用户名: 密码: 验证码:
元素W对单晶镍基合金组织稳定性及蠕变性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用Nv和Md法对不同W含量镍基合金进行优化成分设计及TCP相的析出倾向预测;通过合金制备、合金的热处理、X射线衍射分析,研究了元素W含量对合金TCP相析出倾向及晶格常数和错配度的影响;通过不同W含量单晶合金的制备、蠕变性能测试和组织形貌观察,研究了元素W含量对镍基单晶合金组织稳定性及蠕变性能的影响。
     结论表明:当合金中Mo、W、Ta、Al等元素加入量与总加入量的比值大于60%,有TCP相析出;确定出:采用Md和Nv法进行高W镍基合金成分设计时的Md>0.98、Nv>2.10有TCP相析出。经1040℃时效50h后,合金中的TCP相沿{111}晶面呈片析出,在不同晶面多组针TCP相可相互垂直、或互成60°角排列,并确定出析出的TCP相为μ相。随W含量增加,合金中γ′、γ两相的晶格常数增加,晶格错配度由负值转变为正值;经完全热处理后,合金中γ′、γ两相具有较小的晶格错配度,经高温拉伸蠕变后,其γ基体相的晶格常数增大,使其错配度的绝对值增加。铸态合金中元素的偏析特征是:元素Al、Ta、W富集于枝晶干,元素Mo、Cr、Co等富集于枝晶间,经1325℃高温固溶处理可明显降低元素在合金中的偏析程度。合金中的组织缺陷可明显降低合金的蠕变寿命;提高固溶温度及元素W含量,以提高元素的均匀化程度和固溶强化效果,因此,可有效提高合金蠕变性能。在高温蠕变期间,单晶合金表现出较强的应力和温度敏感性;在实验的温度和应力范围内,计算出合金在稳态期间的蠕变激活能和应力指数分别为Q=426.96kJ/mol和n=4.38。
By means of Md and Nv methods, nickel-base superalloys with different content of tungsten have been designed to predict the tendency of TCP phase precipitated. The influence of tungsten content on the tendency of TCP phase precipitated, the lattice parameters and the misfits have been investigated through preparing alloys, the applied of heat treatment of alloys and X-ray diffraction analysis method. And the influence of element tungsten on microstructure stability and creep properties of the single crystal nickel-base superalloys have been investigated by means of preparing of single crystal superalloys, creep properties testing and microstructure observation.
     Results show that the TCP phase is precipitated while the ratio of additions of elements Mo, W, Ta and Al to the total additions is over 60%, and determining that the TCP phase is precipitated while Md > 0.98 and Nv > 2.10 by means of Md and Nv methods to optimize compositions of the nickel-base superalloys with different tungsten content. After the alloy aged for 50h at 1040℃, the TCP phase is precipitated along the {111} crystal planes in the form of the slice-like, and arranged in the form of the upright each other or 60°angle each other when the alloys are observed on the {100} or {111} crystal planes, respectively. In the further, the TCP phase is determined asμphase by means of the electric diffraction analysis. The lattice parameters ofγ' andγphases in alloys are increased with the element W content, and the absolute value of the lattice misfits are transformed into the positive value from negative one. The lower lattice misfits of theγ'/γphases appears in the alloy with the full heat treatment state, and the lattice parameters and misfits of theγ'/γphases are increased after the alloy is crept for longer time at high temperature. The elements Al, Ta and W are richer distributed in the dendrite regions, while the elements Mo, Cr and Co are richer distributed in the interdendrite regions. Compared to the solution treated at 1310℃, the segregation extent of the elements distributed the dendrite/interdendrite regions decreases after the alloy solution treated for 4 h at 1325℃. The casting defects existed in the alloy may obviously decrease the creep life of the one. The homogenization extent of the elements and the effect of the solution strengthening in alloys may be improved by means of enhancing the solution treatment temperature and the element tungsten content, in the further, this may effectively enhance the creep properties of the alloys. During high temperature creep, the single crystal nickel base superalloy exhibits an obvious sensibility of the applied stresses and temperatures. In the range of the applied temperatures and stresses, the activation energy and the stress exponents of alloys during steady state creep are measured as Q = 426.96kJ/mol and n = 4.38, respectively.
引文
[1]徐强,张幸红,韩杰才等.先进高温材料的研究现和发展.固体火箭技术,2002,25(3):51-55.
    [2]江辉.国外航天材料结构新材料发展简述.宇航材料工艺,1998(4):1-8.
    [3]张和善.国外航空结构材料发展概况.航空制造工程,1997,11:3-6.
    [4]Josephrd.Metals Hand book,10th edition,Vol.1,Properties and Selection,1990,981-1006.
    [5]师昌绪,陆达,荣科.中国高温合金40年.北京:中国科技出版社,1996,33(1):1-8.
    [6]Sims C T,Hagel W C.The Superalloys.John Wiley&Sons,1972.
    [7]Mclean M.Directionally solidified materials for high temperature service,Warrendale:TMS,London,1983:9-14.
