用户名: 密码: 验证码:
PAMPSLi基电纺纤维聚合物电解质的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物电解质是决定聚合物锂离子电池性能的关键材料,不仅要求其具有良好的电化学性能,还要有良好的热稳定性和尺寸稳定性。本论文针对单离子传输聚合物电解质电导率低,纤维基聚合物电解质尺寸稳定性差以及PVDF基聚合物电解质电解液泄漏等问题,以2-丙烯酰胺-2-甲基丙磺酸(AMPS)为主要单体,利用磺酸基团的离子交换反应和碳碳双键的聚合反应,采用共混、共聚和与有机-无机杂化颗粒复合等方法开展聚合物电解质的制备、改性和结构与性能的相关性研究,以实现聚合物电解质物理和电化学性能的优化。
     通过将非挥发性增塑剂聚醚接枝聚硅氧烷(PSi-PE)引入到PAMPSLi基全固态单离子传输聚合物电解质体系中,缩短了体系聚合物链段运动松弛时间,进而提高了锂离子的迁移能力。电导率测试结果表明,随着PSi-PE添加量的增加电导率先增大后减小,当PSi-PE的添加量为35%时,室温离子电导率达到最大(6.9×10~(-8)S/cm),比未添加PSi-PE的体系增加了大约20倍。
     为进一步提高单离子聚合物电解质的离子电导率,制备了以有机溶剂(EC/DMC,质量比为1:1)为增塑剂的PAMPSLi纤维基单离子传输聚合物电解质。利用混合增塑剂提高锂离子的解离和迁移能力,同时借助电纺膜的超大比表面积特性增加聚合物锂盐和增塑剂的作用面积,进而提高单离子导体的离子电导率。用于电纺的PAMPSLi采用先聚合后离子交换的方法合成,热重分析表明,PAMPSLi在304℃之前不分解。通过改变纺丝液混合溶剂组成制得不同比表面积的PAMPSLi基电纺纤维膜。红外光谱测试表明,该纤维膜在增塑剂中能够发生有效解离。室温离子电导率可达2.12×10~(-5)S/cm。此外,此类聚合物电解质具有优良的尺寸稳定性和电化学稳定性。
     针对聚甲基丙烯酸甲酯(PMMA)对碳酸酯类电解液亲和性好,当电解液含量较高时无法得到形态稳定的聚合物电解质薄膜这一问题,采用AMPS和MMA共聚的方法制备了P(MMA-co-AMPSLi)纤维基聚合物电解质。通过引入耐溶剂性较好的AMPSLi单元来调整聚合物对溶剂的亲和性。实验结果表明:随着AMPSLi单元含量的增加,P(MMA-co-AMPSLi)的可纺性和耐溶剂性增强,共聚物纤维膜在电解液中的溶胀程度也随之减小,孔结构保持能力得到改善,电纺膜的吸液率增大。同时P(MMA-co-AMPSLi)电纺膜的介电常数也随着AMPSLi单元含量的增加而增大。单体投料比为MMA:AMPS=2:8的P(MMA-co-AMPSLi)纤维基聚合物电解质室温电导率达到4.12×10~(-3)S/cm,电化学窗口达到5.0V。P(MMA-co-AMPSLi)的合成成功克服了PMMA凝胶聚合物电解质对制备条件的苛刻要求,同时有效提高了聚合物电解质的性能。
     针对聚偏氟乙烯(PVDF)基纤维聚合物电解质存在的形状稳定性差问题,采用PAMPSLi和PVDF共混纺丝制备了一组新型复合纤维聚合物电解质。复合纤维体系无相分离结构出现,PAMPSLi和PVDF之间的相互作用提高了体系的相容性并且抑制了PVDF分子链的定向排列,降低了纤维的结晶度,同时聚合物电解质体系的尺寸稳定性也得到了显著提高。复合纤维膜的平均纤维直径远小于纯PVDF膜。当共混比例为PVDF:PAMPSLi=5:1时,所得纤维膜直径较细,平均直径可达145nm,并且吸液率、离子电导率、尺寸稳定性和电化学稳定性等性能较好。采用PAMPSLi与PVDF共混纺丝是提高PVDF纤维聚合物电解质性能的有效方法。
     针对PVDF的高结晶度限制了离子电导率的提高并且容易引起电解液漏泄的问题,采用原子转移自由基聚合法合成了有机-无机杂化纳米颗粒PMMA-g-TiO_2,将其与PVDF混合纺丝制得了PVDF/PMMA-g-TiO_2复合纤维聚合物电解质。PMMA-g-TiO_2中接枝聚合物分子量相对较低且分布均匀,有利于电解液的快速渗透。杂化纳米颗粒的引入降低了PVDF的结晶度,同时由于PMMA具有较强的电解液亲和性,复合电纺膜对电解液的吸收率明显增大。PVDF/PMMA-g-TiO_2复合纤维聚合物电解质的电解液保持能力显著增强,室温离子电导率达到2.95×10~(-3)S/cm,电化学窗口为5.3V。
Polymer electrolytes as key materials for lithium ionic batteries are required topossess not only a good electrochemical performance, but also excellent thermalstability and dimensional stability. Aiming at the problems, such as the low ionicconductivity of single-ion conducting polymer electrolytes, the poor dimensionalstability of fiber-based polymer electrolytes and the leakage of electrolyte solutionfor PVDF-based gel polymer electrolytes,2-acrylamido-2-methylpropane-sulfonicacid (AMPS) was chosen as a main monomer for the modification of polymerelectrolytes utilizing ion-exchange processes and polymerization reaction. Themethods like blending, copolymerization and complex with organic-inorganichybrid particles were adopted to optimize the physical and electrochemicalproperties of polymer electrolytes. The preparation, modification, and therelationships between structures and properties were investigated.
     The nonvolatile and chemically inert plasticizer poly(siloxane-g-ethyleneoxide)(PSi-PE) was introduced into a PAMPSLi-based all-solid-state single-ionconducting polymer electrolyte. The addition of PSi-PE shortened the relaxationtime of the polymer chain segments and improved the mobility of the segments,which was beneficial to the migration of lithium ions. The test results of theconductivity showed that the conductivity first increased and then decreased withthe increase of PSi-PE. When35mass%PSi-PE was added, the ionic conductivity atroom temperature got the maximum value (6.9×10~(-8)S/cm), which was about20times larger than that of the membrane without PSi-PE.
     To further enhance the ionic conductivity, the method adopting an organicsolvent(EC/DMC,1:1, mass ratio) as a plasticizer to promote both the ionicdissociation of the polymeric lithium salt and the ionic migration was considered.Meanwhile, the large specific surface area of the electrospinning membrane wasused to improve the contact area between the polymeric lithium salt and theplasticizer, further to enhance the ionic conductivity of the single-ion conductor.PAMPSLi used for the electrospinning procedure was synthesized by free-radicalpolymerization of2-acrylamido-2-methyl propanesulfonic acid, followed byion-exchange of H~+with Li~+. TG analysis showed that its decomposition did notoccur until304℃. PAMPSLi electrospun membranes with different specific surfaceareas were fabricated by varying the solvent composition of polymer solutions.FTIR tests showed PAMPSLi dissociated effectively in the plasticizer. Theroom-temperature ionic conductivity was up to2.12×10-5S/cm. In addition, this kind of polymer electrolytes had excellent dimensional stability and electrochemicalstability.
