用户名: 密码: 验证码:
基于有机多羧酸类配体的配位聚合物的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配位聚合物是指通过有机配体和金属离子间的配位键形成的,并且具有高度规整的无限网络结构的配合物。由有机配体和金属离子形成聚合物原则上是一个自组装过程,配位聚合物的设计重点在于配体的设计和金属离子的选择,二者相互作用产生重复单元,按被控方式形成确定的结构。配位聚合物因其具有独特的物理与化学性质而在气体吸附与分离、催化、药物缓释以及光、电、磁等领域具有潜在应用前景。
     双乙二酸硼酸锂(LiBOB)以sp3杂化的硼为中心原子,与含氧的配体结合形成一个大π共轭体系,这种结构分散了中心离子的负电荷,使阴离子更加稳定的同时又减小了阴阳离子的相互吸引力。借鉴LiBOB的设计思路,我们选择以sp3杂化的铝原子和硼原子为中心原子,刚性的芳香多羧酸和杂环多羧酸作为有机配体,构筑了16种具有高度暴露的阳离子和离域化的大阴离子的离子型配位聚合物。本文从金属离子、有机配体、中心原子等几个方面来考察它们对于所构筑的化合物的结构和性能的影响。通过元素分析、1H NMR、XRD、 TGA、SEM、TEM、BET对其结构进行了初步表征,对部分化合物的N2、O2吸附性能、电化学性能(锂离子电导率、电化学稳定窗口、离子迁移数)进行了初步研究讨论。主要研究内容如下:
     1.选择了四种芳香多羧酸对苯二甲酸、均苯三甲酸、均苯四甲酸以及联苯二甲酸作为有机配体,分别与NaAl(OCH3)4和LiAl(OCH3)4合成了八个以sp3杂化的铝原子为中心,具有高度离域化阴离子的一维或多维网络结构的新颖配位聚合物,分别为[NaAl(BDC)2]n、[NaAl(BTC)2]n、[NaAl(PMA)2]n和[NaAl(BPDC)2]n(化合物1-4)和[LiAl(BDC)2]n、[LiAl(BTC)2]n、[LiAl(PMA)2]n和[LiAl(BPDC)2]n(化合物5-8),并进行了结构表征和性能测试。因为使用相同的有机配体,化合物1-4与化合物5-8分别具有相似的热稳定性、微观结构和形貌。通过TGA测试,结果表明八种配位聚合物都具有很好的热稳定性(分解温度>400℃)。BET测试表明八种化合物都存在一定的孔状结构,其中化合物1和化合物5具有明显的微孔结构。化合物5-8的比表面积(通过样品在77K下,对N2吸附量得到)分别高于化合物1-4,这是由于骨架结构中高度暴露的锂离子相比于钠离子更有利于对氮气的吸附,其中BET比表面积最高的化合物5为284m2/g。
     在25℃,压力测试范围为0-1.9MPa的条件下对八种化合物进行了N2、02吸附试验,它们的N2和02吸附量都随着压力的增大呈上升趋势,但增幅逐渐减缓。化合物3和化合物7在测量压力范围内对N2的吸附量小于02,其他六种化合物对N2的吸附量均高于O2,呈现一定的选择性吸附性能。其中,化合物1和化合物5因为具有明显的微孔结构而呈现出相对较高的吸附能力,化合物1在1.9MPa时对于N2和02的吸附量分别为1.08wt%和0.46wt%,化合物5在1.9MPa时对于N2和O2的吸附量分别为1.39wt%和0.72wt%。并且相同配体构筑的铝锂型聚合物的吸附性能都好于铝钠型聚合物,这与BET比表面积测试结果对应。同时,采用溶剂热法将化合物5-8分别制备成PVDF-HFP系单离子凝胶聚合物电解质膜(PVDF-HFP聚合物电解质=3:1(W/W))。电化学性能测试表明,随着温度的升高四种电解质的离子电导率都呈明显的上升趋势。化合物5在20℃时的离子电导率为1.50×10-5S/cm,7O℃时达到7.61x10-SS/cm。其他三种化合物在20℃时为10-6S/cm级,在70℃时达到10-5S/cm级。电化学稳定性测试表明,化合物5和化合物6的分解电压均都在4.5v以上。化合物5的离子迁移数达到0.79,基本符合单离子聚合物电解质的特性。吸附性能和电化学性能测试表明,对苯二甲酸是四种配体中最适应于构筑此类配位聚合物的配体,其构筑的化合物在气体吸附和离子导电性等方面都优于其他配体,说明其形成的网络结构不仅具有更多的空腔进行气体吸附,而且能更好降低阴离子和锂盐的相互作用,从而提高链间和链内自由锂离子的移动性。
     2.选择了四种杂环多羧酸2,5-吡啶二甲酸、2,6-吡啶二甲酸、2,5-噻吩二甲酸、2,2'-联吡啶-4,4'-二甲酸作为有机配体,LiAI(OCH3)4提供连接节点和锂离子源,分别合成了四种配位聚合物LiAl(2,5-PDC)2]n、[LiAl(2,6-PDC)2]n、LiAl(2,5-TDC)2]n和[LiAl(2,2'-4,4'-BPrDC)2]n(化合物9-12)。通过TGA测试,表明四种化合物都具有很好的热稳定性(分解温度>300℃)。BET测试表明,化合物9-12的比表面积都很小,最大的化合物12的BET比表面积为117m2/g,其在常温下对于N2和O2的吸附量处于较低的水平。电化学性能测试表明,随着温度的升高四种化合物的离子电导率都呈明显的上升趋势。化合物9和化合物10在20℃时的离子电导率分别为1.21x104S/cm和4.80×10-sS/cm,70℃时分别达到5.45x104S/cm和2.46x10-4S/cm。杂环多羧酸配体构筑的配位聚合物中,吡啶羧酸配体因为N原子的存在杂环具有更好的吸电子能力,更有利于负电荷在聚合物骨架中的分散,锂离子从而具有更好的的迁移性,相应地聚合物电解质的离子导电性增强。电化学稳定性测试表明,四种化合物的分解电压均在4.5v以上,满足作为锂离子电解质的要求。化合物10的离子迁移数达到0.90,符合其作为单离子聚合物电解质的特性。与第三章芳香羧酸构筑的聚合物电解质性比,本章由吡啶多羧酸配体构筑的聚合物电解质的离子电导率明显要高一些,而富电子体系的噻吩羧酸配体构筑的聚合物电解质具有较差的离子导电性。
     3.选择同样的四种杂环多羧酸配体,分别与LiB(OCH3)4合成了四个以sp3杂化的硼原子为中心,具有高度离域化阴离子的网络结构的配位聚合物,分别为LiB(2,5-PDC)2]n、[LiB(2,6-PDC)2]n、LiB(2,5-TDC)2]n和[LiB(2,2'-4,4'-BPrDC)2]n(化合物13-16)。通过TGA测试,表明四种配位聚合物也具有很好的热稳定性(分解温度>300℃),满足作为聚合物电解质的要求。电化学性能测试表明,随着温度的升高,四种电解质的离子电导率都呈明显的上升趋势。化合物13和化合物14在20℃时的离子电导率分别为1.41×104S/cm和6.98×10-5S/cm,70℃时分别达到1.22×10-4S/cm和6.39×10-4S/cm。电化学稳定性测试表明,四种化合物的分解电压均在4.0v以上。化合物14的分解电压更是高达5.3v,离子迁移数达到0.92,符合其作为单离子聚合物电解质的特性。
