用户名: 密码: 验证码:
微生物脂肪酶不对称拆分手性醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择了来源于不同微生物的多种立体选择性脂肪酶,利用上述脂肪酶对手性伯醇-环氧丙醇及仲醇-α-苯乙醇进行不对称催化拆分反应,研究其催化反应规律。同时,构建了脂肪酶水相催化拆分体系、反胶束催化拆分体系及有机相催化拆分体系,并研究脂肪酶在不同反应体系中的催化特性,构建了高效的脂肪酶催化拆分手性醇体系,具体内容包括:
     (1)在水相中,将来源于细菌、酵母、霉菌等3种微生物的15种脂肪酶对环氧丙醇进行不对称水解拆分反应,其中华根霉脂肪酶(RCL)对底物的立体选择性最高。以RCL为模式酶,环氧丙醇丁酸酯为模式底物,在水相中构建RCL不对称催化水解拆分环氧丙醇丁酸酯的反应体系。考察了温度、pH、酶浓度、底物浓度及时间等因素对RCL水解底物时立体选择性的影响。研究发现,RCL能够在pH 8.0的磷酸缓冲液体系中高效催化拆分环氧丙醇丁酸酯,当加酶量20 mg/g,40℃,反应时间6 h,转化率约50%时,产物(R)-环氧丙醇丁酸酯的光学纯度可达57.3%。
     (2)在水相中RCL不对称拆分环氧丙醇达到的光学纯度较低,则本研究选择反胶束体系不对称拆分环氧丙醇,进一步提高RCL水解拆分时对底物的立体选择性。分别选取阴离子(CTAB、TBAB)、阳离子(AOT、SDS)及非离子(OP)等几种不同的反胶束,构建反胶束中不对称拆分环氧丙醇体系。经对比研究发现CTAB对RCL立体选择性影响较大,因此选择CTAB体系,进行RCL不对称水解拆分环氧丙醇丁酸酯的工艺优化,考察pH、Wo、底物浓度、温度等条件对RCL立体选择性的影响。实验结果显示,在CTAB中,pH 7.5,Wo为40,0.35 mol/L环氧丙醇丁酸酯,40℃条件下反应3 h,当底物转化率达50%时,R-环氧丙醇丁酸酯的ee值可达81.7%,较水相中显著提高。
     (3)考察15种微生物脂肪酶有机相中不对称转酯化拆分α-苯乙醇。其中Lipase PS对底物的立体选择性最高,因此通过溶剂工程等手段进行拆分工艺的优化,包括对溶剂的筛选、底物浓度、温度、水活度等因素的考察。结果显示,底物醇浓度为0.3 mol/L,初始水活度为0.75,加酶量5 mg/ml,35°C,200 r/min,反应14 h后,(R,S)-α-苯乙醇的转化率达44.7%,产物R-乙酸苯乙酯的ee值为98.6%。另外,通过本研究可知,水活度对脂肪酶不对称拆分反应的催化效率及立体选择性具有显著的影响。
Fifteen stereoselective lipases from different microorganisms were applied to asymmetric resolve chiral alcohols such as glycidol,α-Phenylethanol and the mechanism of the reactions was investigated. The reactions in aqueous phase system, reverse micelle system and organic phase system was compared and the key factors that influence the chiral resolution was studied. In brief, an efficient lipase-catalyzed asymmetric resolution system was constructed which could be used for investigation of the properties of asymmetric resolution of chiral alcohol by lipases.
     (1) The enantioselectivity of the 15 different microbial lipases were tested by the asymmetric hydrolysis of racemic glycidyl butyrate in aqueous medium. Among which the lipase from Rhizopus chinensis (RCL) exhibited higher activity and enantioselectivity. Then, RCL was applied as model enzyme and glycidyl butyrate as model substrate to conduct asymmetric hydrolysis reaction. We investigated the influence of temperature, pH, enzyme dosage, substrate concentration and reaction time on the enzymatic resolution of glycidyl butyrate in aqueous media. The results indicated that the optimal reaction conditions were 20mg/g RCL at 40℃for 6h. Under the optimal conditions, the RCL showed the best performance to produce R-enantiomers with 57.3% ee and 50% conversion of substrate.