     To solve the problem that it was difficult to obtain PMMA-based polymerelectroytes with good dimensional stability under high content of electrolyte,P(MMA-co-AMPSLi) fiber-based polymer electrolytes were prepared through thecopolymerization of AMPS and MMA. The introduction of AMPSLi units whichhave better solvent resistance can adjust the solvent affinity ofP(MMA-co-AMPSLi). The test results manifested that the spinnability ofP(MMA-co-AMPSLi) was improved with the increase of the content of AMPSLiunits. Meanwhile, the solvent resistance of P(MMA-co-AMPSLi) was improved,and the degree of swelling of the fibers in the electrolyte solution decreased. Theholding ability of pore structure and the uptake of electrolyte solution wereenhanced. The dielectric constants of P(MMA-co-AMPSLi) electrospun membranesalso increased with the increase of the AMPSLi unit content. When the feed ratio ofMMA:AMPS was2:8, the ionic conductivity of the resultant fibrous polymerelectrolyte at room temperature was4.12×10~(-3)S/cm, and the electrochemicalwindow was up to5.0V. The synthesis of P(MMA-co-AMPSLi) successfullyovercame the requirements of the preparation conditions for PMMA gel polymerelectrolyte, and improved effectively the performance of the polymer electrolyte.
     To overcome the disadvantage of poor dimensional stability of PVDF-basedelectrospun fibrous polymer electrolytes and facilitate the assemblage of batteries, anew type of bicomponent fibrous membranes based on PVDF/PAMPSLi blendsystems with different blend ratios were fabricated via electrospinning method. Theinteraction between PAMPSLi and PVDF improved the miscibility of two polymers,suppressed the orientation of the PVDF molecular chain, and reduced thecrystallinity of PVDF. Meanwhile, the introduction of PAMPSLi improved thedimensional stability of the polymer electrolytes. The average diameters of thebicomponent fibrous membranes were far lesser than those of the pure PVDFfibrous membranes. The average fibrous diameter of the composite fibrousmembrane with the blend ratio of5:1(PVDF:PAMPSLi) was145nm, and theproperties of the corresponding polymer electrolyte, such as the uptake ofelectrolyte, ionic conductivity, dimensional stability, and electrochemical stability,reached optimal value. Incorporation of PAMPSLi has been verified to be aneffective method in improving the properties of PVDF based fibrous polymerelectrolytes.
     The high crystallinity of PVDF limits the increase of ionic conductivity, andoften causes the problem of the electrolyte leakage. To solve these problems, organic-inorganic hybrid nanoparticles PMMA-g-TiO_2was synthesized throughatom transfer radical polymerization. The PVDF/PMMA-g-TiO_2composite fiberpolymer electrolytes were fabricated using electrospinning technology. Themolecular weight of the grafted polymer distributed uniformly and the averagemolecular weight was relatively low, which was beneficial to the penetration of theelectrolyte solution. The introduction of PMMA-g-TiO_2reduced the crystallinity ofPVDF, and improved the electrolyte uptake due to the excellent affinity of PMMAtoward the liquid electrolyte. The capability of electrolyte retention of fibrouspolymer electrolytes was enhanced by the incorporation of PMMA-g-TiO_2. Theionic conductivity at room temperature was up to2.95×10~(-3)S/cm, and theelectrochemical window reached5.3V.
引文
[1] Yang H, Amiruddin S, Bang H J, et al. A review of Li-Ion cell chemistries andtheir potential use in hybrid electric vehicles[J]. Journal of Industrial andEngineering Chemistry,2006,12(1):12-38.
    [2] Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeablebatteries: recent advances and perspectives[J]. Chemical Society Reviews,2011,40(5):2525-2540.
    [3] Ahmad S. Polymer electrolytes: characteristics and peculiarities[J]. Ionics,2009,15(3):309-321.
    [4] Di Noto V, Lavina S, Giffin G A, et al. Polymer electrolytes: Present, past andfuture[J]. Electrochimica Acta,2011,57:4-13.
    [5]张鹏,李琳琳,何丹农等.锂离子电池凝胶聚合物电解质研究进展[J].高分子学报,2011,(02):125-131.
    [6] Kim H T, Kim K B, Kim S W, et al. Li-ion polymer battery based onphase-separated gel polymer electrolyte[J]. Electrochimica Acta,2000,45(24):4001-4007.
    [7] Li W L, Gao Y M, Wang S M. Gel polymer electrolyte with semi-IPN fabricfor polymer lithium-ion battery[J]. Journal of Applied Polymer Science,2012,125(2):1027-1032.
    [8] Yap K S, Teo L P, Sim L N, et al. Investigation on dielectric relaxation ofPMMA-grafted natural rubber incorporated with LiCF3SO3[J]. PhysicaB-Condensed Matter,2012,407(13):2421-2428.
    [9]金波,舒玉光,李义等.锂离子电池聚合物电解质研究进展[J].高分子材料科学与工程,2011,(07):183-186.
    [10] Sumathipala H H, Hassoun J, Panero S, et al. High performance PEO-basedpolymer electrolytes and their application in rechargeable lithium polymerbatteries[J]. Ionics,2007,13(5):281-286.
    [11] Oh J S, Kim S H, Kang Y, et al. Electrochemical characterization of blendpolymer electrolytes based on poly(oligo[oxyethylene]oxyterephthaloyl) forrechargeable lithium metal polymer batteries[J]. Journal of Power Sources,2006,163(1):229-233.
    [12] Zhang J W, Huang X B, Wei H, et al. Preparation and electrochemicalbehaviors of composite solid polymer electrolytes based on polyethyleneoxide with active inorganic-organic hybrid polyphosphazene nanotubes asfillers[J]. New Journal of Chemistry,2011,35(3):614-621.
    [13] Appetecchi G B, Aihara Y, Scrosati B. Investigation of swelling phenomena inPEO-based polymer electrolytes-II. Chemical and electrochemical charact-erization[J]. Solid State Ionics,2004,170(1-2):63-72.
    [14] Chatterjee J, Liu T, Wang B, et al. Highly conductive PVA organogelelectrolytes for applications of lithium batteries and electrochemicalcapacitors[J]. Solid State Ionics,2010,181(11-12):531-535.
    [15] Liao Y H, Rao M M, Li W S, et al. Fumed silica-doped poly(butylmethacrylate-styrene)-based gel polymer electrolyte for lithium ion battery[J].Journal of Membrane Science,2010,352(1-2):95-99.
    [16] Sinha K, Wang W Q, Winey K I, et al. Dynamic Patterning in PEO-BasedSingle Ion Conductors for Li Ion Batteries[J]. Macromolecules,2012,45(10):4354-4362.
    [17] Guhathakurta S, Min K. Lithium sulfonate promoted compatibilization insingle ion conducting solid polymer electrolytes based on lithium salt ofsulfonated polysulfone and polyether epoxy[J]. Polymer,2010,51(1):211-221.