Coordination polymers represent a new class of hybrid organic-inorganic surpramolecular materials comprised of ordered networks formed from organic bridging ligands and inorganic metal cations. A large amount of coordination polymers have been generated and show the characteristics of high surface area, high porosity and easily tunable pore size which make them great potential applications in the areas of gas storage, separation and catalysis along with optics, electrics, magnetism. A large number of coordination polymers with novel structures have been designed and synthesized according to the crystal engineering approaches.
     In the present works, two kinds of coordination polymers with highly exposed mental cations were presented, we have selected aluminum or boron of sp3hybridization as the node,aromatic carboxylic acid or heterocyclic carboxylic acid as the organic ligand, constructed sixteen polymer materials in the form of one dimensional or multidimensional networks. Elemental analysis,1H NMR, XRD, TGA, SEM,TEM and BET were used for structural characterization of the product, in addition, N2and O2adsorption properties, the electrochemical properties (lithium ion conductivity, electrochemical stability window and ion transference number) of some compounds were studied preliminarily. The main research content is as follows:
     (1) We adopted benzene-1,4-dicarboxylic acid, benzene-1,3,5-tricarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid and biphenyl-4,4'-dicarboxylic acid as the organic ligands, NaAl(OCH3)4and LiAl(OCH3)4as connected nodes and metal ion source, and constructed eight coordination polymers with novel structure, including [NaAl(BDC)2]n,[NaAl(BTC)2]n,[NaAl(PMA)2]n,[NaAl(BPDC)2]n (compound1-4) and [LiAl(BDC)2]n,[LiAl(BTC)2]n,[LiAl(PMA)2]n,[LiAl(BPDC)2]n (compound5-8). Each sp3aluminum is covalently bonded to four oxygen atoms that are associated with electron withdrawing groups via aromatic n-conjugation in the polymer backbones. This structural style allows the ionized charges from sodium atoms to be redistributed to the aromatic rings, leading to the enhanced mobility of sodium ions in the framework. Compound1-4has the similar thermal stability,microstructure and morphology with compound5-8respectively. By TGA test, the results showed that the eight coordination polymers all have good thermal stability, the decomposition temperature are all above400℃. The eight compounds all have a certain pore structure, wherein the compound1and compound5have an obvious microporous structure. Specific surface areas of compound5-8are higher than that of compound1-4and one of the highest is compound5which comes to284m2/g because the highly exposed lithium ion in the structure is more conducive to the adsorption of nitrogen compared to the sodium ion.