     (2) In order to obtain higher optically pure glycidyl butyrate, the hydrolysis of glycidyl butyrate was performed in reverse micelles system by RCL. Five different reverse micelles, based on cetyltrimethyl ammonium bromide (CTAB), Tetramethyl ammonium bromide (TBAB), sodium 2-ethylhexyl sulfosuccinate (AOT), sodium dodecylsulphonate (SDS) and Emulsifier OP-10(OP) were used as reaction media. The research discovered that CTAB had a great influence on the enantioselectivity of RCL. In the CTAB system the effect of pH, Wo, temperature, substrate concentration et al on the optical selectivity of RCL were investigated. The optimal resolution conditions were as follows: pH 7.5, Wo 40, 0.35 M substrate concentration, 40℃, 6 h under which RCL showed ee 81.7% of R-glycidol butyrate. Meanwhile, a clear trend was observed that the activity of RCL was greatly enhanced by the use of reverse micelles system in comparison with a classical aqueous media.
     (3) After screening of 15 different microbial lipases for asymmetric resolution ofα-phenylethanol, Lipase PS from Burkholderia cepacia was chosen to asymmetric transesterification resolutionα-phenylethanol in organic solvent. We investigated the influence factors which played a crucial role on the enantioselectivity of Lipase PS , such as reaction medium, enzyme dosage, substrate concentration, temperature, and water activity et al. The optimal reaction conditions were as follows: 0.3 mol/L (R,S)-α-phenylethanol, and 0.6 mol/L vinyl acetate, 5 mg/mL lipase PS, under 35°C and 200 r/min with the initial water activity of 0.75 for 14 h. lipase PS exhibited the best performance to produce 98.6% ee of (R)-phenylethyl acetate and the substrate conversion reached at 44.7%.
引文
[1] Houde A, Kademi A, Leblanc D. Lipases and their industrial applications - An overview [J]. Applied Biochemistry and Biotechnology, 2004, 118(1-3): 155-170.
    [2] Straathof A J J, Panke SA S. The production of fine chemicals by biotransformations [J]. Current Opinion in Biotechnology, 2002, 13(6): 548-556.
    [3] Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow [J]. Nature, 2001, 409(6817): 258-268.
    [4] Huisman G W, Gray D. Towards novel processes for the fine-chemical and pharmace- utical industries [J]. Current Opinion in Biotechnology, 2002, 13(4): 352-358.
    [5] Beilen J B v, Li Z. Enzyme technology: an overview [J]. Current Opinion in Biotechn- ology, 2002, 13(4): 338-344.
    [6] Pollard D J, Woodley J M. Biocatalysis for pharmaceutical intermediates: the future is now [J]. Trends in Biotechnology, 2007, 25(2): 66-73.
    [7] Hanson R L, Bembenek K S, Patel R N, et al. Transformation of N epsilon-CBZ-L-ly- sine to CBZ-L-oxylysine using L-amino acid oxidase from Providencia alcalifaciens and L-2-hydroxy-isocaproate dehydrogenase from Lactobacillus confusus [J]. Applied Microbiology and Biotechnology, 1992, 37(5): 599-603.
    [8] R.N.帕特尔.立体选择性生物催化[M].北京:化学工业出版社, 2004. 328-334.
    [9] Suan C, Sarmidi M R. Immobilised lipase-catalysed resolution of (R,S)-1-phenyletha- nol in recirculated packed bed reactor [J]. Journal of Molecular Catalysis B:Enzymatic, 2004, 28(2-3): 111-119.
    [10] Xu G, Chen Y-M, Wu J-P, et al. Preparation of (S)-2-(2-chloro-1-hydroxyethyl)thioph- ene by lipase-catalyzed resolution in organic phase [J]. Chinese Journal of Organic Chemistry, 2007, 27(7): 857-861.
