镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立方氮化硼(CBN)磨料具有硬度极高、热稳定性好、化学惰性大、导热性好的优点,所以由该种磨粒制作的各型固结磨料砂轮已在高效磨削镍基高温合金、钛合金等难加工材料中得到了应用,并取得了显著效果。然而,大量的应用实践也表明,由于传统的多层烧结与单层电镀CBN砂轮中磨粒与胎体或镀层材料仅仅通过机械镶嵌作用结合,存在磨粒把持强度低、容屑空间狭小等缺陷,使得重负荷磨削过程中砂轮工作面容易出现磨粒过早脱落、甚至电镀砂轮的局部结合剂层从基体表面剥离的现象,这势必制约了CBN超硬磨料磨削性能的充分发挥,也限制了加工效率与质量的进一步提高。凭借磨粒、钎料、基体在高温钎焊过程中的化学和冶金反应对磨粒提供的超强把持效果,本课题研制了磨粒呈有序排布的新型单层钎焊CBN成型砂轮,并将其应用于高效磨削镍基铸造高温合金。
     本文完成的创新性研究工作主要包括:
     (1)在确保Ag-Cu-Ti液相合金中活性元素Ti活度的前提下,兼顾控制钎料层新生相数量和克服活性元素的消耗效应,通过冶金热力学分析对钎料成分进行了优选。结果表明,含Ti 5%的Ag-Cu共晶合金是综合性能比较优异的钎料,后续试验已显示此种合金组分制作的单层钎焊CBN砂轮确实可取得预期效果。
     (2)利用扫描电镜、能谱仪和X射线衍射仪分析了钎焊工艺参数对界面新生化合物和微观结构的影响。结果显示,当钎焊温度920℃、保温时间5 min时可获得较佳的磨粒表面新生化合物形貌,界面层由CBN/TiB2/TiB/TiN/含Ti合金层的过渡结构组成。磨粒抗压强度和冲击强度测试结果表明钎焊前后磨粒强度无明显变化。
     (3)对界面层新生相的形核顺序与生长过程进行了动力学分析。结果表明,新生相按TiN→TiB2→TiB的顺序依次形成,其生长过程主要受新生TiN控制,而活性元素Ti的引入和扩散则是界面层生长的主要因素。
     (4)依据型槽工件要求设计制作了磨粒呈有序排布的单层钎焊CBN成型砂轮,并将其用于镍基铸造高温合金K424槽类工件的模拟加工。结果表明,单层钎焊CBN砂轮在高效磨削过程中磨削力和温度得到了有效控制,工件加工表面完整性也得到明显改善。单层钎焊CBN砂轮的磨损机理主要是磨耗磨损,试验中未出现磨粒脱落,这表明采用钎焊工艺制作单层CBN砂轮能提高对磨粒的把持力,有助于充分发挥超硬磨料本身的耐磨特性。
Cubic boron nitride (CBN) abrasive grains have some distinguished properties, such as extremely high hardness, superior thermal stability, large chemical inertia and excellent thermal conductivity. Therefore CBN wheels have been utilized and taken good effects in grinding difficult-to-machine materials, i.e. nickel-based superalloy and titanium alloy. Much grinding practice has discovered that, however, the shortcomings of low holding strength for grains and limited storage space for chips are always accompanied with the traditional multiplayer sintered and monolayer electroplated CBN abrasive tools. They are mainly attributed to the merely mechanical embedding effects between the grains and the connecting layer. Under such circumstance, the unexpected phenomena, including the premature fallout of the grains in good condition and the tearing-up behavior of the regional connecting layer, easily appear in the heavy load grinding process. They not only restrict the display of the outstanding wear resistance ability of CBN superabrasive grains, but also hinder the improvement of the machining efficiency and the product quality.