     N2and O2adsorption experiment of eight compounds were carried out under the pressure range of0-1.9MPa and the temperature of25℃,adsorption quantity of N2and O2are all on the rise with the increase of pressure. Within the scope of pressure, N2adsorption quantity of compound3and compound7are less than O2,and N2adsorption quantity of other six compounds are higher than that of O2which show some selective adsorption performance.Compound1and compound5present a relatively high adsorption capacity on the account of microrporous structure, N2and O2adsorption of compound1are1.08wt%and0.46wt%respectively at1.9MPa and compound5reach1.39wt%and0.72wt%respectively. At the same time, single ion polymer electrolyte membranes have been successfully prepared from compound5-8and PVDF-HFP by means of solvent thermal method, and their electrochemical performances have also been compared. Electrochemical performance test show that ion conductivity of four electrolytes all has an obvious increase when the temperature rises. The ionic conductivity of compound5are1.50×10-5S/cm and7.61×10-5S/cm respectively at20℃and70℃. The other three compounds are at the level of10-6s/cm at20℃and10-5S/cm at70℃. Electrochemical stability test show that the electrochemical stability of compound5and compound6are all above4.5v and meet the requirements of lithium ion electrolyte. Ion transference number of compound5is0.79,which is in line with the characteristics of a single ion polymer electrolyte. Adsorptive and electrochemical performance tests show that benzene-1,4-dicarboxylic acid should be the most suitable ligand for the network structure of the four ligands.
     (2) we adopted2,5-Pyridinedicarboxylic acid,2,6-Pyridinedi carboxylic acid, Thiophene-2,5-dicarboxylic acid and2,2'-Bipyridy1-4,4'-dicarboxylic acid as the organic ligands, LiAl(OCH3)4as connected node and lithium ion source, composited four coordination polymers with novel structure, including LiAl(2,5-PDC)2]n,[LiAl(2,6-PDC)2]n. LiAI(2,5-TDC)2]n and [LiAl(2,2'-4,4'-BPrDC)2]n(compound9-12) respectively. By TGA test, the results show that the four coordination polymers all have good thermal stability, the decomposition temperature are all above300℃,meeting the requirements of a polymer electrolyte. BET test show that compound9-12all have a small specific surface area,one of the highest is compound12which only comes to117m2/g. N2and O2adsorption at room temperature are all in a low level. Single ion polymer electrolyte membranes have been successfully prepared from compound9-12and PVDF-HFP by means of solvent thermal method. Electrochemical performance test show that ion conductivity of four electrolytes also has an obvious increase when the temperature rises. The ionic conductivity of compound9and compound10are1.21×10-5S/cm and4.80×10-5S/cm respectively at20℃,5.45×10-5S/cm and2.46×10-4S/cm respectively at70℃. Electrochemical stability test show that the electrochemical stability of four compounds are all above4.5v and meet the requirements of lithium ion electrolyte. Ion transference number of compound10is0.90,which is in line with the characteristics of a single ion polymer electrolyte.
     (3) Another four coordination polymers were synthesized from the same four heterocyclic carboxylic acid ligands, including LiB(2,5-PDC)2]n,[LiB(2,6-PDC)2]n, LiB(2,5-TDC)2]n and [LiB(2,2'-4,4'-BPrDC)2]n(compound13-16). LiB(OCH3)4provide connected nodes and lithium ion source, built a polymer framework similar to LiBOB in which each sp3boron atom is covalently bonded to four oxygen atoms. By TGA test, the results show that the four coordination polymers have good thermal stability and the decomposition temperature are all above300℃, meeting the requirements of a polymer electrolyte. Single ion polymer electrolyte membranes have been successfully prepared from compound13-16and PVDF-HFP by means of solvent thermal method. Electrochemical performance test show that ion conductivity of four electrolytes also has an obvious increase when the temperature rises.The ionic conductivity of compound13and compound14is1.41×10-5S/cm and6.98×10-5S/cm respectively at20℃,1.22×10-4S/cm and6.39×10-4S/cm respectively at70℃. Electrochemical stability test show that the electrochemical stability of four compounds are all above4.0v,of which compound14reaches5.3v and meets the requirements of lithium ion electrolyte. Ion transference number of compound14is0.92,which is in line with the characteristics of a single ion polymer electrolyte.
引文
[1]Eddaoudi M,Moler D B,Li H,et al. Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J].Acc. Chem.Res.,2001,34,319-330.
    [2]Ferey G,Mellot-Draznieks C,Serre C,et al. Crystallized frameworks with giant pores:Are there limits to the possible? [J]. Acc. Chem. Res.,2005,38:217-225.
    [3]Matsuda R,Kituara R,Kitagwaa S,et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J].Nature,2005,436,238-241.
    [4]Seo J S,Whnag D,Lee H,et al. A homochiral metal-organic porous material for enantio-selective separation and catalysis[J].Nature,2000,404,982.
    [5]杨广生.基于刚性杂环配体构筑的金属-有机骨架材料的可控合成和功能性研究[D].吉林:东北师范大学,2012.
    [6]曹文秀.金属有机骨架材料的制备及在储氢和生物质转化方面的应用[D].广州:华南理工大学,2012.
