S. Leppert, Joseph A. Fix. Use of everted intestinal rings for in vitro examination of oral absorption potential[J]. Journal of Pharmaceutical Sciences,1994, 83(7):976-981.
    15 G. Ferrari, G. Sciorelli, P. Del Poggio, et al. Free thiamine as the likely precursor of endocellular thiamine phosphates in everted rings of rat jejunum[J].Pflugers Arch,1975, 356(2):111-120.
    16 Blair JA, Johnson IT, Matty AJ. Absorption of folic acid by everted segments of rat jejunum[J].The Journal of Physiology.1974,236(3):653-661.
    17 Uchiyama, T.Sugiyama, Y.S. Quan, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers:their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-beta-D-maltopyranoside[J]. J-Pharm-Pharmacol,1999,51(11):1241-1250.
    18 Krishnan S, Ramakrishna BS, Binder HJ. Stimulation of sodium chloride absorption from secreting rat colon by short-chain fatty acids[J]. Dig Dis Sci,1999, 44(9):1924-1930.
    19 Krishnan S, Rajendran VM, Binder HJ. Apical NHE isoforms differentially regulate butyrate-stimulated Na absorption in rat distal colon[J]. Am J Physiol cell Physiol,2003, 285(5):1246-1254.
    20 Toivola DM, Krishnan S, Binder HJ, et al. Keratins modulate colonocyte electrolyte transport via protein mistargeting[J]. J Cell Biol,2004,164(6):911-921.
    21 Satish K.Singh, Aaron C. Bartoo, Selvi Krishnan, et al. Glucose-dependent Insulinotropic Polypeptide (GIP) Stimulates Transepithelial Glucose Transport[J]. Obesity,2008,16 (11):2412-2416.
    22 Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability [J]. Gastroenterology,1989,96(3):736-749.
    23 Meunier V, Bourrie M, Berger Y, et al. The human intestinal epithelial cell line Caco-2: pharmacological and pharmacokinetic applications [J]. Cell Biol Toxicol,1995, 11(3-4):187-194.
    24 Jumarie C, Malo C. Caco-2 cell cultured in serum free medium as a model for the study of enterocytic differentiation in vitro[J]. J Cell Physiol,1991,149(1):24-33.
    25 Lo YL, Huang JD. Effects of sodium deoxycholate and sodium caprate on the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats [J] Biochem Pharmacol.2000,59(6):665-672.
    26 De Angelis I, Frigge G, Raimondi F, et al. Absorption of Fumonisin B1 and aminopentol on an in vitro model of intestinal epithelium:the role of P-glycoprotein [J] Toxicon, 2005,45(3):285-291.
    27 Walle UK, Walle T. Transport of the cooked-food mutagen 2-amino-1-methyl-6-phenylimidazo-[4,5-b] pyridine (phIP) across the human intestinal Caco-2 cell monolayer:role of efflux pumps [J]. Carcinogenesis,1999, 20(11):2153-2157.
    28 Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of p-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings:A new type of drug/drug interaction [J]. Clin Pharmacol Ther,2000,68(4):345-355.
    29 Hiroshi S, Yuichi S. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestinal [J]. Eur J Pharm Sci,2000,12(1):3-12.
    30 Zornoza T, Cano-Cebrian MJ, Nalda-Molina R, et al. Assessment and modulation of acamprosate intestinal absorption:comparative studies using in situ, in vitro (CACO—2 cell monolayers) and in vivo models [J]. Eur J Pharm Sci,2004,22(5):347-356.
    31 Menon RM, Barr WH. Comparison of ceftibuten transport across Caco-2 cells and rat jejunum mounted on modified using chambers [J]. Biopharm Drug Dispos,2003, 24(7):299-308.
    32 Artursson P, Borchardt RT. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond[J]. Pharm Res,1997,14(12):1655-1658.
    33 Donna A V. Variability in Caco-2 and MDCK cell-based intestinal permeability assays[J]. J Pharm Sci,2008,97(2):712-725.
    34 Taub ME, Kristensen L, Frokjaer S. Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes Ⅰ-Ⅳ.[J] Eur J Pharm Sci,2002,15(4):331-340.