    [18] Kalita M, Bukat M, Ciosek M, et al. Effect of calixpyrrole in PEO-LiBF4polymer electrolytes[J]. Electrochimica Acta,2005,50(19):3942-3948.
    [19] Panero S, Scrosati B, Sumathipala H H, et al. Dual-composite polymerelectrolytes with enhanced transport properties[J]. Journal of Power Sources,2007,167(2):510-514.
    [20] Sun X G, Kerr J B. Synthesis and characterization of network single ionconductors based on comb-branched polyepoxide ethers and lithiumbis(allylmalonato)borate[J]. Macromolecules,2006,39(1):362-372.
    [21] Xu W, Williams M D, Angell C A. Novel polyanionic solid electrolytes withweak Coulomb traps and controllable caps and spacers[J]. Chemistry ofMaterials,2002,14(1):401-409.
    [22] Meziane R, Bonnet J P, Courty M, et al. Single-ion polymer electrolytes basedon a delocalized polyanion for lithium batteries[J]. Electrochimica Acta,2011,57:14-19.
    [23] Zhu Y S, Gao X W, Wang X J, et al. A single-ion polymer electrolyte based onboronate for lithium ion batteries[J]. Electrochemistry Communications,2012,22:29-32.
    [24] Prosini P P, Banow B. Composite polyether electrolytes with a poly(styrene-sulfonate) lithium salt and Lewis acid type additive[J]. Electrochimica Acta,2003,48(13):1899-1903.
    [25] Kang W C, Park H G, Kim K C, et al. Synthesis and electrochemicalproperties of lithium methacrylate-based self-doped gel polymer electrolytes[J]. Electrochimica Acta,2009,54(19):4540-4544.
    [26] Stephan A M. Review on gel polymer electrolytes for lithium batteries[J].European Polymer Journal,2006,42(1):21-42.
    [27]顾大明,李已才,杨柳等. PEO-LiClO4-SiO2-SCA体系电化学性能研究[J].化学学报,2010,(22):2367-2372.
    [28] Meyer W H. Polymer electrolytes for lithium-ion batteries[J]. AdvancedMaterials,1998,10(6):439-448.
    [29] Wright P V. Polymer electrolytes-the early days[J]. Electrochimica Acta,1998,43(10-11):1137-1143.
    [30] Jeddi K, Qazvini N T, Jafari S H, et al. Enhanced Ionic Conductivity inPEO/PMMA Glassy Miscible Blends: Role of Nano-Confinement of MinorityComponent Chains[J]. Journal of Polymer Science Part B-Polymer Physics,2010,48(19):2065-2071.
    [31] Barbosa P C, Rodrigues L C, Silva M M, et al. Solid-state electrochromicdevices using pTMC/PEO blends as polymer electrolytes[J]. ElectrochimicaActa,2010,55(4):1495-1502.
    [32] Hu Q C, Osswald S, Daniel R, et al. Graft copolymer-based lithium-ionbattery for high-temperature operation[J]. Journal of Power Sources,2011,196(13):5604-5610.
    [33] Goujon L J, Khaldi A, Maziz A, et al. Flexible Solid Polymer ElectrolytesBased on Nitrile Butadiene Rubber/Poly(ethylene oxide) InterpenetratingPolymer Networks Containing Either LiTFSI or EMITFSI[J]. Macromolecules,2011,44(24):9683-9691.
    [34] Gu X K, Knorr D B, Wang G J, et al. Layered and interfacially blendedpolyelectrolyte multi-walled carbon nanotube composites for enhanced ionicconductivity[J]. Thin Solid Films,2012,520(6):1872-1879.
    [35]崔孟忠,李竹云,张洁等.硅氧烷基聚合物电解质[J].化学进展,2008,(12):1987-1997.
    [36]崔孟忠,李竹云,张洁等.含硅氢键聚二硅氧烷/聚醚共混聚合物电解质Ⅱ.PSEMH对PEO结晶性能及离子电导率的影响[J].化学学报,2009,(24):2851-2856.
    [37] Hall P G, Davies G R, Mcintyre J E, et al. Ion Conductivity in PolysiloxaneComb Polymers with Ethylene-Glycol Teeth[J]. Polymer Communications,1986,27(4):98-100.
    [38] Fish D, Khan I M, Wu E, et al. Polymer Electrolyte Complexes of LiClO4andComb Polymers of Siloxane with Oligo-Oxyethylene Side-Chains[J]. BritishPolymer Journal,1988,20(3):281-288.
    [39] Hooper R, Lyons L J, Mapes M K, et al. Highly conductive siloxanepolymers[J]. Macromolecules,2001,34(4):931-936.
    [40] Schroeder G, Gierczyk B, Waszak D, et al. Impact of ethyltris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ioncells with PC-based electrolyte[J]. Electrochemistry Communications,2006,8(10):1583-1587.
    [41] Schroeder G, Gierczyk B, Waszak D, et al. Vinyl tris-2-methoxyethoxy silane-A new class of film-forming electrolyte components for Li-ion cells withgraphite anodes[J]. Electrochemistry Communications,2006,8(4):523-527.
    [42] Walkowiak M, Schroeder G, Gierczyk B, et al. New lithium ion conductingpolymer electrolytes based on polysiloxane grafted with Si-tripodandcenters[J]. Electrochemistry Communications,2007,9(7):1558-1562.
    [43] Zhang Z C, Sherlock D, West R, et al. Cross-linked network polymerelectrolytes based on a polysiloxane backbone with oligo(oxyethylene) sidechains: Synthesis and conductivity[J]. Macromolecules,2003,36(24):9176-9180.
    [44] Shibata M, Kobayashi T, Yosomiya R, et al. Polymer electrolytes based onblends of poly(ether urethane) and polysiloxanes[J]. European PolymerJournal,2000,36(3):485-490.
    [45] Wang F M, Lee J T, Cheng J H, et al. The network gel polymer electrolytebased on poly(acrylate-co-imide) and its transport properties in lithium ionbatteries[J]. Journal of Solid State Electrochemistry,2009,13(9):1425-1431.
    [46]关红艳,连芳,仇卫华等.锂离子电池用凝胶聚合物电解质研究进展[J].高分子材料科学与工程,2012,(11):178-181.
    [47]罗丹.锂离子电池用凝胶聚合物电解质的设计、制备及表征[D].浙江大学博士,2010.
    [48] Abraham K M, Alamgir M. Li+-Conductive Solid Polymer Electrolytes withLiquid-Like Conductivity[J]. Journal of the Electrochemical Society,1990,137(5):1657-1657.
    [49]王盎然.纳米复合改性丙烯腈共聚物电解质的制备、结构和性能[D].浙江大学博士,2010.
    [50]唐致远,王占良.聚丙烯腈基聚合物电解质[J].化学通报,2002,(06):379-384.
    [51] Ryoo H J, Kim H T, Lee Y G, et al. Thermal and electrochemicalcharacteristics of plasticized polymer electrolytes based on poly(acrylonitrile-co-methyl methacrylate)[J]. Journal of Solid State Electrochemistry,1998,3(1):1-6.