    [7]刘辉.基于有机功能基团修饰的多孔金属有机骨架化合物的合成及性能研究[D].广州:华南理工大学,2011.
    [8]Eddaoudi M,Kim J,Rosi N L,et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
    [9]Kitaura R,Fujimoto K,Noro S,et al. A pillared-layer coordination polymer network displaying hysteretic sorption:[Cu2(PZDC)2(DPYG)]n (pzdc=Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol) [J]. Angewandte Chemie-International Edition,2002,114 (1):433-435.
    [10]Chester A W,Clement P,Han S. Faujasite zeolitic materials[P],US 6136291,2000-10-24.
    [11]Nijkamp M G.,Raaymakers J E,van Dillen A J,et al. Hydrogen storage using physisorption-materials demands[J].Applied Physics A:Materials Science&Processing, 2001,72(5):619-623.
    [12]Matzger A J,Koh K,Wong-Foy A G,et al. A porous coordination copolymer with over 5000 m2/g BET surface area [J]. J. Am. Chem. Soc.,2009,131(12):4184-4185.
    [13]Kim J, Furukawa H, Ko N,et al.Ultrahigh porosity in metal-organic frameworks [J].Science,2010,329(5990):424-428.
    [14]Yaghi O M,Millward A R.Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. J.Am.Chem.Soc.,2005,127(51):17998-17999.
    [15]Kitagawa S,Kitaura R,Shin-ichiro N.Functional porous coordination polymers[J]. Angewandte Chemie-International Edition,2004,43(18):2334-2375.
    [16]吴蕾.新型金属有机骨架材料的设计合成、结构与性能研究[D].吉林:吉林大学,2012.
    [17]许玉敏.基于芳香羧酸及含氮类配体构筑的金属有机骨架物[D].太原:中北大学,2011.
    [18]Li H,Eddaoudi M,O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J].Nature,1999,402,276-279.
    [19]Rowsell J L C,Spencer E C,Eekert J, et al.Gas adsorption sites in a large-pore metal -organic framework[J].Science,2005,1350-1353.
    [20]Yaghi O M,O'Keeffe M,Ockwig N,et al.Reticular synthesis and the design of new materials[J].Nature,2003,423,705.
    [21]郝向荣.基于刚性配体和模板效应构筑的MOF孔道材料-合成、结构及性质研究[D].吉林:东北师范大学,2012
    [22]Ferey G,Mellot-Draznieks C,Serre C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J].Science,2005,309(5743):2040-2042.
    [23]Barthelet K,Marrot J,Riou D,et al. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J].Angewandte Chemie-International Edition,2001, 41(2):281-284.
    [24]Serre C,Millange F,Thouvenot C,et al.Very large breathing effect in the first nanoporous chromium(III)-based solids:MIL-53 or Cr-III(OH)-{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H} (x)-H2Oy[J].J.Am. Chem. Soc.,2002,124(45):13519-13526.
    [25]Ferey G,Serre C,Mellot-Draznieks C,et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry,simulation,and powder diffraction[J].Angewandte Chemie-International Edition,2004,43(46):6296-6301.
    [26]Mellot-Draznieks C,Dutour J,Ferey G R. Hybrid organic-inorganic frameworks:Routes for computational design and structure prediction[J].Angewandte Chemie-International Edition,2004, 43(46):6290-6296.
    [27]Serre C,Millange F,Surble S,et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units[J].Angewandte Chemie-International Edition,2004,43(46):6286-6289.
    [28]Mellot-Draznieks C,Serre C,Surble S,et al. Very large swelling in hybrid frameworks:A combined computational and powder diffraction study[J].J.Am.Chem.Soc.,2005,127(46): 16273-16278.
    [29]Bourrelly S,Moulin B,Rivera A,et al. Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr)[J].J.Am.Chem.Soc.,2010,132(27): 9488-9498
    [30]Fang Q R;Zhu G S;Jin Z,et al.,A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters.[J].Angewandte Chemie-International Edition,2006,45:6126-6130.
    [31]孙福兴.新型多孔金属有机羧酸骨架化合物的设计合成、结构与性质[D].吉林:吉林大学,2010
    [32]Qiu S L,Zhu G S.Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J].Coordin Chem Rev,2009,253:2891-2911.
    [33]Fang Q R,Zhu G S,Jin Z,et al. Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly[J].Angewandte Chemie-International Edition,2007,46:6638-6642.
    [34]Deng H X, Doonan C J, Furukawa H,et al. Multiple functional groups of varying ratios in metal-organic frameworks[J].Science,2010,327:846-850.
    [35]Takashima Y,Martinez V M,Furukawa S H,et al. Molecular decoding using luminescence from an entangled porous framework[J].Nature communications,2011,2:168.
    [36]Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J].Nature,1995,378:703-706.
    [37]Chui S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous aterial [Cu3(TMA)2(H2O)3)]n[J].Science,1999,283,1148-1150.
    [38]Furukawa H, Miller M A, Yaghi O M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks[J].J. Mater. Chem.,2007,17(30):3197-3204.
