用户名: 密码: 验证码:
基于单颗粒磨削的电镀CBN砂轮磨削窄深槽的特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械制造业的快速发展,发动机和液压泵得到了广泛地应用。发动机涡轮叶片根部和液压泵转子叶片根部分布着窄深槽结构。窄深槽是深宽比大于2,槽宽小于4mm的特殊结构。零件上窄深槽的加工质量很大程度上决定了零件质量。高精度窄深槽的制造一直是机械加工中的难题。传统的加工方法成本高、精度低,难以满足加工要求。电镀CBN (Cubic Boron Nitride)砂轮具有一系列优良性能,广泛运用于高精度窄深槽的加工,取得了良好的效果。
     磨粒粒度反映了磨粒尺寸的大小,它是砂轮的主要特性指标之一。磨粒尺寸直接影响着其顶锥角2θ及尖端钝圆半径rg两个参数的值,这两个参数描述了磨粒的锋利程度;磨削用量直接决定了磨削力、磨削温度、砂轮磨损以及加工质量等。本论文基于单颗粒磨削,研究了磨粒粒度和磨削用量对磨削力、磨削温度、砂轮磨损的影响。主要研究内容有:
     1)论述了磨削的基本原理,主要包括磨粒切削刃的形状及分布、磨削物理模型、砂轮与工件的接触弧长、单颗粒磨削的未变形磨屑厚度、磨削力、磨削温度、砂轮磨损。为后续的建模和仿真提供理论依据。
     2)分别建立了36#、46#、60#、80#的单颗CBN磨粒和工件的几何模型。将单颗CBN磨粒简化为带尖端钝圆的圆锥体、将工件简化为长方体,将单颗粒磨削简化为直线滑擦模型。介绍了有限元模拟仿真的关键技术,建立了工件的材料模型、切屑分离准则、材料断裂准则、网格划分准则、刀-屑接触摩擦模型以及磨损模型,并通过仿真验证了上述参数的正确性。
     3)针对不同粒度(36#、46#、60#、80#)的电镀CBN砂轮在淬硬轴承钢GCr15上磨削2×10mm的窄深槽的情况(磨削速度为40m/s、进给速度为5mm/s),应用DEFORM-3D软件对相应单颗CBN磨粒的磨削力、磨削温度以及磨损进行了仿真分析,结果表明:单颗CBN磨粒受到的磨削力、磨削温度以及磨损均随CBN磨粒粒度的减小而减小。
     4)针对电镀CBN砂轮(粒度为46#、进给速度为5mm/s)以不同的磨削速度(20m/s、30m/s、40m/s、50m/s)在淬硬轴承钢GCr15上磨削2X10mm的窄深槽的情况,应用DEFORM-3D软件对相应单颗CBN磨粒的磨削力、磨削温度以及磨损进行了仿真分析,结果表明:单颗CBN磨粒受到的磨削力随磨削速度的增大而减小,而磨削温度及磨损均随磨削速度的增大而增大。
     5)针对电镀CBN砂轮(粒度为46#、磨削速度为40m/s)以不同的进给速度(2mm/s,3mm/s,4mm/s,5mm/s)在淬硬轴承钢GCr15上磨削2×10mm的窄深槽的情况,应用DEFORM-3D软件对相应单颗CBN磨粒的磨削力、磨削温度以及磨损进行了仿真分析,结果表明:单颗CBN磨粒受到的磨削力、磨削温度以及磨损均随进给速度的增大而增大。
With the rapid development of mechanical manufacturing industry, Engine and hydraulic pump are used widely. Narrow-and-deep slops are distributed in the root of engine turbine blades and hydraulic pump rotor blades. Narrow-and-deep slop is a special construction which depth-width ratio over2and width over4mm. The quality of narrow-and-deep slop greatly determines the quality of part. Machining narrow-and-deep slop with high accuracy is a difficult problem of mechanical processing. The traditional machining methods with weaknesses such as high cost、low accuracy and can't meet requirement of machining. Because electroplated CBN grinding wheel possesses a series of excellent performance, it has been widely used in machining narrow-and-deep slop and obtained good results.