    [52] Zhou D Y, Wang G Z, Li W S, et al. Preparation and performances of porouspolyacrylonitrile-methyl methacrylate membrane for lithium-ion batteries[J].Journal of Power Sources,2008,184(2):477-480.
    [53] Liang Y H, Cheng-Chien W B, Chen C Y. Comb-like copolymer-based gelpolymer electrolytes for lithium ion conductors[J]. Journal of Power Sources,2008,176(1):340-346.
    [54] Quartarone E, Tomasi C, Mustarelli P, et al. Long-term structural stability ofPMMA-based gel polymer electrolytes[J]. Electrochimica Acta,1998,43(10-11):1435-1439.
    [55]李忠阳,戴晓兵,付人俊等. PMMA基凝胶聚合物电解质研究进展[C].第五届中国功能材料及其应用学术会议,中国北京·秦皇岛,2004,2057-2061.
    [56]周华龙,马晓燕,张启路. P(MMA-AN)的合成及其凝胶电解质的制备与性能[J].功能材料,2010,(07):1127-1129+1133.
    [57] Kang D W, Kim D W, Jo S I, et al. Preparation and characterization of gelpolymer electrolytes based on methyl methacrylate-styrene copolymers[J].Journal of Power Sources,2002,112(1):1-7.
    [58] Pu W H, He X M, Wang L, et al. Preparation of P(AN-MMA) gel electrolytefor Li-ion batteries[J]. Ionics,2008,14(1):27-31.
    [59]宋颖,马晓燕,唐林等. PMMA-b-PS基凝胶聚合物电解质的性能[J].功能高分子学报,2011,(04):335-339+358.
    [60] Hou X P, Siow K S. Electrochemical characterization of plasticized polymerelectrolytes based on ABS/PMMA blends[J]. Journal of Solid StateElectrochemistry,2001,5(4):293-299.
    [61] Rajendran S, Bama V S, Prabhu M R. Effect of lithium salt concentration inPVAc/PMMA-based gel polymer electrolytes[J]. Ionics,2010,16(1):27-32.
    [62] Rajendran S, Bama V S. A study on the effect of various plasticizers inpoly(vinyl acetate)-poly(methyl methacrylate) based gel electrolytes[J].Journal of Non-Crystalline Solids,2010,356(50-51):2764-2768.
    [63] Ramesh S, Liew C W, Ramesh K. Evaluation and investigation on the effect ofionic liquid onto PMMA-PVC gel polymer blend electrolytes[J]. Journal ofNon-Crystalline Solids,2011,357(10):2132-2138.
    [64] Ramesh S, Winie T, Arof A K. Mechanical studies on poly(vinyl chloride)-poly(methyl methacrylate)-based polymer electrolytes[J]. Journal of materialsscience,2010,45(5):1280-1283.
    [65] Ramesh S, Liew C W, Morris E, et al. Effect of PVC on ionic conductivity,crystallographic structural, morphological and thermal characterizations inPMMA-PVC blend-based polymer electrolytes[J]. Thermochimica Acta,2010,511(1-2):140-146.
    [66] Li Z M, Wei J G, Shan F, et al. PVDF/PMMA brushes membrane forlithium-ion rechargeable batteries prepared via preirradiation graftingtechnique[J]. Journal of Polymer Science Part B-Polymer Physics,2008,46(7):751-758.
    [67] Li S D, Gao K. The study on methyl methacrylate graft-copolymerizedcomposite separator prepared by pre-irradiation method for Li-ion batteries[J].Surface&Coatings Technology,2010,204(16-17):2822-2828.
    [68] Gao K, Hu X G, Yi T F, et al. PE-g-MMA polymer electrolyte membrane forlithium polymer battery[J]. Electrochimica Acta,2006,52(2):443-449.
    [69] Gwon S J, Choi J H, Sohn J Y, et al. Battery performance of PMMA-graftedPE separators prepared by pre-irradiation grafting technique[J]. Journal ofIndustrial and Engineering Chemistry,2009,15(5):748-751.
    [70] Gwon S J, Choi J H, Sohn J Y, et al. Preparation of a new micro-porous poly(methyl methacrylate)-grafted polyethylene separator for high performance Lisecondary battery[J]. Nuclear Instruments&Methods in Physics ResearchSection B-Beam Interactions with Materials and Atoms,2009,267(19):3309-3313.
    [71] Hou X P, Siow K S. Ionic conductivity and electrochemical characterization ofnovel interpenetrating polymer network electrolytes[J]. Solid State Ionics,2002,147(3-4):391-395.
    [72] Kim C S, Oh S M. Spectroscopic and electrochemical studies of PMMA-basedgel polymer electrolytes modified with interpenetrating networks[J]. Journalof Power Sources,2002,109(1):98-104.
    [73] Luo D, Li P, Li Y, et al. Novel Amphiphilic Polymer Gel Electrolytes Based on(PEG-b-GMA)-co-MMA[J]. Journal of Applied Polymer Science,2010,118(3):1527-1533.
    [74] Raghavan P, Zhao X H, Kim J K, et al. Ionic conductivity and electrochemicalproperties of nanocomposite polymer electrolytes based on electrospunpoly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramicfillers[J]. Electrochimica Acta,2008,54(2):228-234.
    [75] Tarascon J M, Gozdz A S, Schmutz C, et al. Performance of Bellcore's plasticrechargeable Li-ion batteries[J]. Solid State Ionics,1996,86(8):49-54.
    [76] Rajendran S, Mahendran O, Kannan R. Lithium ion conduction in plasticizedPMMA-PVdF polymer blend electrolytes[J]. Materials Chemistry and Physics,2002,74(1):52-57.
    [77] Rajendran S, Sivakumar P. An investigation of PVdF/PVC-based blendelectrolytes with EC/PC as plasticizers in lithium battery applications[J].Physica B-Condensed Matter,2008,403(4):509-516.
    [78] Rajendran S, Mahendran O, Mahalingam T. Thermal and ionic conductivitystudies of plasticized PMMA/PVdF blend polymer electrolytes[J]. EuropeanPolymer Journal,2002,38(1):49-55.
    [79] Nicotera I, Coppola L, Oliviero C, et al. Investigation of ionic conduction andmechanical properties of PMMA-PVdF blend-based polymer electrolytes[J].Solid State Ionics,2006,177(5-6):581-588.
    [80] Cui Z Y, Xu Y Y, Zhu L P, et al. Preparation of PVDF/PEO-PPO-PEO blendmicroporous membranes for lithium ion batteries via thermally induced phaseseparation process[J]. Journal of Membrane Science,2008,325(2):957-963.
    [81] Yang S T, Chen H J, Dong H Y, et al. FTIR investigation of new polymer solidelectrolytes[J]. Spectroscopy and Spectral Analysis,2004,24(4):434-436.
    [82] Liu Y, Lee J Y, Kang E T, et al. Synthesis, characterization andelectrochemical transport properties of the poly(ethyleneglycol)-graftedpoly(vinylidenefluoride) nanoporous membranes[J]. Reactive&FunctionalPolymers,2001,47(3):201-213.