    [39]Li Y, Yang R T. Gas adsorption and storage in metal-organic framework MOF-177[J].Langmuir,2007,23(26):12937-12944.
    [40]Chae H.K.Siberio-Perez D Y,Kim J,et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523-527.
    [41]Rowsell J L C,Millward A R,Park K S,et al. Hydrogen sorption in functionalized metal-organic frameworks[J].J.Am.Chem.Soc.,2004,126(18):5666-5667.
    [42]Young-wan P,Sang-eom C,Hyunuk K,et al. Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter 13[J].Angewandte Chemie-International Edition,2007,46(43):8230-8233.
    [43]Yan Y,Yang S,Blake A J,et al. A mesoporous metal-organic framework constructed from a nanosized C-3-symmetric linker and [Cu-24(isophthalate)(24)] cuboctahedra[J]. Chem. Commun,2011,47(36):9995.
    [44]Chen B L,Yang Y,Zapata F,et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules[J].Adv. Mater.,2007,19:1693-1696.
    [45]Karra J R,Walton K S. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC[J].Langmuir,2008,24,8620-8626.
    [46]Murray L J,Dinca M,Yano J,et al. Highly-selective and reversible O2 binding in Cr3 (1,3,5-benzenetricarboxylate)2[J].J.Am.Chem.Soc.,2010,132:7856-7857.
    [47]Lin X,Jia J H,Zhao X B,et al. High H2 adsorption by coordination-framework materials[J].Angewandte Chemie-International Edition,2006,45:7358-7364.
    [48]Farha O K, Hupp J T. Rational design, synthesis, purification, and activation of metal-organic framework materials[J]. Acc.Chem.Res.,2010,43,1166-1175.
    [49]李佳.桥连羧酸和吡啶类混合配体构筑金属有机骨架结构化合物的合成、结构和性质研究[D].吉林:吉林大学,2012
    [50]Tian G,Zhu G,Yang X,et al. A chiral layered Co(Ⅱ) coordination polymer with helical chains from achiral materials[J]. Chem. Commun.,2005:1396-1398.
    [51]Liu Y L.Kravtsov V C,Larsen R,et al. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks(ZMOFs) with extra-large cavities. [J]. Chem Commun,2006:1488-1490.
    [52]Sava D F,Kravtsov V C,Nouar F,et al. Quest for zeolite-like metal-organic frameworks:On pyrimidinecarboxylate bis-chelating bridging ligands.[J].J.Am.Chem.Soc.,2008,130:3768-3770.
    [53]Alkordi M H,Brant J A,Wojtas L,et al. Zeolite-like Metal-Organic Frameworks (ZMOFs) Based on the Directed Assembly of Finite Metal-Organic Cubes(MOCs).[J]. J. Am.Chem.Soc.,2009,131:17753-17755.
    [54]Fu F, Li D S,Zhang C Q, et al.{[Dy2(BPDC)3(H2O)3]H2O}n (BPDC=2,2'-bipyridine-4,4'-dicarboxylate):A highly-thermostable 3D coordination polymer with unusual mixed-connected network topology[J].Inorg. Chem.Commun,2008,11:1260-1263.
    [55]Monteiro B,Gago S, Balula S S, et al. Liquid-phase oxidation catalysed by copper (II) immobilised in a pillared layered double hydroxide[J]. Journal of Molecular Catalysis A:Chemical,2009,312:23-30.
    [56]Chen B L, Wang L, Xiao Y, et al. A luminescent metal-organic framework with lewis basic pyridyl sites for the sensing of metal ions[J].Angewandte Chemie-International Edition, 2009,48,500.
    [57]Bloch E D,Britt D,Lee C,et al. Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine [J].J.Am.Chem.Soc.,2010,132(41):14382-14384.
    [58]王崇臣.基于多羧酸配体的金属-有机骨架的合成与表征[D].北京:北京化工大学,2012
    [59]Kondo M, Shimamura M, Noro S, et al. Microporous materials constructed from the interpenetrated coordination networks, structures and methane adsorption properties[J]. Chemistry of Materials,2000,12(5):1288-1299.
    [60]Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science,2003,300(5622):1127-1129
    [61]Pan L, Sander M B, Huang X, et al. Microporous metal organic materials:promising candidates as sorbents for hydrogen storage[J].J.Am.Chem.Soc.,2004,126(5):1308-1309.
    [62]Dybtsev D N, Chun H, Yoon S H, et al. Microporous manganese formate:a simple metal-organic porous material with high framework stability and highly selective gas sorption properties[J].J.Am.Chem.Soc.,2003,126(1):32-33.
    [63]Bourrelly S, Llewellyn P L, Serre C, et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J].J.Am.Chem.Soc.,2005,127(39):13519-13521.
    [64]Ma S, Wang X, Yuan D, et al. A coordinatively linked Yb meta-organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity [J]. Angewandte Chemie-International Edition,2008,47(22):4130-4133.
    [65]Cui Y J,Yue Y F,Qian G. D,et al. Luminescent functional metal-organic frameworks[J].Chemical Reviews,2012,112(2):1126-1162.