     Depending on the strong joining effects induced by the chemical and metallurgical behavior among the abrasive grains, the filler alloy and the metal substrate during high temperature brazing, the monolayer brazed CBN profile grinding wheels with rhythmed grain distribution are developed. Subsequently the special abrasive tools were evaluated in the high efficiency grinding process of nickel cast superalloy.
     The main creative contents in this paper are as follows:
     1) For insuring the activity of the active element, namely Ti, in the liquid Ag-Cu-Ti alloy, the composition of the filler alloy is optimized according to the metallurgical thermodynamic theory. Thus, the quantity of the new-formed inner compounds of the filler metal could be controlled, meanwhile the expenditure of the active element is overcome. The results show that, the Ag-Cu eutectic alloy containing 5%(wt) Ti is the ideal one with the excellent integrated performance, which has been approved true in the fabrication experiments of monolayer brazed CBN grinding wheels.
     2) The new-formed reaction products and the interfacial microstructure under different conditions have been detected by scanning electron microscope (SEM), energy dispersion spectrometer (EDS), and X-ray diffraction (XRD). It has been observed that the perfect microstructure of the new-formed compounds could be acquired with brazing temperature 920℃for dwell time 5min. A special layer, i.e. CBN/TiB2/TiB/TiN/filler containing Ti has existed in the interface, which provides good transitional property in the chemical bond and the physical performance for the brazed joints of CBN grain and filler alloy. Both the tests of the compressive strength and the impact strength of the grains reveal that the remarkable change does not occur during brazing.
     3) The formation sequence and corresponding mechanism of the interfacial phases between CBN and Ti were discussed through the kinetic analysis. The results demonstrate that the new phases come forth in a sequence of TiN→TiB2→TiB. Moreover, the formation process of the interfacial layer is mainly dominated by the TiN phase. The application and diffusion of active element Ti in Ag-Cu-Ti alloy is the preliminary factor.
     4) The monolayer brazed CBN profile grinding wheels with rhythmed grain distribution are designed and fabricated according to the requirements of the grooves in the aircraft components. The grinding performance has been evaluated in the high efficiency grinding process of a special nickel cast superalloy, K424. During machining, not only the grinding force and temperature could be controlled effectively, but also the surface quality of the machined parts could be improved significantly. On the other hand, the abrasion wear is the leading wear behavior for the brazed CBN grinding wheels. The disadvantageous phenomenon, for example, the fallout of CBN grains, has never happened in the experiment, which indicates that strong joining to the grains has been realized in the brazed abrasive tools. Thus, the excellent abrasion resistance of CBN grains could be exhibited completely.