     The grain size reflects the dimension of grain, which is one of the main characteristic targets of electroplated CBN grinding wheel. Grain's dimension directly effects on taper angle20and blunt round radius rg, so it will affect the sharpness of grain. Grinding parameters directly effect on grinding force、 grinding temperature、grinding wheel wear and machining quality. This paper mainly studies the influence of grain size and grinding parameters on grinding force、grinding temperature、grinding wheel wear based on single abrasive grain grinding. Main content as follow:
     1) The basic principle of grinding is discussed,which mainly include the shape and distribution of cutting edge、physical model of Grinding、contact arc between grinding wheel and workpiece、undeformed chip thickness、grinding force、grinding temperature、grinding wheel wear. It provides theoretical foundation for modeling and simulation.
     2) The geometrical model of workpiece and single CBN abrasive grains with size36#、46、60#、80#are built. CBN grains are simplified as cone shapes with blunt round radiusrg. Workpiece is simplified as cuboid. Straight sliding model is built. Key technology of simulation is introduced, the key parameters are confirmed, such as material model of workpiece、chip separation criterion、 Material fracture criterion、meshing、friction model of rake face and chip、model of wear. the key parameters are proved to be reasonable by simulate results.
     3) It aimed at that narrow-and-deep slop with dimension of2×10is machined on GCr15(grinding speed40m/s、feed speed5mm/s)by CBN grinding wheel with different size(36#、46#、60#、80#).The grinding force、grinding temperature、grinding wheel wear of single CBN abrasive grain is simulated and analyzed using software DEFORM-3D.The results show that:with the size decreasing,the grinding force、grinding temperature and grinding wheel wear of single abrasive grain decrease.
     4) It aimed at that narrow-and-deep slop with dimension of2×10is machined on GCr15(size46#、feed speed5mm/s) by CBN grinding wheel with different grinding speed(20m/s、30m/s、40m/s、50m/s).The grinding force、 grinding temperature、grinding wheel wear of single CBN abrasive grain is simulated and analyzed using software DEFORM-3D.The results show:with the grinding speed increasing, the grinding force decrease,while the grinding temperature and the grinding wheel wear of single abrasive grain increase.
     5) It aimed at that narrow-and-deep slop with dimension of2×10is machined on GCr15(size46#、grinding speed40m/s) by CBN grinding wheel with different feed speed(2mm/s、3mm/s、4mm/s、5mm/s).The grinding force、 grinding temperature、grinding wheel wear of single CBN abrasive grain is simulated and analyzed using software DEFORM-3D.The results show that: with the feed speed increasing, the grinding force、the grinding temperature and the grinding wheel wear of single abrasive grain increase.
引文
[1]叶伟昌.CBN砂轮的进展[J].新技术新工艺.2000.1:13-15.
    [2]张增志.耐磨高锰钢[M].北京:冶金工业出版社.2002.247-248.
    [3]叶伟昌.磨具材料发展的新动向[M].香港:机械制造.1999.3-4.
    [4]周德生.立方氮化硼砂轮磨削的应用与研究试验[J].汽车科技.1996.4:7-11.
    [5]叶伟昌,梁萍.新型砂轮的发展与应用[J].精密制造与自动化.2003.3:26-32.
    [6]周兴建.CBN砂轮的应用方向[J].磨床与磨削.1997,2:17-18.
    [7]武文革,辛志杰.金属切削原理及刀具[M].国防工业出版社.2009:338-339.
    [8]康仁科,史兴宽等.高温合金叶片窄深槽的电镀CBN砂轮缓进给磨削技术研究[J].湖大学学报(自然科学版),1999,26(2):25-29.
    [9]雷力生,崔恒泰.高精度深槽深切缓进给磨削的研究[J].磨料磨具与切削.1985:(4):30-36.