    [8]张祖谦,刘志中.涡轮叶片用高温合金发展中的几个问题.国际航空,1978,(4):43-48.
    [9]陈荣章.单晶高温合金发展现.材料工程,1995,(9):3-12.
    [10]师昌绪.材料大辞典.北京:化学工业出版社:1994.
    [11]谢锡善.我国高温材料的应用与发展.机械工程材料,2004,28(1):2-11.
    [12]Giamei A F,Anton D L.Effect of Rhenium additions on microstructure of a Ni-base superalloy.Metal mater trans,1985,16A:1997-2005.
    [13]陈金国.军用航空发动机的发展趋势.航空科学技术,1994,(5):9-13.
    [14]胡壮麒,刘丽荣,金涛等.单晶镍基高温合金的发展.航空发动机,2005,31(3):1-7.
    [15]Cetel A D,Duhl D N.Second-generation nickel-base single crystal superalloy,Proc.6th Int.Symp on Superalloys,eds.1988:2-12.
    [16]Blavette D,Caron P and Khan T,An atom-probe study of some fine-scale microstructural features in Ni-based single crystal superalloys,Superalloys 1988.Reichman S,et al eds,The Metallurgical Society,1988:3-12.
    [17]Erickson G L.The development and application ofCMSX-10,Superalloys 1996,Kissinger R D,Deye D J,Cetel A D,et al eds,TMS 1996:35-47.
    [18]Erickson G L.The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application,Superalloys 1996,Kissinger R D,Deye D J,Cetel A D,et al eds,TMS 1996:45-53.
    [19]Walston W S and Rose E W.ReneN6.Third generation single srystal superalloys,Superalloys 1996,Kissinger R D,Deye D J,Cetel A D,et al eds,TMS 1996:27-39.
    [20]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报,2000,(1):55-61.
    [21]孔祥鑫.第四代战机及其动力装置.航空科学技术,1994,(5):21-26.
    [22]Sherby O D,Taleff E M.Influence of grain solute atoms and second-phase particle on creep behavior ofpolycrystalline solids.Materials and Engineering,2002,A322:89-99.
    [23]Gell M,Duhl D N,Giamei A F.The development of single crystal superalloy turbine blades,Proc.of 4th Int.Symp.on superalloys Seven Springs,PA,Sept,1980.205-217.
    [24]Carry C,Strudel J L.Apparent and effective creep parameter in single crystals of a nickel-base superalloy incubation period.Acta Metal,1994,41(9):767-777.
    [25]张遗民 著.航空涡轮风扇发动机.北京:国防工业出版社,1985.104-108.
    [26]Karunaratne M S A,Cox D C,Carter P,et al.Modeling of the microsegregation in CMSX-4superalloy and its homogenization during heat treatment.In:Pollock T M eds.Superalioys 2000.Pennsylvania:Warrendale,2000.263-272.
    [27]Didier A,Cyril V,Yves D et al.A 4th generation single-crystal superalloy ofr future aero-nautical turbine blades and vanes,Superalloys 2000,Pollock T M,Kissinger R D,Bowman R R,et al eds,TMS,2000:829-837.
    [28]Caldwell E C,Fela F J,Fuchs G E.Segregation of elements in high refractory content single crystal nickel based superalloys.In:Green K A,eds.Superalloys 2004.Pennsylvania:Warrendale,2004.811-818.
    [29]Erickson G L.The development of CMSX-10 a third generation SX casting superailoy.21 st Pacific Rim International Conference on Advanced Materials and Processing,1995,6:18-29.
    [30]冶军 编.美国镍基高温合金.北京:科学出版社,1978:208-314.
    [31]Lall C,Chin S,Pope D.The orientation and temperature dependence of the yield stress of Ni3(Al,Nb) single crystals.Metal Trans,1979,A(10):1323-1331.
    [32]马书伟,李嘉荣,候淑娥等.铼对γ′相粗化行为的影响.航空材料学报,2000,20(3):11-15.
    [33]Morozova GI.Balanced alloying of nickel superalloys.Metal.1993(1):38-41.
    [34]Thomas,Allison.Manufacturing Property and Turbine Engineering Performance of CMSX-4Airfoils,Materials for Advanced Power Engineering,1994,14(9):1075-1080.
    [35]Claudia Schulze,Monika Feller-Kniepmeier.Phase compositions and lattice misfit in CMSX-11partition coefficients in single crystal Ni-base superalloy,Scripta Mater.2001,44(1):731-736
    [36]Gnihpel Herold T,Reimers W.Stress states in the creep deformed single crystal Ni-base superailoy SC16.Scripta Metallurgiceat Matuialie,1995,33(4):615-621.
    [37]胡壮麒,管恒荣.紧紧抓住发动机叶片材料的主攻方向.材料导报,1995,(3):89-91.
    [38]Svobodat J,Lukas P.Modelling of recovery controlled creep in Ni-base superalloy singly crystals.Acta Mater,1997,45(1):125-13.
    [39]廖化清,唐亚俊,张静华等.燃气轮机抗热腐蚀DD8单晶叶片材料及其应用研究.材料工程,1992,(1):17-19.