    [83] Choi J H, Gwon S J, Shon J Y, et al. Preparation of polystyrene-graftedpoly(vinylidene fluoride) membranes for lithium secondary batteries[J].Journal of Industrial and Engineering Chemistry,2008,14(1):116-119.
    [84] Nasef M M, Saidi H. Structural, thermal and ion transport properties ofradiation grafted lithium conductive polymer electrolytes[J]. MaterialsChemistry and Physics,2006,99(2-3):361-369.
    [85] Samanta S, Chatterjee D P, Layek R K, et al. Multifunctional PorousPoly(vinylidene fluoride)-graft-Poly(butyl methacrylate) with Good Li+IonConductivity[J]. Macromolecular Chemistry and Physics,2011,212(2):134-149.
    [86] Stephan A M, Nahm K S. Review on composite polymer electrolytes forlithium batteries[J]. Polymer,2006,47(16):5952-5964.
    [87]张国庆,马莉,吴忠杰等. P(VDF-HFP)-PMMA/CaCO3(SiO2)复合聚合物电解质的电化学性质[J].物理化学学报,2009,(03):555-560.
    [88]张鹏.新型锂离子电池聚合物电解质制备及性能研究[D].复旦大学博士,2010.
    [89] Wang Y J, Kim D. Crystallinity, morphology, mechanical properties andconductivity study of in situ formed PVdF/LiClO4/TiO2nanocompositepolymer electrolytes[J]. Electrochimica Acta,2007,52(9):3181-3189.
    [90] Deka M, Kumar A. Electrical and electrochemical studies of poly(vinylidenefluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries[J].Journal of Power Sources,2011,196(3):1358-1364.
    [91]崔小明. AMPS聚合物的应用进展[J].四川化工与腐蚀控制,2000,(01):38-41.
    [92] Pei H Q, Hong L, Lee J Y. Polymer electrolyte membrane based on2-acrylamido-2-methyl propanesulfonic acid fabricated by embeddedpolymerization[J]. Journal of Power Sources,2006,160(2):949-956.
    [93] Yang C C, Lue S J, Shih J Y. A novel organic/inorganic polymer membranebased on poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonicacid/3-glycidyloxypropyl trimethoxysilane polymer electrolyte membrane fordirect methanol fuel cells[J]. Journal of Power Sources,2011,196(10):4458-4467.
    [94] Diao H B, Yan F, Qiu L H, et al. High Performance Cross-LinkedPoly(2-acrylamido-2-methylpropanesulfonic acid)-Based Proton ExchangeMembranes for Fuel Cells[J]. Macromolecules,2010,43(15):6398-6405.
    [95] Chi W S, Patel R, Hwang H, et al. Preparation of poly(vinylidene fluoride)nanocomposite membranes based on graft polymerization and sol-gel processfor polymer electrolyte membrane fuel cells[J]. Journal of Solid StateElectrochemistry,2012,16(4):1405-1414.
    [96] Travas-Sejdic J, Steiner R, Desilvestro J, et al. Ion conductivity of novelpolyelectrolyte gels for secondary lithium-ion polymer batteries[J].Electrochimica Acta,2001,46(10-11):1461-1466.
    [97] Paracha R N, Ray S, Easteal A J. Grafting of LiAMPS on ethyl cellulose: aroute to the fabrication of superior quality polyelectrolyte gels forrechargeable Lithium ion batteries[J]. Journal of materials science,2012,47(8):3698-3705.
    [98] Tiyapiboonchaiya C, Pringle J M, MacFarlane D R, et al. Polyelectrolyte-in-ionic-liquid electrolytes[J]. Macromolecular Chemistry and Physics,2003,204(17):2147-2154.
    [99] Cha E H, Lim S A, Park J H, et al. Ionic conductivity studies of gelpolyelectrolyte based on ionic liquid[J]. Journal of Power Sources,2008,178(2):779-782.
    [100] Byrne N, MacFarlane D R, Forsyth A. Composition effects on ion transport ina polyelectrolyte gel with the addition of ion dissociators[J]. ElectrochimicaActa,2005,50(19):3917-3921.
    [101] Byrne N, Pringle J M, Tiyapiboonchaiya C, et al. The additive effect ofzwitterion and nano-particles on ion dissociation in polyelectrolytes[J].Electrochimica Acta,2005,50(13):2733-2738.
    [102] Zhang H J, Zhang X W, Shiue E, et al. Single-ion conductors for lithiumbatteries via silica surface modification[J]. Journal of Power Sources,2008,177(2):561-565.
    [103] Kim K M, Park N G, Ryu K S, et al. Characteristics of PVdF-HFP/TiO2composite membrane electrolytes prepared by phase inversion andconventional casting methods[J]. Electrochimica Acta,2006,51(26):5636-5644.
    [104] Du Pasquier A, Warren P C, Culver D, et al. Plastic PVDF-HFP electrolytelaminates prepared by a phase-inversion process[J]. Solid State Ionics,2000,135(1-4):249-257.
    [105] Wang H P, Huang H T, Wunder S L. Novel microporous poly(vinylidenefluoride) blend electrolytes for lithium-ion batteries[J]. Journal of theElectrochemical Society,2000,147(8):2853-2861.
    [106] Cao J H, Zhu B K, Xu Y Y. Structure and ionic conductivity of porouspolymer electrolytes based on PVDF-HFP copolymer membranes[J]. Journalof Membrane Science,2006,281(1-2):446-453.
    [107] Wang Z L, Tang Z Y. Characterization of the polymer electrolyte based on theblend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinylpyrrolidone) for lithium ion battery[J]. Materials Chemistry and Physics,2003,82(1):16-20.
    [108] Sundaram N T K, Subramania A. Microstructure of PVdF-co-HFP basedelectrolyte prepared by preferential polymer dissolution process[J]. Journal ofMembrane Science,2007,289(1-2):1-6.
    [109] Pu W H, He X M, Wang L, et al. Preparation of PVDF-HFP microporousmembrane for Li-ion batteries by phase inversion[J]. Journal of MembraneScience,2006,272(1-2):11-14.
    [110] Stephan A M, Saito Y. Ionic conductivity and diffusion coefficient studies ofPVdF-HFP polymer electrolytes prepared using phase inversion technique[J].Solid State Ionics,2002,148(3-4):475-481.
    [111]李朝晖,张汉平,张鹏等.偏氟乙烯-六氟丙烯共聚物基微孔-凝胶聚合物电解质的研究进展[J].高分子通报,2007,(07):8-16.
    [112] Ji G L, Zhu B K, Cui Z Y, et al. PVDF porous matrix with controlledmicrostructure prepared by TIPS process as polymer electrolyte for lithiumion battery[J]. Polymer,2007,48(21):6415-6425.
    [113] Rajabzadeh S, Maruyama T, Ohmukai Y, et al. Preparation of PVDF/PMMAblend hollow fiber membrane via thermally induced phase separation (TIPS)method[J]. Separation and Purification Technology,2009,66(1):76-83.
    [114] Choi S W, Jo S M, Lee W S, et al. An electrospun poly(vinylidene fluoride)nanofibrous membrane and its battery applications[J]. Advanced Materials,2003,15(23):2027-2032.