    35 Irvine JD, Takahashi L, Lockhard K, et al. MDCK (Madin-Darby canine kidney) cells:a tool for membrane permeability screening[J]. J Pharm Sci,1999,88(1):28-33.
    36 Braun A, Hammerle S, Suda K, et al. Cell cultures as tools in biopharmacy[J]. Eur J Pharm Sci.2000,11 (Suppl 2):51-60.
    37 Poelma F GJ, Tukker J J. Evaluation of a chronically isolated internal loop in the rat for the study of drug absorption kinetics [J]. J Pharm Sci,1987,76(6):433-436.
    38 Miller DL, Schedl HP. Total recovery studies of nonabsorbable indicators in the rat small intestine[J]. Gastoenterol,1970,58(1):40-46.
    39 Steven C. Sutton, M.T.S. Rinaldi, K.E. Vukovinsky. Comparison of the Gravimetric, Phenol Red, and 14C-PEG-3350 Methods to Determine Water Absorption in the Rat Single-Pass Intestinal Perfusion Model[J]. AAPS PharmSci,2001,3(3):1-5.
    40 Cornaire G, Woodley JF, Use of everted intestinal rings for in vitro examination of oral absorption of Intestinal Mucosal Permeation of Compounds Using Caco-2 Cell Monolayers. New York:John Wiley Sons, Inc,2000:13-75.
    41 Lennernas H, Ahrenstedt O, Hallgren R, et al. Reginal jejunal perfusion, a new in vivo approach to study oral drug absorption in man [J] Pharm Res,1992,9(10):1243-1251.
    42 Pang KS, Cherry WF, Ulm EH. Disposition of enalapril in the perfused rat intestine-liver preparation:absorption, metabolism and first-pass effect [J] J Pharmacol Exp Ther,1985,233(3):788-795.
    43 Hirayama H, Xu X, Pang KS. Viability of the vascularly perfused, recirculating rat intestine and intestine-liver preparation [J] Am J Physiol,1989,257(2 Pt 1):G249-258.
    44 Andlauer W, Kolb J, Siebert K, et al. Assessment of resveratrol bioavailability in the perfused small intestine of the rat [J] Drugs Exp Clin Res,2000,26(2):47-55.
    45 Doherty MM, Pang KS. Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation [J] Pharm Res,2000,17(3):291-298.
    46 Hirayama H, Pang KS. First-pass metabolism of gentisamide:influence of intestinal metabolism on hepatic formation of conjugates. Studies in the once-through vascularly perfused rat intestine-liver preparation [J] Drug Metab Dispos,1990,18(5):580-587.
    47 Li Yun-Xia, Peng Cheng, Zhang Ruo-Qi, et al.Simultaneous Determination of Phillyrin and Forsythiaside in Beagle Dog Plasma by High-Performance Liquid Chromatography with Gradient Elution and Its Application to Pharmacokinetic Studies [J]. Analytical Letters,2010,43(2):209-218.
    48 Lai J, Lu Y, Yin Z, et al.Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles[J]. Int J Nanomedicine.,2010,5:13-23.
    49 Guanghua Gao, Francis C. P. Law. Physiologically Based Pharmacokinetics of Matrine in the Rat after Oral Administration of Pure Chemical and ACAPHA[J]. Drug Metab Dispos,2009,37(4):884-891.
    50 Choi YH, Lee DC, Lee I,et al.Changes in metformin pharmacokinetics after intravenous and oral administration to rats with short-term and long-term diabetes induced by streptozotocin[J]. J Pharm Sci.,2008,97(12):5363-75.
    51 Jun-Shik Choi, Jin-Pil Burm. Effects of oral epigallocatechin gallate on the pharmacokinetics of nicardipine in rats[J]. Archives of Pharmacal Research,2009, 32(12):1721-1725
    52 Dorleta Otaegui, Alicia Rodriguez-Gascon, Aizpea Zubia, et al. Pharmacokinetics and tissue distribution of Kendine 91, a novel histone deacetylase inhibitor, in mice[J]. Cancer Chemotherapy and Pharmacology,2009,64(1):153-159.