    [11] Cabrera Z, Fernandez-Lorente G, Palomo J M, et al. Asymmetric hydrolysis of dimethyl 3-phenylglutarate catalyzed by Lecitase Ultra Effect of the immobilization protocol on its catalytic properties [J]. Enzyme and Microbial Technology, 2008, 43(7): 531-536.
    [12] Palomo J M, Segura R L, Mateo C, et al. Synthesis of enantiomerically pure glycidol via a fully enantioselective lipase-catalyzed resolution [J]. Tetrahedron: Asymmetry, 2005, 16(4): 869-874.
    [13] Xue L, Zhou D J, Tang L, et al. The asymmetric hydration of 1-octene to (S)-(+)-2-oc- tanol with a biopolymer-metal complex, silica-supported chitosan-cobalt complex [J]. Reactive & Functional Polymers, 2004, 58(2): 117-121.
    [14]杨立荣.有机介质中脂肪酶催化反应及其手性醇的拆分[D]. [博士学位论文].杭州:浙江大学材料与化学工程学院, 2003
    [15] Yu L, Xu Y, Wang X, et al. Highly enantioselective hydrolysis of DL-menthyl acetate to L-menthol by whole-cell lipase from Burkholderia cepacia ATCC 25416 [J]. Journal of Molecular Catalysis B-Enzymatic, 2007, 47(3-4): 149-154.
    [16] Lozano P, De Diego T, Carrie D, et al. Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide [J]. Journal of Molecular Catalysis a-Chemical, 2004, 214(1): 113-119.
    [17] Yu D, Wang Z, Chen P, et al. Microwave-assisted resolution of (R,S)-2-octanol by enzymatic transesterification [J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 48(1-2): 51-57.
    [18] Kasai N, Suzuki T, Furukawa Y. Chiral C3 epoxides and halohydrins: Their preparation and synthetic application [J]. Journal of Molecular Catalysis B: Enzymatic, 1998, 4(5-6): 237-252.
    [19] Pregnolato M, Terreni M, Fuentes I E d, et al. Enantioselective enzymatic hydrolysis of racemic glycidyl esters by using immobilized porcine pancreas lipase with improved catalytic properties [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4-6):757–763.
    [20] Palomo J M, Segura R L, Fuentes M, et al. Unusual enzymatic resolution of (±)-glyci- dyl-butyrate for the production of (S)-glycidyl derivatives [J]. Enzyme and Microbial Technology, 2006, 38(3-4): 429-435.
    [21] Brickner S J, Hutchinson D K, Barbachyn M R, et al. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant Gram-positive bacterial infections [J]. Journal of Medicinal Chemistry, 1996, 39(3): 673-679.
    [22] Weidner-Wells M A, Boggs C M, Foleno B D, et al. Novel piperidinyloxy oxazolidin- one antibacterial agents. Diversification of the N-substituent [J]. Bioorganic & Medic- inal Chemistry, 2002, 10(7): 2345-2351.
    [23] Waechter A I, Ferreira M E, Fournet A, et al. Experimental treatment of cutaneous leishmaniasis with argentilactone isolated from Annona haematantha [J]. Planta medi- ca, 1997, 63(5): 433-435.
    [24] Matsuda M, Endo Y, Fushiya S, et al. CYTOTOXIC 6-SUBSTITUTED 5,6-DIHYD- RO-2H-PYRAN-2-ONES FROM A BRAZILIAN MEDICINAL PLANT, CHORISI- A-CRISPIFLORA [J]. Heterocycles, 1994, 38(6): 1229-1232.
    [25] Kloosterman M, Elferink V H M, van Iersel J, et al. Lipases in the preparation ofβ-blockers [J]. Trends in Biotechnology, 1988, 6(10): 251-256.
    [26] Agustian J, Kamaruddin A H, Bhatia S. Single enantiomericβ-blockers—The existing technologies [J]. Process Biochemistry, 2010, 45(10): 1587-1604.