    [66]Gandara F, de Andres A, Gomez-Loy B, et al. A rare-earth MOF series:fascinating structure,efficient light emitters, and promising catalysts[J].Cryst. Growth. Des.,2008,8,378.
    [67]袁碧贞.金属有机骨架材料的制备及其吸附和催化应用[D].广州:华南理工大学,2011
    [68]Wang M S, Guo S P, Li Y, et al. A direct white-light-emitting metal-organic framework with tunable yellow-to-white photoluminescence by variation of excitation light[J].J.Am.Chem.Soc., 2009,131,13572.
    [69]White K A, Chengelis D A, Zeller M, et al. Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties[J],Chem.Commun.,2009,4506.
    [70]石磊.多孔锌/铜金属有机骨架材料的合成、结构与性质[D].吉林:吉林大学,2012
    [71]Sadakiyo M,Yamada T,Kitagawa H, et al. Rational designs for highly proton-conductive metal-organic frameworks[J].J.Am.Chem.Soc.,2009,131 (29):9906-9907.
    [72]Hurd J A,Vaidhyanathan R, Thangadurai V, et al. Anhydrous proton conduction at 150℃ in a crystalline metal-organic framework[J].Nat.Chem.,2009,1,705-710.
    [73]Takaishi S, Hosoda M, Kajiwara T, et al. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units[J],Inorg.Chem.,2009,48,9048.
    [74]Zhang L J,Zhao X L,Cheng P, et al. A unique two-dimensional terephthalate-bridged structure with alternate tetra-and pentra-coordinate cobalt(Ⅱ) sites,Synthesis,crystal structure and magnetic properties of [{Co3(tp)2(OH)2(phen)2}n][J]. Chem. Soc.,2003,76,1179-1180.
    [75]Ma L Q,Abney C,Lin W B. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1248-1256.
    [76]李传强.基于柔性多羧酸配体的金属—有机骨架材料的合成与表征[D].北京:北京工业大学,2012.
    [77]Kockrick E, Lescouet T, Kudrik E V, et al. Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin [J]. Chem.Comm.,2011,47:1562-1564.
    [78]Yaghi O M,Rowsell J L C. Strategies for hydrogen storage in metal-organic frameworks [J].Angewandte Chemie-International Edition,2005.44(30):4670-4679.
    [79]D'Alessandro D M,Smit B,Long J R. Carbon dioxide capture:prospects for new materials [J].Angewandte Chemie-International Edition,2010,49(35):6058-6082.
    [80]Li J R,Kuppler R J,Zhou H C. Selective gas adsorption and separation in metal- organic frameworks [J]. Chem. Soc. Rev.,2009,38(5):1477-1504.
    [81]Chen B L,Ockwig N W,Millward A R,et al. High H-2 adsorption in a microporous metal-organic framework with open metal sites[J].Angewandte Chemie-International Edition,2005,44(30):4745-4749.
    [82]Ahuja R,Blomqvist A.Araujo C M,et al. Li-decorated metal-organic framework 5:A route to achieving a suitable hydrogen storage medium[J].Proc. Natl. Acad. Sci. U.S.A.,2007, 104(51):20173-20176.
    [83]Wu T J,Shen L J,Luebbers M,et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups[J].Chem. Commun. (Cambridge,U.K.),2010,46(33):6120-6122.
    [84]Uemura K,Onishi F,Yamasaki Y,et al. Syntheses,crystal structures,and water adsorption behaviors of jungle-gym-type porous coordination polymers containing nitromoieties[J].J.Solid State Chem.,2009,182(10):2852-2857.
    [85]Devic T,Horcajada P,Serre C,et al. Functionalization in flexible porous solids:effects on the pore opening and the host-guest interactions[J].J.Am.Chem.Soc.,2010,132(3):1127-1136.
    [86]李明涛.新型离子液体聚合物电解质的设计、合成及在锂二次电池中的应用研究[D].上海:上海交通大学,2011.
    [87]Fenton D E,Parker J M,Wright P V. Complexes of alkali metal ions with poly (ethyleneoxide)[J].Polymer,1973,14(11),589-589.
    [88]Armand M B,Chabagno J M,Dueloet M J. Fast ion transportin solids[J].Amsterdam:North Holland Publishers,1979:131-136.
    [89]罗丹.锂离子电池用凝胶聚合物电解质的设计、制备及表征[D].杭州:浙江大学,2010.
    [90]沈宸.锂离子电池固态电解质和负极材料的研究[D].杭州:浙江大学,2010.
    [91]李志明.新型锂离子二次电池用凝胶聚合物电解质的研究[D].上海:上海交通大学,2008.
    [92]龚永锋.一种星形网状聚合物电解质的研究及其应用[D].西安:西北工业大学,2007.
    [93]Fauteux D,Massueco A,Mclin M,et al. Lithium polymer electrolyte rechargeable battery, Electrochim.Acta,1995,40(13-14):2185-2190.
    [94]高昆,微孔聚合物电解质的制备及其增强改性的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [95]Murata K,Izuehi S,Yoshilisa Y. An overview of the research and development of solid polymer electrolyte rechargeable battery,Electrochim.Acta,2000,45:1501-1508.