    53 V.Vandenbroucke, A. Bousquet-melou, P. De Backer, et al. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration[J]. Journal of Veterinary Pharmacology and Therapeutics,2008,31(5):437-445.
    54 James W. Carpenter, Christal G. Pollock, David E. Koch, et al. Single and Multiple-Dose Pharmacokinetics of Meloxicam After Oral Administration to the Rabbit (Oryctolagus cuniculus) [J]. Journal of Zoo and Wildlife Medicine,2009,40(4):601-606.
    55 Reihanikermani H, Ansari M, Soltani A, et al. Amitriptyline pharmacokinetics in experimental spinal cord injury in the rabbit[J]. Indian J Pharm Sci,2008, 70(2):782-785.
    56 K. W. Ward, D. J. Coon, D. Magiera,et al. Exploration of the African green monkey as a preclinical pharmacokinetic model:oral pharmacokinetic parameters and drug-drug interactions[J]. Xenobiotica,2009,39(3):266-272.
    57 David Mauleon, Ricard Mis, Joan Ginesta, et al. Pharmacokinetics of ketoprofen enantiomers in monkeys following single and multiple oral administration[J]. Chirality, 1994,6(7):537-542.
    58 Ogasawara A,Utoh M, Nii K, et al. Effect of oral ketoconazole on oral and intravenous pharmacokinetics of simvastatin and its acid in cynomolgus monkeys[J].Drug Metabolism and Disposition,2009,37(1):122-128.
    59 Aristides Dokoumetzidis, Lida Kalantzi, Nikoletta Fotaki. Predictive models for oral drug absorption:from in silico methods to integrated dynamical models[J]. Expert Opinion on Drug Metabolism & Toxicology,2007,3(4):491-505.
    60 G. Allan, J. Davis, M. Dickins, et al. Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man[J]. Xenobiotica,2008,38(6):620-640.
    61 Anne S De Groot, Julie McMurry, Lenny Moise.Prediction of immunogenicity:in silico paradigms, ex vivo and in vivo correlates[J].Current Opinion in Pharmacology, 2008,8(5):620-626.
    62 Van De Waterbeemd H. High-throughput and in silico techniques in drug metabolism and pharmacokinetics[J]. Curr Opin Drug Discov Devel,2002,5(1):33-43.
    63 John O. Miners, Paul A. Smith, Michael J. Sorich, et al. PREDICTING HUMAN DRUG GLUCURONIDATION PARAMETERS:Application of In Vitro and In Silico Modeling Approaches[J]. Annual Review of Pharmacology and Toxicology,2004, 44:1-25.
    64 Alan Boobis, Ursula Gundert-Remy, Pierre Kremers, et al. In silico prediction of ADME and pharmacokinetics:Report of an expert meeting organised by COST B15[J]. European Journal of Pharmaceutical Sciences,2002,17(4-5):183-193.
    65 Chang C, Ray A, Swaan P. In silico strategies for modeling membrane transporter function [J]. Drug Discov Today,2005,10(9):663-671.
    66 RUIZ-GARCIA Ana, BERMEJO Marival, MOSS Aaron, et al. Pharmacokinetics in Drug Discovery[J]. Journal of pharmaceutical sciences,2008,97(2):654-690.
    67 Paul Yash, Dhake Avinash S, Singh Bhupinder.In silico quantitative structure pharmacokinetic relationship modeling of quinolones:Apparent volume of distribution[J]. Asian Journal of Pharmaceutics,2009,3(3):202-207
    68 Sean Ekins, Yuri Nikolsky, Tatiana Nikolskaya. Techniques:Application of systems biology to absorption, distribution, metabolism, excretion and toxicity[J].Trends in Pharmacological Sciences,2005,26(4):202-209.
    69 Van de Waterbeemd H, Gifford E. ADMET in silico modelling:towards prediction paradise? [J].Nat Rev Drug Discov.,2003,2(3):192-204.
    70 Stewart BH, Chan OH, Lu RH, et al. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models:relationship to absorption in humans [J]. Pharm Res,1995,12(5):693-699.
    71 Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs:methods and studies [J]. Fundam Clin Pharmacol,1999,13(2):154-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700