    [115] Kim D W, Sun Y K. Electrochemical characterization of gel polymerelectrolytes prepared with porous membranes[J]. Journal of Power Sources,2001,102(1-2):41-45.
    [116] Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers byelectrospinning and their applications in nanocomposites[J]. CompositesScience and Technology,2003,63(15):2223-2253.
    [117] Greiner A, Wendorff J H. Electrospinning: A fascinating method for thepreparation of ultrathin fibres[J]. Angewandte Chemie-International Edition,2007,46(30):5670-5703.
    [118] Kim Y J, Ahn C H, Lee M B, et al. Characteristics of electrospun PVDF/SiO2composite nanofiber membranes as polymer electrolyte[J]. MaterialsChemistry and Physics,2011,127(1-2):137-142.
    [119]黄再波,高德淑,李朝晖等.高压静电纺丝法制备P(VDF-HFP)聚合物电解质[J].化学学报,2007,(11):1007-1011.
    [120]高昆.微孔聚合物电解质的制备及其增强改性的研究[D].哈尔滨工业大学博士,2007.
    [121] Dong Z X, Kennedy S J, Wu Y Q. Electrospinning materials for energy-relatedapplications and devices[J]. Journal of Power Sources,2011,196(11):4886-4904.
    [122] Russell T P, Lin Z Q, Schaffer E, et al. Aspects of electrohydrodynamicinstabilities at polymer interfaces[J]. Fibers and Polymers,2003,4(1):1-7.
    [123] Teo W E, Ramakrishna S. A review on electrospinning design and nanofibreassemblies[J]. Nanotechnology,2006,17(14):R89-R106.
    [124] Yuan T, Zhao B T, Cai R, et al. Electrospinning based fabrication andperformance improvement of film electrodes for lithium-ion batteriescomposed of TiO2hollow fibers[J]. Journal of Materials Chemistry,2011,21(38):15041-15048.
    [125]姚永毅.静电纺丝法制备聚合物纳米纤维及其应用[D].四川大学博士,2004.
    [126] Fang J, Niu H T, Lin T, et al. Applications of electrospun nanofibers[J].Chinese Science Bulletin,2008,53(15):2265-2286.
    [127] Kim J R, Choi S W, Jo S M, et al. Characterization and properties ofP(VdF-HFP)-based fibrous polymer electrolyte membrane prepared byelectrospinning[J]. Journal of the Electrochemical Society,2005,152(2):A295-A300.
    [128] Cho T H, Tanaka M, Onishi H, et al. Battery performances and thermalstability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ionbattery[J]. Journal of Power Sources,2008,181(1):155-160.
    [129] Raghavan P, Manuel J, Zhao X, et al. Preparation and electrochemicalcharacterization of gel polymer electrolyte based on electrospunpolyacrylonitrile nonwoven membranes for lithium batteries[J]. Journal ofPower Sources,2011,196(16):6742-6749.
    [130] Wu N, Cao Q, Wang X Y, et al. A novel high-performance gel polymerelectrolyte membrane basing on electrospinning technique for lithiumrechargeable batteries[J]. Journal of Power Sources,2011,196(20):8638-8643.
    [131] Wu N, Cao Q, Wang X Y, et al. Study of a novel porous gel polymerelectrolyte based on TPU/PVdF by electrospinning technique[J]. Solid StateIonics,2011,203(1):42-46.
    [132] Wu N, Jing B, Cao Q, et al. A novel electrospun TPU/PVdF porous fibrouspolymer electrolyte for lithium ion batteries[J]. Journal of Applied PolymerScience,2012,125(4):2556-2563.
    [133] Bansal D, Meyer B, Salomon M. Gelled membranes for Li and Li-ion batteriesprepared by electrospinning[J]. Journal of Power Sources,2008,178(2):848-851.
    [134] Gopalan A I, Santhosh P, Manesh K M, et al. Development of electrospunPVdF-PAN membrane-based polymer electrolytes for lithium batteries[J].Journal of Membrane Science,2008,325(2):683-690.
    [135] Zhong Z, Cao Q, Jing B, et al. Electrospun PVdF-PVC nanofibrous polymerelectrolytes for polymer lithium-ion batteries[J]. Materials Science andEngineering B-Advanced Functional Solid-State Materials,2012,177(1):86-91.
    [136] Li X Y, Cao Q, Wang X Y, et al. Preparation of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Membranes by Novel Electrospinning System forLithium Ion Batteries[J]. Journal of Applied Polymer Science,2011,122(4):2616-2620.
    [137] Ding Y H, Zhang P, Long Z L, et al. The ionic conductivity and mechanicalproperty of electrospun P(VdF-HFP)/PMMA membranes for lithium ionbatteries[J]. Journal of Membrane Science,2009,329(1-2):56-59.
    [138] Zhong Z, Cao Q, Wang X Y, et al. PVC-PMMA composite electrospunmembranes as polymer electrolytes for polymer lithium-ion batteries[J]. Ionics,2012,18(1-2):47-53.
    [139]韩领,陆春,陈平等.原位生成二氧化钛对静电纺聚偏氟乙烯锂离子电池隔膜力学性能及电化学性能的影响[J].高分子学报,2012,(11):1319-1325.
    [140] Jung H R, Ju D H, Lee W J, et al. Electrospun hydrophilic fumedsilica/polyacrylonitrile nanofiber-based composite electrolyte membranes[J].Electrochimica Acta,2009,54(13):3630-3637.
    [141] Raghaven P, Choi J W, Ahn J H, et al. Novel electrospun poly(vinylidenefluoride-co-hexafluoropropylene)-in situ SiO2composite membrane-basedpolymer electrolyte for lithium batteries[J]. Journal of Power Sources,2008,184(2):437-443.
    [142] Ding Y H, Zhang P, Long Z L, et al. Preparation of PVdF-based electrospunmembranes and their application as separators[J]. Science and Technology ofAdvanced Materials,2008,9(1):015005-015004.
    [143] Wu N, Cao Q, Wang X Y, et al. In situ ceramic fillers of electrospunthermoplastic polyurethane/poly(vinylidene fluoride) based gel polymerelectrolytes for Li-ion batteries[J]. Journal of Power Sources,2011,196(22):9751-9756.
    [144] Yang C R, Jia Z D, Guan Z C, et al. Polyvinylidene fluoride membrane bynovel electrospinning system for separator of Li-ion batteries[J]. Journal ofPower Sources,2009,189(1):716-720.
    [145] Kader M A, Kwak S K, Kang S L, et al. Novel microporous poly(vinylidenefluoride)-graft-poly(tert-butyl acrylate) electrolytes for secondary lithiumbatteries[J]. Polymer International,2008,57(11):1199-1205.
    [146] Na H, Zhao Y, Zhao C, et al. Effect of hot-press on electrospunpoly(vinylidene fluoride) membranes[J]. Polymer Engineering and Science,2008,48(5):934-940.
    [147] Lee S W, Choi S W, Jo S M, et al. Electrochemical properties and cycleperformance of electrospun poly(vinylidene fluoride)-based fibrous membraneelectrolytes for Li-ion polymer battery[J]. Journal of Power Sources,2006,163(1):41-46.