引文
[1] 王秦生. 超硬材料制造,北京,中国标准出版社,2001
    [2] 任敬心,康仁科. 难加工材料的磨削,北京,国防工业出版社,1999
    [3] 肖冰. 单层超硬磨料工具高温钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2001
    [4] F.R. Corrigan, F.P. Bundy. Direct transaction among the allotropic forms of boron nitride at high pressures and temperatures, The Journal of Chemical Physics, 1975, 63(9): 3812~3819
    [5] M.J. Jackson, C.J. Davis, M.P. Hitchiner. High-speed grinding with CBN grinding wheels—applications and future technology, Journal of Materials Processing Technology, 2001, 110: 78~88
    [6] P.L. Tso. Studying on the grinding of Inconel 718, Journal of Materials Processing Technology, 1995, 55: 421~426
    [7] A. Yui, H.S. Lee. Surface grinding with ultra high speed CBN wheel, Journal of Materials Processing Technology, 1996, 62: 393~396
    [8] F. Mason. High-efficiency deep grinding (HEDG), American Machining, 1993, 137(5): 317~319
    [9] R. Cai, W.B. Rowe. Assessment of vitrified CBN wheels for precision grinding, International Journal of Machine Tools & Manufacturing, 2004, 44: 1391~1402
    [10] X.P. Xu, Y.Q. Yu, H. Huang. Mechanisms of abrasive wear in grinding of titanium (TC4) and nickel (K417) alloys, Wear, 2003, 255: 1421~1426
    [11] F.C. Gift, W.Z. Misiolek, E. Force. Mechanics of loading for electroplated cubic boron nitride (CBN) wheels during grinding of a nickel based superalloy in water-based lubricating fluids, Journal of Tribology-Transactions of the ASME, 2004, 126(4): 795-801
    [12] E. Pecherer, S. Malkin. Grinding of steels with cubic born nitride (CBN), Annals of the CIRP, 1984, 33(1): 211~216
    [13] 徐西鹏,徐鸿钧,戴勇,等. 树脂结合剂 CBN 砂轮缓进深磨钛合金——CBN 砂轮在缓磨中的应用,南京航空航天大学学报,1993,25(5):631~637
    [14] X.P Li. A free-abrasive machining approach to dressing of resin-bonded CBN grinding wheels, Journal of Materials Processing Technology, 1995, 48: 223~230
    [15] 杨茂奎,李雅卿,任敬心,等. 陶瓷结合剂 CBN 砂轮磨削 GH4169 高温合金的磨削加工性与磨削表面完整性,工具技术,1996,30(11):6~10
    [16] H.J. Xu, Y.C. Fu, B. Xiao, et al. Fabrication of monolayer brazed diamond tools with optimum grain distribution, Key Engineering Materials, 2004, 259: 6~9
    [17] T.W. Hwang, C.J. Evans, S. Malkin, et al. High speed grinding of silicon nitride with electroplated diamond wheels, Journal of Manufacturing Science and Engineering, 2000, 122(2): 42~50
