用户名: 密码: 验证码:
雁木西油田白垩系沉积微相及储层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对雁木西油田白垩系低阻油层受沉积相带及其断裂、构造和岩性等多种因素控制,在上部地层大套膏盐地层采用盐水泥浆钻井,测井信息应用难度增大,提出利用多种测井响应提取单渗砂层能量厚度信息,使其曲线形态、特征和数据大小能够集中反映相对高渗的单渗砂层最大沉积能量及厚度变化,有效克服了层段中几个成因相近薄砂层或砂泥互层中砂层累加厚度划分主体骨架砂体微相带的失误。利用地层倾角测井,确定了古水流方向、砂体延伸、层理构造和微相特征;结合单井相序、连井剖面相、平面沉积微相展布研究,重构了该区白垩系沉积模式,阐明了扇三角洲前缘水下辫状河道、浅水河道骨架砂体有利微相带的发育规模及分布范围。通过该区白垩系井径、自然伽马、密度、中子、声波测井曲线和岩性、孔隙度及其能量厚度统计,在目的层段提取单渗砂层沉积能量厚度下限标准,分析了水下辫状河道、浅水河道有利沉积微相带展布及其与油气富集的生、储、盖组合匹配关系。采用浅水河道微相控制K1S1期、水下辫状河道控制K1S2期储层精细评价解释,有效地圈定并阐明了新增油层有效厚度及其分布,为该区油田增储上产和调整挖潜提供了可靠依据。
In the Yanmuxi oilfield of cretaceous, the low resistivity reservoir is influent by sedimentary facies, fracture, structure and lithology, plus the upper gypsum stratum effects by the salty mud, logging information is difficult to use. Aim at this characteristic, in this paper we picked up single penetrability sand body thickness to by various logging methods to make the borehole log shape and data able to reflect the relatively high permeability largest sedimentary energy and its thickness difference. So it overcome the lapse that the total sand thickness of several genetic similar thin sand layer ro sand-clay layer to classify frame sedimentary sand distribution.We use the dip logger to determine the direction of flow, sand body extension, stratification structure and sedimentary characteristics. Combine the research of single well sedimentary system, bisect sedimentary and ichnography sedimentary, the depositional model is built. So underwater channel sand, shallow channel sand body in front of fan delta which is the favorable sedimentary micro-faces distribution.Through the statistic of diameter, natural gamma ray, density, neutrons, acoustic as well as lithologic and porosity features. The limiting of single penetrability sand thickness is built. In the aim layer we pick up sing penetrability sand sedimentary energy, so the relationship between the favorable faces and association of source-reservoir-cap rock where oil or gas is gathering. By that method we find out that, the K1S1 phase is controlled by shallow water faces, and underwater braid channel control the K1S2 phase. And effective thickness of pay both append and present distribution is made out. So our job give reliable basis to the reserve increasing and potential capacity seeking.
引文
[1]王劲松,张宗和.吐哈盆地雁木西油田油藏描述[J].新疆石油地质,2000,21(4):286-289.
    [2]宋子齐,常蕾,孙颖等.雁木西油田白垩系有利沉积相带与油藏储量分布[J].断块油气田,2010,17(1):14-18.
    [3]曹广华,胡亚华,张奇文等.利用测井资料识别沉积微相方法研究[J].科学技术与工程,2007,7(15):75-79.
    [4]赵澄林,朱筱敏.沉积岩石学.石油工业出版社,第三版,229页.
    [5]陈源仁,石和.层序生物地层学[J].成都理工大学学报(自然科学版),2003,30(3):254-257.
    [6](美)C.E.佩顿.地震地层学在油气勘探中的应用.石油工业出版,1980.
    [7]陈留勤.从基本层序地层模式论地层穿时的本质——以滇黔桂盆地泥盆纪层序地层格架为例[J].西北地质,2008,41(1):50-56.
    [8](美)C·K-威尔格斯等编.层序地层学原理.石油工业出版社,1993.
    [9]文慧俭.大庆长垣北部高台子油层沉积微相研究[D].大庆石油学院:大庆石油学院,2002.
    [10]于河兴.沉积相的研究方法与沉积作用.中国地质大学能源系石油教研室,2002,46页.