    [148] Yee W A, Xiong S X, Ding G Q, et al. Supercritical Carbon Dioxide-TreatedElectrospun Poly(vinylidene fluoride) Nanofibrous Membranes: Morphology,Structures and Properties as an Ionic-Liquid Host[J]. Macromolecular RapidCommunications,2010,31(20):1779-1784.
    [149] Xiao Q Z, Li Z H, Gao D S, et al. A novel sandwiched membrane as polymerelectrolyte for application in lithium-ion battery[J]. Journal of MembraneScience,2009,326(2):260-264.
    [150] Noda K, Yasuda T, Nishi Y. Concept of polymer alloy electrolytes: towardsroom temperature operation of lithium-polymer batteries[J]. ElectrochimicaActa,2004,50(2-3):243-246.
    [151] Pradhan D K, Choudhary R N P, Samantaray B K, et al. Effect of plasticizeron structural and electrical properties of polymer nanocompsoiteelectrolytes[J]. International Journal of Electrochemical Science,2007,2(11):861-871.
    [152] Sun X G, Reeder C L, Kerr J B. Synthesis and characterization of networktype single ion conductors[J]. Macromolecules,2004,37(6):2219-2227.
    [153] Park H S, Kim Y J, Hong W H, et al. Influence of morphology on the transportproperties of perfluorosulfonate ionomers/polypyrrole composite membrane[J].Macromolecules,2005,38(6):2289-2295.
    [154] Gurtekin M, Kayaman-Apohan N, Kahraman M V, et al. UV curablesulfonated hybrid materials and their performance as proton exchangemembranes[J]. Reactive&Functional Polymers,2009,69(9):698-704.
    [155] Wang Y J, Kim D. PEGDA/PVdF/F127gel type polymer electrolytemembranes for lithium secondary batteries[J]. Journal of Power Sources,2007,166(1):202-210.
    [156] McKee M G, Wilkes G L, Colby R H, et al. Correlations of solution rheologywith electrospun fiber formation of linear and branched polyesters[J].Macromolecules,2004,37(5):1760-1767.
    [157] Shenoy S L, Bates W D, Frisch H L, et al. Role of chain entanglements onfiber formation during electrospinning of polymer solutions: good solvent,non-specific polymer-polymer interaction limit[J]. Polymer,2005,46(10):3372-3384.
    [158] Koombhongse S, Liu W X, Reneker D H. Flat polymer ribbons and othershapes by electrospinning[J]. Journal of Polymer Science Part B-PolymerPhysics,2001,39(21):2598-2606.
    [159] Gupta P, Elkins C, Long T E, et al. Electrospinning of linear homopolymers ofpoly(methyl methacrylate): exploring relationships between fiber formation,viscosity, molecular weight and concentration in a good solvent[J]. Polymer,2005,46(13):4799-4810.
    [160] Wang M K, Zhao F, Dong S J. A single ionic conductor based on Nafion andits electrochemical properties used as lithium polymer electrolyte[J]. Journalof Physical Chemistry B,2004,108(4):1365-1370.
    [161] Ikezawa Y, Nishi H. In situ FTIR study of the Cu electrode/ethylene carbonateplus dimethyl carbonate solution interface[J]. Electrochimica Acta,2008,53(10):3663-3669.
    [162] Tian L Y, Huang X B, Tang X Z. Single-ionic gel polymer electrolyte based onpolyvinylidene fluoride and fluorine-containing ionomer[J]. EuropeanPolymer Journal,2004,40(4):735-742.
    [163] Kumar R, Sekhon S S. Effect of molecular weight of PMMA on theconductivity and viscosity behavior of polymer gel electrolytes containingNH4CF3SO3[J]. Ionics,2008,14(6):509-514.
    [164] Duluard S, Litas I, Bhattacharyya A J, et al. Soft matter electrolytes based onpolymethylmetacrylate dispersions in lithium bis(trifluoromethanesulfonyl)imide/1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionicliquids[J]. Electrochimica Acta,2010,55(28):8839-8846.
    [165] Kim M, Han G Y, Yoon K J, et al. Preparation of a trilayer separator and itsapplication to lithium-ion batteries[J]. Journal of Power Sources,2010,195(24):8302-8305.
    [166] Forsyth M, Sun J, Zhou F, et al. Enhancement of ion dissociation inpolyelectrolyte gels[J]. Electrochimica Acta,2003,48(14-16):2129-2136.
    [167] Zygadlo-Monikowska E, Florjanczyk Z, Wielgus-Barry E, et al. Protonconducting gel polyelectrolytes based on2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers with polyfunctional monomers.Part I. Anhydrous systems[J]. Journal of Power Sources,2006,159(1):385-391.
    [168] Zeng W R, Li S F, Chow W K. Review on chemical reactions of burningPoly(methyl methacrylate) PMMA[J]. Journal of Fire Sciences,2002,20(5):401-433.
    [169] Kashani A, Esfahani J A. Interactive effect of oxygen diffusion and volatilesadvection on transient thermal degradation of poly methyl methacrylate(PMMA)[J]. Heat and Mass Transfer,2008,44(6):641-650.
    [170] Celik S U, Bozkurt A. The synthesis and proton-conducting properties of thecopolymers based on1-vinyl-1,2,4-triazole and2-acrylamido-2-methyl-1-propanesulfonic acid[J]. Solid State Ionics,2010,181(11-12):525-530.
    [171] Bhardwaj P, Singh V, Mandal U K, et al. Polyacrylamide and poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-silica composite nanogelsthrough in situ microemulsion polymerisation[J]. Journal of materials science,2010,45(4):1008-1016.
    [172] Geng X Y, Kwon O H, Jang J H. Electrospinning of chitosan dissolved inconcentrated acetic acid solution[J]. Biomaterials,2005,26(27):5427-5432.
    [173] Xu W, Belieres J P, Angell C A. Ionic conductivity and electrochemicalstability of poly[oligo(ethylene glycol)oxalate]-lithium salt complexes[J].Chemistry of Materials,2001,13(2):575-580.
    [174] Ramesh S, Ang G P. Impedance and FTIR studies on plasticized PMMA-LiN(CF3SO2)2nanocomposite polymer electrolytes[J]. Ionics,2010,16(5):465-473.
    [175] Agrawal S L, Singh M, Tripathi M, et al. Dielectric relaxation studies on
    [PEO-SiO2]:NH4SCN nanocomposite polymer electrolyte films[J]. Journal ofmaterials science,2009,44(22):6060-6068.
    [176] Jana S, Zhong W H. Electrical conductivity enhancement of a polymer usingbutyl glycidyl ether (BGE)-lithium hexafluorophosphate (LiPF6) complex[J].Journal of materials science,2008,43(13):4607-4617.
    [177] Ramesh S, Wong K C. Conductivity, dielectric behaviour and thermal stabilitystudies of lithium ion dissociation in poly(methyl methacrylate)-based gelpolymer electrolytes[J]. Ionics,2009,15(2):249-254.
    [178] Park J H, Cho J H, Park W, et al. Close-packed SiO2/poly(methyl methacrylate)binary nanoparticles-coated polyethylene separators for lithium-ion batteries[J]. Journal of Power Sources,2010,195(24):8306-8310.