    [18] F.C. Gift, W.Z. Misiolek, E. Force. Fluid performance study for groove grinding a nickel-based superalloy using electroplated cubic boron nitride (CBN) grinding wheels, Journal of Manufacturing Science and Engineering, 2004, 126(8): 451~458
    [19] T.W. Hwang, C.J. Evans, S. Malkin, et al. High speed grinding of silicon nitride with electroplated diamond wheels, Part.1: wear and wheel life, Journal of Manufacturing Science and Engineering, 2000, 122(2): 32~41
    [20] Z. Shi, S. Malkin. An investigation of grinding with electroplated CBN wheels, Annals of the CIRP, 2003, 52(1): 267~270
    [21] W. Konig, H. Schleich, K. Yegenoglu. High performance grinding with electroplated CBN wheels, Industrial Diamond Review, 1984, 6: 320~323
    [22] 王秦生. 超硬材料电镀制品,北京,中国标准出版社,2001
    [23] 武志斌. 高效磨削的瓶颈与对策,[博士学位论文],南京,南京航空航天大学,2001
    [24] 王明智,臧建兵,王艳辉. 立方氮化硼表面镀 Ti 及其与金属粘结剂的作用,中国有色金属学报,1997,7(2):104~106
    [25] 李志宏. 陶瓷磨具制造,北京,中国标准出版社,2001
    [26] A.K. Chattopadhyay, H.E. Hintermann. New generation superabrasive tool with monolayer configuration, Diamond and Related Materials, 1992, 1: 1131~1143
    [27] G. Burkhard, F. Rehsteiner. High efficiency abrasive tool for honing, Annals of the CIRP, 2002, 51(1): 271~274
    [28] A.K. Chattopadhyay, L.Chollet, H.E. Hintermann. Improved monolayer CBN wheel for load free grinding, Journal of Machine Tools & Manufacturing, 1992, 32(4): 571~588
    [29] A.K. Chattopadhyay, L. Chollet, H.E. Hintermann. On performance of brazed bonded monolayer diamond grinding wheel, Annals of the CIRP, 1991, 40(1): 347~350
    [30] A.K. Chattopadhyay, H.E. Hintermann. On performance of brazed single-layer CBN wheel, Annals of the CIRP, 1994, 43(1): 313~317
    [31] J. Webster, M. Tricard. Innovation in abrasive products for precision grinding, Annals of theCIRP, 2004, 53(2): 597~617
    [32] 林增栋. 钎焊法制造单层金刚石工具的研究,金刚石与磨料磨具工程,2004,6:1~5
    [33] M.G. Nicholas, D.A. Mortimer, L.M. Jones, et al. Some observations on the wetting and bonding of nitride ceramics, Journal of Materials Science, 1990, 25: 2679~2689
    [34] H.E. Hintermann, A.K. Chattopadhyay. Abrasive tool having film-covered CBN grits bonded by brazing to a substrate, U.S. Patent, 5389118, February 14, 1995
    [35] 王艳辉. 金刚石磨料表面镀钛层的制备、结构、性能及应用,[博士学位论文],秦皇岛,燕山大学,2002
    [36] H. Mizuhara, K. Mally. Ceramic-to-metal joining with active filler metal, Welding Journal, 1985, 64(10): 27~32
    [37] I. L. Pobol, K. Friedel, J. Felba. Development of method for obtaining brazed joint of cubic boron nitride with base, Proceedings of the Tenth Congress of the IFHT, 1998: 946~951
    [38] A.K. Chattopadhyay, H.E. Hintermann. On brazing of cubic boron nitride abrasive crystals to steel substrate with alloys containing Cr or Ti, Journal of Materials Science, 1993, 28: 5887~5893
    [39] 卢金斌. 金刚石钎焊机理与工艺基础研究,[博士学位论文],南京,南京航空航天大学,2004
    [40] 马伯江. 金刚石磨粒高频感应钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2005