    [11]Runge R.J etal.Obtaining lumped[blocked] well logs by simulated annealing[J].The Log Analyst,1991,32(4).
    [12]Samuel J.R etal.Determination of litology from well logs using a neural network[J].AAPG Bulletin,1992,76(5).
    [13]雍世和,文政.用Bayes判别法定量识别沉积微相[J].测井技术,1995,14(1):41-45.
    [14]计秉玉等著.多学科集成化油藏研究方法与应用,石油工业出版社,2009-4-1.
    [15]郭曦榕,黄地龙.一种基于神经网络的沉积相识别方法.石油工业计算机应用.2006,14(1):8-10.
    [16]文浩.一种改进的模糊神经网络方法判定沉积微相的研究[J].内蒙古石化.2007,5:196-197.
    [17]王良忱,张金亮.沉积环境和沉积相[M].北京:石油工业出版社,1993,23-65.
    [18]顾家裕等.沉积相与油气[M].北京:石油工业出版社,1994,75-90.
    [19]孙永传,李蕙生.碎屑岩沉积相及沉积环境[M].北京:地质出版社,1986,160-161.
    [20]宋子齐,王桂成,赵宏宇等.利用单渗砂层能量厚度研究有利沉积微相及其含油有利区的方法[J].沉积学报,2008,26(3):452-457.
    [21]周丽梅,李德发.大丘构造S组储层孔隙结构特征及储层评价[J].矿物岩石,1999,19(2):47-51.
    [22]赵虹,李文厚.安塞地区延长组沉积微相研究[J],天然气地球科学,2004,15(5)
    [23]赵澄林.沉积学原理[M].北京:石油工业出版社,2001,26-38.
    [24]D. A.Lawrence, TOTAL S.A., Paris, et al.Recognition of Sedimentary Facies and Deformation from Borehole Images in Deep-wateEnvironments-Applications from Offshore Nigeria[C], SPE85687,2003.
    [25]夏位荣,张占峰等.油气田开发地质学[M].北京:石油工业出版社,1997.
    [26]M.N. Alfredo, M.B. Jose.NMR Applications for the Determination ofSedimentary Facies and Porosity Systems in Carbonatic Core Plug Samples, SPE95878-MS
    [27]齐兴国,张元,巨亚明.微电极测井在雁木西油田的应用效果评价[J].吐哈油气,2005,10(3):279-283.
    [28]曾翔宇,李道阳,宋学良等.变速成图技术在雁木西地区滚动勘探中的应用[J].吐哈油气,2005,10(1);64-67.
    [29]胡霞.双河油田核三段Ⅱ油组沉积微相研究[D].大庆石油学院:大庆石油学院,2008.
    [30]刘星,陆友明,程守田等.垦西油田馆陶组河流沉积高分辨率层序地层研究[J].沉积学报,2002,20(1);101-106.
    [31]周永亮,许春艳等.地层倾角测井资料在大港油田应用研究[J].测井技术,2006,30(6):565-586.
    [32]韩成,张日供,李留中等.吐哈盆地台北凹陷低电阻油气层测井评价[J].测井技术,2008,32(1):49-52.
    [33]陈妍,陈世悦,张鹏飞.古流向的研究方法探讨[J].断块油气田,2008,15(1):37-40.
    [34]李潮流,李谦.利用测井信息判识古流向的方法探讨[J]..测井技术,2008,32(5):427-432.
    [35]宋子齐,冯玉成,唐长久等.地层倾角测井在沉积微相研究中的应用[J].断块油气田,2009,16(4):4-7.
    [36]王郑库,欧成华,李凤霞.吴旗地区长61储层沉积微相及物性研究[J].石油仪器,2007,21(5):51-54.
    [37]柳锦云.低渗透油藏有效厚度下限标准研究[J].海洋石油,2008,28(3):70-73.
    [38]Sulllivain-K B, Mcbride E F-Diagenes of sandstones at shale contacts and diagenetic heteroqeneity, Frio Formation, Texas [J]·AAPG,1991,75 (1):121-138.
    [39]屈传刚,师国记,崔梅红.老井复查评价技术在老区增储增效中的应用[J].中外能源,2008,13(3):73-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700