    [96]Tsuehida E, Ohno H, Tsunemi K.Conduction of lithium ions in polyvinylidene fluoride and its derivatives[J].ElectroehimAeta,1983,28(5):591-595.
    [97]Tsunemi K, Ohno H, Tsuehida E. A mechanism of ionic-conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films[J].ElectroehimActa,1983:28(6):833-837.
    [98]Nasef M M, SuPPiah R R, Dalllan K Z M,et al. PreParation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization[J].Solid State Ionics,2004;171(3-4):243-249.
    [99]Shen Y J,Reddy M J, Chu P P. Porous PVDF with LiC1O4 complex as'solid' and 'wet' polymer electrolyte[J]. Solid State Ionics,2004,175 (1-4),747-750. [100]Mohamed N S,Arof A K. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes[J].J Power Sources,2004,132 (1-2),229-234.
    [101]Saikia D.Kumar A. Ionic conduction in PVDF-HFP/PVDF-(PC+DEC)-LiC104 Polymer gel electrolytes[J]. Electrochim Acta,2004,49 (16),2581-2589.
    [102]Kim J R,Choi S W,Jo S M,et al. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries[J].Electrochim Acta,2004,50 (1),69-75.
    [103]马俊涛,梁美霞,李洪武等.固态单离子聚合物电解质的研究进展[J].功能高分子学报,2003年04期.
    [104]Fauteux D,Massucco A,McLin M,et a 1.Lithium polymer electrolyte rechargeable battery[J].Electrochimica Acta,1995,40(13-14):2185-2190.
    [105]Stevens J R,Mellander E.Poly(ethylene oxide)-alkali metal-silver halide salt systems with hight ionic conductivity at room temperature[J].Solid State Ionics,1986,21(3):203-206.
    [106]Tominaga Y, Ohno H. High ionic conductivity of PEO/sulfonamide salt hybrids[J]. Solid State Ionics,1999,124(3-4):323-329.
    [107]Tsuchida E, Kobayashi N, Ohno H. Single-ion conduction in poly[(oligo(oxyethylene) methacrylate)-Co-(alkali-metal methaerylates)][J].Macromolecules,1988,21 (1):96-100.
    [108]Siska D P, Shriver D F. Li+ conductivity of Polysiloxane-trifluoromethyl sulfonamide Polyeleetrolytes[J].Chem Mater,2001,13(12):4698-4700.
    [109]Watanabe M, Suzuki Y, Nishimoto A. Single ion conduction in polyether electrolytes alloyed with lithium salt of a perfluorinated Polyimide[J]. Electrochim Acta,2000,45(8-9): 1187-1192.
    [110]Zhang X W, Khan S A,Fedkiw P S. Nanocomposite electrolytes using single-ion conducting fumed silica[J].Electrochem Solid St,2004:7(10):A361-A364.
    [111]Aoki T, Konno A,Fujinami T. Li-ion conductivity of aluminate and borate complex polymers containing fluoroalkane diearboxylate[J].J Electrochem. Soc.,2004,151(6):A887-A890.
    [112]Lishka U,Wietelmann U,Wegner M. Lithium bisoxalatoborate used as conducting salt in lithium ion batteries. DE19829030C1,1999.
    [113]Xu W,Angell C A. LiBOB and its derivatives weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem. Solid State Lett.,2001,4,(3), El.
    [114]Angell. electrolytic orthoborate salts for lithium batteries. US 7314686 B2,2008.
    [115]Ulrich Wietelmann F,Uwe Lischka N, Klaus Schade W. Boron chelate complexes. US,2004/0063986,A 1,2004.
    [116]Tasaki A,Goldberg A,Lian J J. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. Electrochemical Society:Pennington, NJ,ETATS-UNIS,2009;Vol.156.
    [117]Krause L J.Lamanna W,Summerfield J. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells[J]. J Power Sources,1997,68,320.
    [118]Gao J,Lowe M A,Kiya Y. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries:electrochemical and in-Situ X-ray absorption spectroscopic studies[J].Journal of Physical Chemistry C,2011,115,(50),25132-25137.
    [119]Jayaprakash N,Shen J,Moganty S S. Porous hollow carbon@sulfur composites for high-Power lithium-sulfur batteries[J].Angewandte Chemie-lnternational Edition,2011,50, (26),5904-5908.
    [120]Ryu H,Kim T, Kim K. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte[J]. J Power Sources,2011, 196,(11),5186-5190.
    [121]Sun X G.Reeder C L,Kerr J B. Synthesis and characterization of network type single ion conductors. Macromolecules,2004,37, (6),2219-2227.
    [122]Sun X G.,Kerr J B. Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato) borate[J]. Macromolecules,2006,39,(1),362-372.
    [123]Kurian M,Galvin M E,Trapa P E. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications[J]. Electrochimica Acta,2005,50,(10),2125-2134.
    [124]Mandal B K.Walsh C J,Sooksimuang T. New class of single-ion-conducting solid polymer electrolytes derived from polyphenols[J]. Chem. Mat.,2000,12,(1),6-8.