    [41] Y.C. Fu, B. Xiao, J.H. Xu, et al. Machining performance of monolayer brazed diamond tools, Key Engineering Materials, 2004, 259: 73~77
    [42] H.H. Su, H.J. Xu, B. Xiao, et al. Study on machining of hard-brittle materials with thin-walled monolayer brazed diamond core drill, Materials Science Forum, 2004, 471: 287~291
    [43] 肖冰,徐鸿钧,武志斌,等. AgCuTi 合金钎焊单层立方氮化硼砂轮,焊接学报,2002,23(2):29~32
    [44] 孙毓超,刘一波,王秦生. 金刚石工具与金属学基础,北京,中国建材工业出版社,1999
    [45] 张启运,庄鸿寿. 钎焊手册,北京,机械工业出版社,1998
    [46] 陈登权. 陶瓷/金属钎焊用钎料及其钎焊工艺进展,贵金属,2001,22(1):53~56
    [47] 皮晓明. SiC<, f>/SiC 复合材料与 40Cr 连接行为的研究,[硕士学位论文],北京,北京理工大学,2001
    [48] R.W. Xu. Joining of silicon nitride to metals using active brazing, Dissertation for Ph.D Degree, Chicago, University of Illinois, 1994
    [49] 何德孚. 焊接与连接工程学导论(第 1 版),上海:上海交通大学出版社,1998
    [50] A.P. Xian. Thermodynamic discussion on Young’s equation in wetting, Zeitschrift Fur Metallkunde. 2000, 91(4): 316~322
    [51] 陈建,潘复生,顾明元. 活性金属/陶瓷润湿机理研究,上海交通大学学报,2001,35(3):364~367
    [52] 叶大伦. 实用无机材料热力学数据手册(第 1 版),北京:冶金工业出版社,1981
    [53] 李文超. 冶金热力学(第 2 版),北京:冶金工业出版社,1995
    [54] 曲仕尧,邹增大,王新洪. Ag-Cu-Ti 活性钎料热力学分析,焊接学报,2003,24(4):13~16
    [55] M. Paulasto, F.J.J. Loo, J.K.Kivilahti. Thermodynamic and experimental study of Ti-Ag-Cu alloy, Journal of Alloys and Compounds, 1995, 220: 136~141
    [56] 傅崇说. 冶金溶液热力学原理与计算,北京,冶金工业出版社,1979
    [57] 徐瑞. 材料热力学与动力学,哈尔滨,哈尔滨工业大学出版社,2003
    [58] 毛忠汉,陈靖. 银铜钛活性钎料的特性及应用,第九次全国焊接会议,天津,中国机械工程学会,1999:44~49
    [59] 马文利,毛唯,李晓红,等. 采用银基活性钎料钎焊碳/碳复合材料,材料工程,2002,1:9~12
    [60] 李荣久. 陶瓷——金属复合材料,北京,冶金工业出版社,2004,3:407~408
    [61] 于伯龄,姜胶东. 实用热分析,北京,纺织工业出版社,1990
    [62] 中国机械工程学会焊接学会. 焊接手册第 2 卷(第 2 版),北京,机械工业出版社,2001
    [63] 邹僖. 钎焊(第 2 版),北京,机械工业出版社,1989
    [64] 阎承沛. 真空热处理工艺与设备工艺师(第 1 版),北京,机械工业出版社,1998
    [65] S. Mandal, V. Rao, A.K. Ray. Characterization of the brazed joint interface between Al2O3 and (Ag-Cu-Ti), Journal of Materials Science, 2004, 39: 5587~5590
    [66] H.J. Liu, J.C. Feng, Y.Y. Qian. Microstructure and strength of the SiC/TiAl joint brazed with Ag-Cu-Ti filler metal, Journal of Materials Science Letters, 2000, 19: 1241~1242
    [67] 蒋成禹,吴铭芳,于治水,等. Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V 界面结构及性能研究,稀有金属材料与工程,2001, 8(30):264~267
    [68] 黄小丽. ZrO2 与金属的钎焊连接,[博士学位论文],北京,北京科技大学,1995
    [69] T. Yamazaki, A. Suzumura. Role of the reaction product in the solidification of Ag-Cu-Ti filler for brazing diamond, Journal of Materials Science, 1998, 33: 1379~1384
    [70] M. Nomura, T. Ichimori, C. Iwamoto, et al. Structure of wetting front in the Ag-Cu-Ti/SiC reactive system, Journal of Materials Science, 2000, 35: 3953~3958
    [71] 吴铭芳,于治水,祁凯,等. Al2O3/Ag-Cu-Ti 钎料/Nb 连接的微观结构及性能. 硅酸盐学报,2000,28(5):475~478
    [72] 朱艳,杨延清,马志军,等. SiC/Ti 基复合材料界面反应的热力学研究,稀有金属材料与工程,2002,31(4):279~282