    [40]Muller L,Glatzel U,Felle-Knipmeeier M.Modelling thermal misefit stresses in nickel-base superalloy containing high volume fraction of γ' phase.Acta Metall mater.,1992,(40):1321-1327.
    [41]Bor H Y,Chao C G,Ma C Y.The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy.Scripta Mater,1998,38(2):329-335.
    [42]Komenda J,Henderson P J.Growth of pores during the creep of a single crystal Ni-base superalloy.Scripta Mater,1997,37(11):1821-1826.
    [43]Kelly A,Fine M E,The strength of An Alloy Containing Zones.Acta Met.,1957,5:365-367.
    [44]Foreman A J E,Makin M J,Dislocation movement through random arrays of obstacle.Metal Trans.,1972,3:911-924.
    [45]Lewis M H,Taplin D M Reds,The Solid Mechanics Division,University of Waterloo and Parsons Press,Trinity College,Dublin,Ireland,1983:77-89.
    [46]蔡玉林,郑运荣.高温合金的金相研究.北京:国防工业出版社,1986.225-226.
    [47]Jumoni S U,Miyahara A,Kato M.Structure/property interaction in a long range order strengthened superalloy.Phil.Mag.,1994,70(2):435-442.
    [48]Barrows R G,Newkirk J B.A modified system for predicting σ formation.Metall.Trans,1972,(3):2889-2893.
    [49]Pauling L.The nature of the interatomic forces in metals.Phys.Rev.,1938,9(54):899-901.
    [50]Moringa M,Yukawa N,Ezaki H.Solid solubilities in transition-metal-based f.c.c alloys.Phil.Mag.A.1985,(51):223-246.
    [51]Zhang J S,Hu Z Q,Murata Y,Morinaga M,Yukawa N.Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-Electron alloy design theory.A.1993,(24A):2451-2462.
    [52]Zhao B L,Miao B H,Cheng G L.Formation of μ phase and its effect on mechnical properties of case Nickel base superalloys.Acta Metall.Sinica.,1983,8(19):171 - 177.
    [53]Zhao B L,Miao B H,Cheng G L.On the space group of μ phase in superalloy GH302[J].Acta Metall.Sinica,1981,6(17):386-393.
    [54]Zheng Y R.Primary μ phase in cast nickel base superalioys.Acta Metall.Sinica.,1999,(35):12-18.
    [55]Magrini M,Badan B,Ramous E Z.On γ and γ' phase composition in Ni-base superalloys after high temperature exposure.Metalikole.,1983,74:314-316.
    [56]Glatzel Uand Feller-Kniepmeier.Calculation of internal stresses in the γ/γ' microstructure of a nickel-base superalloy with high volume fraction of γ'-phase.Scripta Metall.,1989,(23):1839-1844.
    [57]Gilles R,Ukherji D,Obbens D et al.Neutron X-ray and electron diffraction measurements for the determination of γ'/γ lattice misfit in Ni-base superalloys.Applied Physics A 2002 7: 1446-1448.
    [58]Diologent F,Caron P,A.Jacques et al.The γ'/γ mismatch in Ni based superalloys:In situ measurements during creep test.Nuclear Instruments and Methods in Physics Research B 2002,(200):346-351.
    [59]Mukherji D,Gilles R,Barbier B et al.Lattice misfit measurement in Inconel 706 containing coherent γ' and γ" precipitates.Scripta Materials 2003,(48):333-339.
    [60]孟凡来,田素贵,王明罡等.单晶镍基合金的组织演化及对晶格错配度的影响.材料研究学报,2007,21(3):225-229.
    [61]Akuhn H,Biemann H,Ungar T et al.An x-ray study of creep-deformation induced changes of the lattice mismatch in the γ′-hardened monocrystalline Nickel-base superalloy SRR 99.Acta metal.mater.1991,39(11):2783-2794.
    [62]Mukherjee A.K,Bird J.E,Dorn J.E.Experimental correlation for high-temperature creep.Trans.ASM.,1969,62:155-166.
    [63]哈宽富.金属力学性质的微观理论.科学出版社.1983:520.
    [64]Kobayash Toshiharu,Harada Hiroshi,Zhan Jianxin.Influence of heat treatment on microstructure and mechanical properties of a 1st generation single-crystal superalloy.Journal of the Japan Institute of Metals,2006,7:47-50.
    [65]Rüsing J,Wanderka N.Rhenium distribution in the matrix and near the particle matrix interface in a model Ni-Al-Ta-Re superalloy.Scr.Mater.,2002,46:235-242.
    [66]Yun,H.M.Effect of composition and microstructure on the creep and stress-rupture behavior of tungsten alloy wires at 1366-1500 K.Materials Science & Engineering,A165,1993:65-74.
    [67]Ma Wenyou,Li Shusuo,Qiao Min,Gong Shengkai et al.Effect of heat treatment on microstructure and stress rupture life of Ni-base single crystal superalloy.Chinese Journal of Nonferrous Metals,2006,16:937-944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700