    [10]童圣亭.单层钎焊CBN砂轮成型磨削钛合金的研究[D].南京:南京航空航天大学.2007:25-28.
    [11]章建军.CBN砂轮磨削转子槽[J].磨床与磨削.1993.12:60-61.
    [12]杨海涛.窄深槽磨削中的磨削热分析即控制[J].机械管理开发.2007.03:3-4.
    [13]CBN砂轮磨削的新发展.专题报告.1998.02:15-18.
    [14]Sunarto, Yoshio Ichida. Creep feed profile grinding of Ni-based superalloys with ultrafine-polycrystalline cBN abrasive grits [J]. Precision Engineering.2001, 25:274-283.
    [15]W. Konig, H. Schleich, K. Yegenoglu. High performance grinding with electroplated CBN Wheels. Industrial Diamond Review.1984,6:320-323.
    [16]康仁科,刘建平.电镀CBN砂轮在缓进给磨削叶片窄深槽中的应用[J].西北工业大学学报.1999,12(17):70-74.
    [17]章建军.CBN砂轮磨削转子槽[J].磨床与磨削.1997,3:60-61.
    [18]阎秋生,庄司克雄,田中宪司.金属结合层包覆单列磨粒小直径CBN砂轮端面磨削过程研究[J].机械工程学报.2005,41(8):208-211.
    [19]王典国.电镀单层CBN磨具的研究及其结构优化设计[D].太原:太原理工大学,2008.
    [20]邵景范.基于窄深槽磨削的电镀CBN砂轮基体结构设计及其动态分析[D].太原:太 原理工大学,2010.
    [21]R. P. Upadhyaya, J. H. Fiecoat. Factors Affecting Grinding Performance with Electroplated CBN Wheels [J]. Annals of the CIRP.2007,1(56):339-342.
    [22]J.N. Brecker, M. C. Shaw. Specific energy in single point grinding[J]. Armals of the CIRP 1974,23/1:93-94.
    [23]Vingsbo O, Hogmark S. Single pass pendulum grooving-A technique for abrasive testing [J]. Wear 1984,100:489-502.
    [24]Matsuo T, Toyoura S, Oshima E. Effect of grain shape on cutting force in super abrasive Single-grit tests [J]. Annals of the CIRP,1989,38(1):323-326.
    [25]Ohbuchi Y, Matsuo T. Force and Chip formation in single-grit orthogonal cutting with shaped CBN and diamond grains[J]. Annals of the CIRP,1991,40(1):327-330.
    [26]黄奇,任敬心,华定安.单颗磨粒磨削钛合金的实验研究[J].航空工艺技术.]988,6:1-4.
    [27]黄辉,林思煌,徐西鹏.单颗金刚石磨粒磨削玻璃的磨削力研究[J].中国机械工程.2010,11(21):1278-1282.
    [28]韦秋宁.单颗磨粒磨削硅片的实验研究[D].大连理工大学.2006.19-20.
    [29]Kato K. Micro-mechanisms of wear-wear modes[J]. Wear,1992,153:277-295.
    [30]言兰.基于单颗磨粒切削的淬硬磨具钢磨削机理的研究[D].湖南:湖南大学.2010.
    [31]齐蔚华,李蓓智.基于单颗磨粒玻璃磨削机理的仿真研究[J].工具技术.2009,43(9):17-19.
    [32]Doman D. A. Rubbing and Plowing Phases in single grinding:[dissertation]. Halifax: Dalhousie University,2006,79-101.
    [33]Sasahara H, Obikawa T, Shirakashi T. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer [J]. Journal of Materials Processing Technology.1996,62:448-453.
    [34]王君明,叶人珍.单颗磨粒的平面磨削三维动态有限元仿真[J].金刚石与磨料磨具工程.2009,05:41-45.