    [73] 章燕豪. 物理化学(第 1 版),上海,上海交通大学出版社,1988
    [74] 葛志明. 钛的二元系相图(第 1 版),北京,国防工业出版社,1977
    [75] W.F. Ding, J.H. Xu. Thermodynamic and kinetic analysis of interfacial reaction between CBN grain and Ag-Cu-Ti filler alloy, Materials Science and Technology, 2006, 22(1): 105~109
    [76] 戚正风. 固态金属中的扩散与相变,北京,机械工业出版社,1998
    [77] 丁文锋,徐九华,卢金斌. 高温钎焊立方氮化硼界面微结构,焊接学报,2004,25(5):29~32
    [78] 亢世江,陈学广,吕志勇,等. 钎焊金刚石膜的试验研究及理论分析,焊接学报,2005,26(2): 77~80
    [79] 邹家生,初雅杰,翟建广,等. Si3N4/Ti/Cu/Ti/Si3N4 部分瞬间液相连接界面动力学,焊接学报,2004,25(2):43~46
    [80] 邹家生,吴斌,赵其章. 活性 Cu-Ni-Ti 钎料对 Si3N4 陶瓷浸润性的影响,华东船舶工程学院学报,2000,14(4):77~82
    [81] 王玉成. TiB2-BN 复相陶瓷的制备及性能研究,[博士学位论文],武汉,武汉理工大学,2002
    [82] 张虎,张二林,高文理,等. Ti-40Al-2B 合金微观组织和初生 TiB2 生长特征,复合材料学报,2001,18(4):16~19
    [83] 吕维杰,张小农,张荻,等. 原位合成 TiB/Ti 基复合材料增强体的生长机制,金属学报,2000,36(1):104~108
    [84] 王艳辉,王明智,温熙宇,等. 镀 Ti 立方氮化硼(cBN)与玻化 SiO2-Na2O-B2O3 结合剂的作用,无机材料学报,1995,10(3):351~355
    [85] W.F. Ding, J.H. Xu, J.B. Lu. Brazed CBN grinding wheel with Ag-base filler alloy. Materials Science Forum, 2004, 471: 11~15
    [86] 方容川.固体光谱学(第 1 版),合肥,中国科学技术大学出版社,2001
    [87] X.W. Zhang, Y.J. Zou, H. Yan, et al. Electrical properties and annealing effects on the stress of RF-sputtered c-BN films, Materials Letters, 2000, 45: 111~115
    [88] A. Klett, R. Freudenstein, M.F. Plass, et al. Stress of c-BN thin films: a parameter investigation, Surface and Coating Technology, 1999, 116-119: 86~92
    [89] 雷永平,韩丰娟,夏志东,等. 陶瓷/金属钎焊接头残余应力的测量及数值计算,中国机械工程,2004,15(9):768~771
    [90] 刘雄飞,陈凡,吕海波. 金刚石镀膜对金刚石强度以及与胎体结合性能的影响,粉末冶金技术,1997,15(3): 182~185
    [91] 张春光,乔冠军,金志浩. Ni-Ti 活性钎焊高纯 Al2O3 界面反应微观机理,稀有金属材料与工程,2002,31(5):371~374
    [92] 杨富陶,周世平,王海燕,等. 钛对 Ag-Cu 合金性能的影响,贵金属,1999,20(2):28~29
    [93] 梁英教,车荫昌. 无机物热力学数据手册,沈阳,东北大学出版社,1993
    [94] X.Y. Ma, C.R. Li, W.J. Zhang. Study on the phase diagram of the Ti-B-N system and the interfacial reaction of the Ti/BN joints, Materials Science and Engineering A, 2005, 392: 394~402
    [95] C. Hu, Q.M. Jonathan Wu, J. Shen, et al. Cubic BN formation by ion implantation, Thin Solid Films, 2002, 402: 117~120
    [96] 唐建新,苗鹤濯,曾照强. Ti-B4C 反应路径分析,金属学报,2000,36(8):833~836
    [97] E. Faran, I. Gotman, E.Y. Gutmanas. Experimental study of the reaction zone at boron nitride ceramic–Ti metal interface, Materials Science and Engineering A, 2000, 288: 66~74
    [98] E. Faran, I. Gotman, E.Y. Gutmanas. Coating of BN via solid state reaction with Ti-powder, Materials Letters, 2000, 43: 192~196
    [99] 张永清,任家烈,赵彭生. 化学镀镍层与 Si3N4 陶瓷的界面反应,中国表面工程,2004,2:33~36
    [100] 陈铮. 陶瓷/陶瓷和陶瓷/金属部分瞬间液相连接的界面反应、模型和接头强度研究,[博士学位论文],杭州,浙江大学,1997
    [101] 吴斌,陈铮,方芳,等. Ag-Cu-Ti 钎料活性钎焊 Si3N4 陶瓷的研究,华东船舶工业学院学报,1998,12(2):74~79
    [102] Z. Chen, F. Zhou, H.Q. Lou. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ti multi-interlayers, Journal of Materials Science Letters, 1997, 16: 2026~2028