    [27] Alexey L M. Enzymes in the synthesis of chiral drugs [J]. Enzyme and MicrobialTechnology, 1993, 15(4): 266-280.
    [28] Furukawa S-y, Ono T, Ijima H, et al. Effect of imprinting sol-gel immobllized lipase with chiral templete substrates in esterification of (R)-(+)- and (S)-(-)-glycidol [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 17(2002):23–28.
    [29] Aragones S, Bravo F, Diaz Y, et al. Synthesis of amino-1,4-anhydro-D-pentitols and amino-1,5-anhydro-D-hexitols with the arabino configuration from (R)-glycidol [J]. Tetrahedron-Asymmetry, 2003, 14(13): 1847-1856.
    [30] Bonini C, Chiummiento L, Lopardo M T, et al. A general protocol for the regio high yielding opening of different glycidol derivatives [J]. Tetrahedron Letters, 2003, 44(13): 2695-2697.
    [31] Fessner W-D, Anthonsen T. Modern Biocatalysis [M]. Darmstadt: Wiley-VCH Press, 2009. 109-120.
    [32]单海霞,陆杨,李在均,等.新型1,3-二丁基咪唑离子液体中脂肪酶催化折分(R,S)-1-苯乙醇[J].化学学报, 2010, 68(10): 1010-1016.
    [33] Suan C, Sarmidi M R. Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor [J]. Journal of Molecular Catalysis B:Enzymatic, 2004, 28(2-3): 111-119.
    [34] Shah S, Gupta M N. Kinetic resolution of (±)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases [J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(4): 921-924.
    [35] R.N.帕特尔.立体选择性生物催化[M].北京:化学工业出版社, 2004.28-334.
    [36]严祥辉,薛屏.用壳聚糖修饰的MCM-48固定化脂肪酶拆分(R,S)-1-苯乙醇[J].宁夏大学学报(自然科学版), 2009, 30(1): 50-54.
    [37] Habulin M, Knez Z. Optimization of (R,S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids [J]. Journal of Molecular Catalysis B-Enzymatic, 2009, 58(1-4): 24-28.
    [38] Lozano P. Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide [J]. Journal of Molecular Catalysis A: Chemical, 2004, 214(1): 113-119.
    [39] Palomo J M, Segura R L, Fernandez-Lorente G, et al. Enzymatic resolution of (±)-glycidyl butyrate in aqueous media. Strong modulation of the properties of the lipase from Rhizopus oryzae via immobilization techniques [J]. Tetrahedron: Asymmetry, 2004, 15(7): 1157-1161.
    [40] Pregnolato M, Terreni M, de Fuentes I E, et al. Enantioselective enzymatic hydrolysis of racemic glycidyl esters by using immobilized porcine pancreas lipase with improved catalytic properties [J]. Journal of Molecular Catalysis B-Enzymatic, 2001, 11(4-6): 757-763.
    [41] Yu D, Wang L, Gu Q, et al. A two-step enzymatic resolution of glycidyl butyrate [J]. Process Biochemistry, 2007, 42(9): 1319-1325.
    [42]匡春兰,钱俊青,邹小明,等. R-丁酸缩水甘油酯的酶法拆分研究[J].浙江工业大学学报, 2004, 32(5): 581-585.
    [43]李飞.华根霉脂肪酶基因重组菌的发酵调控与工业化放大[D]. [硕士学位论文].无锡:江南大学生物工程学院, 2010.
    [44] Y Hui YH, Khachatourians GG. Food Biotechnology: Microorganisms [M]. Weinheim: VCH, 1995. 549-588.
    [45] Ching-Shih Chen, Shih-Hsiung Wu, Gary Girdaukas, et al. 1 Quantitative Analyses of Biochemical Kinetic Resolution of Enantiomers 2. Enzyme Cata1yzed Esterifications in Water Organic Solvent Biphasic Systems [J]. J. Am. Chem. SOC, 1987, 109(9): 2812-2817.
    [46] Yang Z, Zhang K-P, Huang Y, et al. Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6] [J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 63(1-2): 23-30.