    [179] Kim J Y, Kim S K, Lee S J, et al. Preparation of micro-porous gel polymer forlithium ion polymer battery[J]. Electrochimica Acta,2004,50(2-3):363-366.
    [180] Kim J Y, Lee Y, Lim D Y. Plasma-modified polyethylene membrane as aseparator for lithium-ion polymer battery[J]. Electrochimica Acta,2009,54(14):3714-3719.
    [181] Kim Y J, Ahn C H, Lee M B, et al. Characteristics of electrospun PVDF/SiO2composite nanofiber membranes as polymer electrolyte[J]. MaterialsChemistry and Physics,2011,127(1-2):137-142.
    [182] Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced byelectrospinning[J]. Nanotechnology,1996,7(3):216-223.
    [183] Song L Z, Zhang Z J, Song S Z, et al. Preparation and characterization of themodified polyvinylidene fluoride (PVDF) hollow fibre microfiltrationmembrane[J]. Journal of Materials Science&Technology,2007,23(1):55-60.
    [184] Salimi A, Yousefi A A. Conformational changes and phase transformationmechanisms in PVDF solution-cast films[J]. Journal of Polymer Science PartB-Polymer Physics,2004,42(18):3487-3495.
    [185] Rana D S, Chaturvedi D K, Quamara J K. Morphology, crystalline structure,and chemical properties of100MeV Ag-ion beam irradiated polyvinylidenefluoride (PVDF) thin film[J]. Journal of Optoelectronics and AdvancedMaterials,2009,11(5):705-712.
    [186] Lanceros-Mendez S, Mano J F, Costa A M, et al. FTIR and DSC studies ofmechanically deformed beta-PVDF films[J]. Journal of MacromolecularScience-Physics,2001, B40(3-4):517-527.
    [187] Chen N P, Hong L. Surface phase morphology and composition of the castingfilms of PVDF-PVP blend[J]. Polymer,2002,43(4):1429-1436.
    [188] Zheng J F, He A H, Li J X, et al. Polymorphism control of poly(vinylidenefluoride) through electrospinning[J]. Macromolecular Rapid Communications,2007,28(22):2159-2162.
    [189] Constantino C J L, Job A E, Simoes R D, et al. Phase transition inpoly(vinylidene fluoride) investigated with micro-Raman spectroscopy[J].Applied Spectroscopy,2005,59(3):275-279.
    [190] Satapathy S, Pawar S, Gupta P K, et al. Effect of annealing on phase transitionin poly(vinylidene fluoride) films prepared using polar solvent[J]. Bulletin ofMaterials Science,2011,34(4):727-733.
    [191] Chiang Y C, Chang Y, Higuchi A, et al. Sulfobetaine-grafted poly(vinylidenefluoride) ultrafiltration membranes exhibit excellent antifouling property[J].Journal of Membrane Science,2009,339(1-2):151-159.
    [192] Zhang C, Easteal A J. Thermoanalytical, spectroscopic, and morphologicalstudy of poly(ethylene glycol)/poly(2-acrylamido-2-methylpropanesulfonicacid-co-N-isopropylacrylamide) semi-interpenetrating network gels[J].Journal of Applied Polymer Science,2007,104(3):1723-1731.
    [193] Leroux F, Illaik A, Stimpfling T, et al. Percolation network of organo-modifiedlayered double hydroxide platelets into polystyrene showing enhancedrheological and dielectric behavior[J]. Journal of Materials Chemistry,2010,20(42):9484-9494.
    [194] Ma W Z, Zhang J, Wang X L, et al. Effect of PMMA on crystallizationbehavior and hydrophilicity of poly(vinylidene fluoride)/poly(methylmethacrylate) blend prepared in semi-dilute solutions[J]. Applied SurfaceScience,2007,253(20):8377-8388.
    [195] Song J M, Kang H R, Kim S W, et al. Electrochemical characteristics ofphase-separated polymer electrolyte based on poly(vinylidene and ethylenefluoride-co-hexafluoropropane) carbonate[J]. Electrochimica Acta,2003,48(10):1339-1346.
    [196] Choi E S, Lee S Y. Particle size-dependent, tunable porous structure of aSiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethyleneterephthalate) nonwoven composite separator for a lithium-ion battery[J].Journal of Materials Chemistry,2011,21(38):14747-14754.
    [197] Gao K, Hu X G, Yi T F, et al. Preparation and electrochemical properties ofelectrospun poly (vinylidene fluoride) membranes[J]. Acta Polymerica Sinica,2006,(9):1050-1054.
    [198] Wang W P, Cao H M, Zhu G J, et al. A Facile Strategy to Modify TiO2Nanoparticles via Surface-Initiated ATRP of Styrene[J]. Journal of PolymerScience Part a-Polymer Chemistry,2010,48(8):1782-1790.
    [199]张心亚,黎永津,傅和青等.无机-有机杂化纳米材料的控制合成与结构组装研究进展[J].材料导报,2007,(05):32-35.
    [200] Matyjaszewski K, Miller P J, Shukla N, et al. Polymers at interfaces: Usingatom transfer radical polymerization in the controlled growth ofhomopolymers and block copolymers from silicon surfaces in the absence ofuntethered sacrificial initiator[J]. Macromolecules,1999,32(26):8716-8724.
    [201] Raghuraman G K, Ruhe J, Dhamodharan R. Grafting of PMMA brushes ontitania nanoparticulate surface via surface-initiated conventional radical and"controlled" radical polymerization (ATRP)[J]. Journal of NanoparticleResearch,2008,10(3):415-427.
    [202] Gao Y, Gao X P, Zhou Y F, et al. Preparation of poly(methyl methacrylate)grafted titanate nanotubes by in situ atom transfer radical polymerization[J].Nanotechnology,2008,19(49):495604-9.
    [203] Barthelemy B, Devillers S, Minet I, et al. Induction heating for surfacetriggering styrene polymerization on titanium modified with ATRP initiator[J].Journal of Colloid and Interface Science,2011,354(2):873-879.
    [204] Feng L B, He L, Ma Y X, et al. Grafting poly(methyl methacrylate) onto silicananoparticle surfaces via a facile esterification reaction[J]. MaterialsChemistry and Physics,2009,116(1):158-163.
    [205] Park J T, Koh J H, Seo J A, et al. Synthesis and characterization ofTiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transferradical polymerization[J]. Applied Surface Science,2011,257(20):8301-8306.
    [206] Kaariainen T O, Lehti S, Kaariainen M L, et al. Surface modification ofpolymers by plasma-assisted atomic layer deposition[J]. Surface&CoatingsTechnology,2011,205:S475-S479.
    [207] Erdem B, Hunsicker R A, Simmons G W, et al. XPS and FTIR surfacecharacterization of TiO2particles used in polymer encapsulation[J]. Langmuir,2001,17(9):2664-2669.
    [208] Choi K M, Wakabayashi R, Tatsumi T, et al. Usefulness of alkoxyltitano-
    siloxane for the preparation of mesoporous silica containing a large amount of
    isolated titanium[J]. Journal of Colloid and Interface Science,2011,359(1):
    240-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700