    [103] W. Tillmann, E. Lugscheider. Kinetic and microstructural aspects of the reaction layer at ceramic/metal braze joints, Journal of Materials Science Letters, 1996, 31: 445~449
    [104] F. Tamai, M. Naka. Microstructure and strength of Si3N4/Si3N4 joints brazed with Cu-Ti alloys, Japan Welding, 1996, 2: 327~332
    [105] W. Jost. Diffusion in Solids, Liquids, Gases, New York, Academic Press Inc., 1960
    [106] N. Frage, N. Froumin, M.P. Dariel. Wetting of TiC by non-reactive liquid metals, Acta Materialia, 2002, 50: 237~245
    [107] R.J. Wasilewski, G.L. Kehl. Diffusion of nitrogen and oxygen in titanium, Journal of Institution Metals, 1954~55, 83: 94~104
    [108] 中国航空材料手册编辑委员会. 中国航空材料手册(第 2 卷),北京,中国标准出版社,2001
    [109] 荀志锋. K24 镍基高温合金切削性能试验研究,[硕士学位论文],大连,大连理工大学,2003
    [110] 任敬心,杨茂奎,李雅卿,等. 镍基高温合金的磨削特征,航空学报,1997,18(6):755~757
    [111] 胡协方. 缓进给直槽成型磨削的研究,[博士学位论文],南京,南京航空学院,1988
    [112] 康仁科,杨巧凤,等. 电镀 CBN 砂轮缓进给磨削高温合金叶片窄深槽的试验研究,航空制造技术,1999,6:16~18
    [113] 宋振武,高航. 螺旋槽砂轮磨削性能的试验研究,磨料磨具与磨削,1985,6:1~5
    [114] Y. Ichida. Creep feed profile grinding of Ni-based superalloys with ultrafine-polycrystalline cBN abrasive grits, Precision Engineering, 2001, 25: 274~283
    [115] 张幼桢. 金属切削理论,北京,航空工业出版社,1988
    [116] R.P. Upadhyaya, S, Malkin. Thermal aspects of grinding with electroplated CBN wheels, Journal of Manufacturing Science and Engineering. 2004, 126(2): 107~114
    [117] C. Guo, S. Malkin. Analytical and experimental investigation of burnout in creep-feed grinding, Annals of the CIRP, 1994, 43(1): 238~286
    [118] S.P. Moylan, S. Kompella, S. Chandrasekar, et al. A new approach for studying mechanical properties of thin surface layers affected by manufacturing process, Journal of Manufacturing Process, 2003, 125(5): 310~315
    [119] M. Chen, X.T. Li, F.H. Sun, et al. Studies on the grinding characteristics of dictionally solidified nickel-based superalloy, Journal of Materials Processing Technology, 2001, 116:165~169
    [120] 杨茂奎,李雅卿,等. 加工表面完整性对 GH4169 高温合金疲劳断口形貌的影响,航空制造工程,1997,1:22~24
    [121] Y. Furukawa, S. Ohishi, S. Shiozaki. Selection of creep feed grinding condition in view of workpiece buring, Annals of the CIRP, 1979, 28(1): 213~218
    [122] 蔡玉林,郑运荣. 高温合金的金相研究,北京,国防工业出版社,1989
    [123] 任敬心,华安定. 磨削原理,西安,西北工业大学出版社,1988
    [124] 郑焕文,马正元,张春元. 深沟槽的缓进给强力磨削工艺和磨削表面质量,磨料磨具与磨削,1990,2:23~24
    [125] 徐西鹏,沈剑云,黄辉. 实现花岗石高效锯切的关键因素分析,机械工程学报,1998,34(1):104~110
    [126] 殷玲,刘忠,陈日耀. 陶瓷磨削中金刚石砂轮磨损形式及其生成原因,华中理工大学学报,1996,24(4):19~22
    [127] M.J. Jackson, B. Mills. Microscale wear of vitrified abrasive materials, Journal of Materials Science, 2004, 39: 2131~2143
    [128] S. Malkin. 磨削技术与理论(蔡光起译),沈阳,东北大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700