    [35]廖熙淘,刘德福,唐进元.负前角磨粒磨削过程磨屑形成的有限元仿真分析[J].现代制造工程.2009,4:36-41.
    [36]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003:12-13.
    [37]张幼桢.金属切削理论[M].北京:航空工业出版社,1988:156-158.
    [38]Werner. A study of grinding force mathematical model[J]. Annals of the CIRP,1980, 245-249.
    [39]李力钧,付杰才.磨削力的数学模型的研究[J].机械工程学报,1981,17(4):31-41.
    [40]Malkin5.磨削技术理论与应用.蔡光起,巩亚东,宗贵亮译.沈阳:东北大学出版社,2002.]-137.
    [41]傅杰才.磨削原理与工艺[M].湖南:湖南大学出版社,1986:28-29.
    [42]薛彩旭,刘献礼,严复钢.不同刃口形式下锯齿形切屑形成过程的仿真及实验研究[J].机械科学与技术,2011,30(4):673-678.
    [43]Usui E, Shirakashi T. Mechanics of Machining-from Descriptive to Predictive Theory, on the Art of Cutting Metals-75 Years Later[J]. ASME-PED,1982,7:13-15.
    [44]Komvopoulos K, Erpenbeck S A. Finite Element Modeling of Orthogonal Cutting [J]. ASME J. Eng. Ind.,1991,113:253-267.
    [45]Zhang B, Bagchi A. Finite Element Simulation of Chip Formation and Comparison with Machining Experiment [J]. ASME J. Eng. Ind.,1994,116:289-297.
    [46]Carroll J T, Strenkowski J S, Finite Element Models of Orthogonal Cutting with Application to Single Point Diamond Turning[J]. Int. J. Mech. Sci.,1988, 30:899-920.
    [47]Iwata K, Osakada A, Terasaka Y. Process Modeling of Orthogonal Cutting by Rigid-plastic Finite Element Method [J]. J. Eng. Mater. Technol.1984,106:132-138.
    [48]Lin Z C, Lin S Y. A Coupled Finite Element Model of Thermo-elastic-plastic Large Deformation for Orthogonal Cutting [J]. ASME J. Eng. Mater. Technol.1992, 114:218-226.
    [49]D. Umbrello, J.Huab, R. ShivPuri. Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel [J]. Materials Science and Engineering,2004,374:90-100.
    [50]郭建英.基于不同刀-屑摩擦模型的金属切削过程动力学研究[D].太原理工大学.2010.
    [51]L. Filicea, F. Micarib, S.Rizzutia. A Critical Analysis on the Friction Modelling in Orthogonal machining[J]. International Journal of MachineTools & Manufacture,2007, 47:709-714.
    [52]E. Usui, T. Shirakashi. Mechanics of Machining-from Descriptive to Predictive Theory [J]. ASME Publications, PED Sciences,1997,39:369-389.
    [53]T. H. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal Machining:Theory and Applications [J]. Elsevier, Amsterdam,2000,407-408.
    [54]史德峰.置氢钛合金TC4高速切削刀具磨损有限元仿真分析[D].南京航天航空大学.16-17.
    [55]H. Takeyama, R.Murata.Basic Investigation of Tool Wear [J]. Journal of Engineering for Industry, Transactions of the ASME,1963,85(1),33-38.
    [56]王雷刚,黄瑶等.基于修正Archard磨损理论的挤压模具磨损分析[J].润滑与密封.2006(03):10-12.
    [57]Scientific Forming Technologies Corporation:Deform 3D-V5.0, User's Manual, 2003:91.
    [58]李传民,王向丽,闫华军等.金属成形有限元分析实例教程指导[M].北京:机械工业出版,2007:2-3.
    [59]罗国涛.硬态车削过程动态切削力特征提取与表面完整性预测[D].哈尔滨理工大学.2010:26-27.
    [60]肖露,文东辉PCBN刀具切削轴承钢时切削速度的研究[J].工具技术.2011,45(4):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700