    [47]张媛媛,宗敏华,娄文勇,等.脂肪酶催化外消旋对羟基苯甘氨酸甲酯水解制备对映体纯D-对羟基苯甘氨酸的新方法[J].催化学报, 2005, 26(2): 106-110.
    [48] Wang P, Zhu J, He J. Enantioselective Synthesis of S-(+)-2,2-Dimethylcyclopropanecarboxylic Acid from Ethyl-2,2-dimethylcyclopropanecarboxylate Catalyzed by Lipase Novozyme 435 [J]. Chinese Journal of Catalysis (Chinese Version), 2010, 31(6): 651-655.
    [49]单天宇,王栋,徐岩,等.华根霉菌丝体结合脂肪酶催化酯合成动力学拆分2辛醇[J].催化学报, 2008, 29(4): 403-408.
    [50]李小路,王栋,徐岩,等.脂肪酶催化酯化拆分与水解拆分2-甲基丁酸及其酯[J].催化学报, 2009, 30(9): 951-957.
    [51]王睿,喻晓蔚,沙冲,等.定向进化-易错PCR方法提高华根霉Rhizopus chinensis CCTCC M201021脂肪酶的活力[J].生物工程学报, 2009, 25(12): 1892-1899.
    [52] Wu J, He Z, Yao C, et al. Increased activity and stability of candida rugosa lipase in reverse micelles formed by chemically modified AOT in isooctane [J]. Journal of chemical technology and buotechnology, 2001, 76(9): 949-953.
    [53] Carvalho C M L, Cabral J M S. Reverse micelles as reaction media for lipases [J]. Biochimie, 2000, 82(1): 1063-1085.
    [54] Ramadas SK, rupadanam G L D. Enantioselective acylation of (±)-cis-flavan-4-ols catalyzed by lipase from Candida cylindracea (CCL) and the synthesis of enantiopure flavan-4-ones [J]. Tetrahedron: Asymmetry, 2004, 15(21): 3381-3391.
    [55] Gültekin M S, ?elik M, Turkut E, et al. Resolution of (±)-anti-2,3-dioxabicyclo[2.2.2]oct-7-en-5-ol via Candida cylindracea lipase: synthesis of (?)- and (+)-proto-quercitol [J]. Tetrahedron: Asymmetry, 2004, 15(3): 453-456.
    [56] Skouridou V, Chrysina E D, Stamatis H, et al. Kinetic and modelling studies on the lipase catalysed enantioselective esterification of (±)-perillyl alcohol [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 29(1-6): 9-12.
    [57] Ljubovic E, Sunjic V. Correlation between distance of the perturbing groups and enantioselectivity of the lipase catalyzed acetylation of acyclic sec alcohols [J]. Tetrahedron-Asymmetry, 1997, 8(1): 1-4.
    [58] Fessner W-D, Anthonsen T. Modern Biocatalysis [M]. Darmstadt: Wiley-VCH Press, 2009. 109-120.
    [59] Padt A V d, Sewalt J J W,ágoston S M I, et al. Candida rugosa lipase stability during acylglycerol synthesis [J]. Enzyme Microb Technol, 1992, 14(10): 805-812.
    [60] Chowdary G V, Prapulla S G. The influence of water activity on the lipase catalyzed synthesis of butyl butyrate by transesterification [J]. Process Biochemistry, 2002, 38(3): 393-397.
    [61] Ma L, Persson M, Adlercreutz P. Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions [J]. Enzyme and Microbial Technology, 2002, 31(7): 1024-1029.
    [62] Valivety R H, Hailing P J, Peilow A D, et al. Lipases from different sources vary widely in dependence of catalytic activity on water activity [J]. Biochhnica et Biophysica Acta, 1992, 1122(2): 143-146.
    [63] Han J J, Rhee J S. Effect of salt hydrate pairs for water activity control on lipase-catalyzed synthesis of lysophospholipids in a solvent-free system [J]. Enzyme and Microbial Technology, 1998, 22(3): 158-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700