    [125]Mazor H.Goodnitsky D.Peled E. A search for a single-ion-conducting polymer electrolyte:Combined effect of anion trap and inorganic filler[J]. J Power Sources,2008.178, (2),736-743.
    [126]Buriez O,Han Y B,Hou J. Performance limitations of polymer electrolytes based on ethylene oxide polymers. J Power Sources,2000,89, (2),149-155.
    [127]Thomas K E,Sloop S E,Kerr J B. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers[J]. J Power Sources 2000,89, (2),132-138. [128]Doyle M,Fuller T F.Newman J. The importance of the lithium ion transference number in lithium/polymer cells[J]. Electrochimica Acta,1994,39,(13),2073-2081. [129]Appteccchigb G B,Zane D,Scrosati B.PEO-based electroly te membrane based on LiBC4O8 salt [J]. Journal of the Electrochemical Society,2004,151(9):A1369-374. [130]Turova N Y,Karpovskaya M I,Novoselova A V,et al. Hydrolysis and alcoholysis of alkali metal aluminium hydrides[J]. Inorganica Chimicn Acta.,1977,21,157-161. [131]Hergott H H, Simchen G.Synthesis,1980,626.[132]郭金亮,巩桂芬,张阳等.EVOH磺酸锂无纺布薄膜的制备及性能研究[J].电池工业,2012年01期[133]Ferrere S.Gregg B A.Photosensitization of TiO2 by [FeII(2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)2]:band selective electron injection from ultra-short-lived excited states[J]. Chem.Soc.,1998,120(4):843-844. [134]Janis J,Jakonen M,Oresmaa L,et al. Fragmentation pathways of [MX2(CO)2(dcbpy)] (M=Ru,Os;X=Cl,Br,I;dcbpy=2,2'-bipyridine-4,4'-dicarboxylic acid) complexes[J].Organo-metallics,2010,29(5):1070-1078. [135]Menon S,Rajasekharan M V,Tuchagues J P. Synthesis, crystal structure,magnetic,properties, and EPR of Cu(bp3ca)Br2·H2O (bp3ca=2.2'-bipyridine -3,3'-dicarboxylic acid). Ferromagnetic interactions via unsymmetrical bromide bridges[J]. Inorganic Chemistry,1997,36(20):4341-4346. [136]Pollard J A,Zhang D, Downing J A,et al. Solvent effects on interfacial electron transfer from Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2 (NCS)2 to nanoparticulate TiO2:spectroscopy and solar photoconversion [J].The Journal of Physical Chemistry A,2005,109(50):11443-11452. [137]Wolfbauer G.Bond A M,Deacon G B,et al. Experimental and theoretical investigations of the effect of deprotonation on electronic spectra and reversible potentials of photovoltaic sensitizers:deprotonation of cis-L2RuX2(L=2,2"-bipyridine-4,4'-dicarboxylic acid;X=CN-,NCS-) by electrochemical reduction at platinum electrodes[J].J.Am.Chem.Soc.,1999,122(1):130-142. [138]Zhang J Y,Ma Y,Cheng A L, et al. Synthesis, structures, and magnetic properties of transition metal compounds with 2,2'-dinitrobiphenyl-4,4'-dicarboxylate and N,N'- chelating ligands[J]. Dalton Transactions,2011,40(27):7219-7227. [139]Zhan G. Li X H.Poly[[trans-diaquabis (mu(2)-biphenyl-2,2'-dicarboxylato)bis-(mu(2)-4,4'-bipyridine)dicobalt(Ⅱ)]biphenyl-2,2'-dicarboxylic acid disolvate][J].Acta Crystallographica Section C,2010,66(2):m29-m31.
    [140]Bunzli J G,Charbonniere L J,Ziessel R F. Structural and photophysical properties of Ln III complexes with 2,2'-bipyridine-6,6'-dicarboxylic acid:surprising formation of a H-bonded network of bimetallic entities [J]. Journal of the Chemical Society, Dalton Transactions, 2000,2000(12):1917-1923.
    [141]Sheldrick G M.SHELXS 97,Program for crystal structure solution[DB/CD]. Gottingen (Germany):1997.
    [142]Yoshizawa M, Kusukawa T, Fujita M, et al. Ship-in-a-bottle synthesis of otherwise labile cyclic trimers of siloxanes in a self-assembled coordination cage[J]. J.Am.Chem.Soc., 2000,122(26):6311-6312.
    [143]仇卫化,阎坤,连芳等.硼基锂盐电解质在锂离子电池中的应用[J].化学进展,2011年Z1期.
    [144]Sloop S E,Pugh J K,Wang S,et al. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochem.Solid-State Lett.,2001,4:A42-A44.
    [145]Zinigrad E,Larush-Asraf L,Gnanaraj J S,et al. On the thermal stability of LiPF6[J]. Thermochim. Acta,2005,438:184-191.
    [146]Barthel J,Buestrich R,Carl E,et al. A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes.3. Synthesis and properties of some lithium organoborates. J. Electrochem. Soc.,1996,143,(11),3572-3575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700