用户名: 密码: 验证码:
ArF准分子激光高反射薄膜技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路制造业是我国给予高度关注的战略产业之一。随着光刻技术的不断发展,集成电路的集成度越来越高,集成电路的尺寸越来越小,自20世纪末以来,ArF准分子193nm激光投影光刻机已成为90nm和65nm节点极大规模集成电路制造的主流装备,因此,在ArF准分子激光器及其相应光学系统中所应用的193nm光学薄膜元件具有重要作用。本文对深紫外193nm激光光学系统所使用的高反射薄膜光学元件进行了研究与制备,对光学薄膜元件提出的低损耗和高损伤阈值等技术要求,具体研究内容包括以下几个方面:
     1.为了制备出满足上述性能要求的光学薄膜元件,首先必须准确确定出所用薄膜材料在相应波段范围内的光学常数(折射率和消光系数)。材料的光学常数在薄膜状态下和块状状态下差别很大,并依赖所采用的沉积方法。在各个具体的制备条件下,精确解析薄膜的光学常数是制备出高性能薄膜光学元件的重要一环。根据热蒸发制备的LaF3薄膜生长特性,采用了一种折射率非均匀性薄膜光学常数的表征方法,该方法是基于非均匀模型和光度法同时拟合确定薄膜的光学常数,并且与椭圆偏振法相互验证,提高了薄膜在深紫外波段光学常数的解析精度。
     2.薄膜的光学性能依赖于沉积方法和沉积条件,需要对不同沉积条件和工艺参数下制备的薄膜进行分析。对热蒸发制备的LaF3、MgF2、GdF3和AlF3薄膜在不同沉积温度和沉积速率的条件下进行光学性能和结构的详细研究,并对薄膜的光学性能、微观结构、化学组分和激光量热吸收等进行系统表征,从而确定各种工艺参数下的薄膜特性。
     3.基于高反射薄膜体内电场强度的分布特点,优化设计了多层高反射薄膜,根据设计的结果以及优化的沉积工艺,制备了193nm波段高反射薄膜,并进行了薄膜损耗和误差反演分析,找出了理论设计和实际制备之间的误差原因,从而完善高反射薄膜的沉积工艺。
     4.对制备的深紫外193nm多层高反射薄膜进行了ArF准分子激光损伤测试,综合分析薄膜的损伤形貌,系统研究薄膜特性及其演变与薄膜损伤之间的相关性,从理论和实验两方面出发,推断出ArF准分子激光对氟化物高反射薄膜的损伤机理,并在优化薄膜的表面缺陷、聚集密度和膜系设计的基础上,将薄膜的激光损伤阈值在1-on-1损伤模式下从1.0J/cm2提高到了2.25J/cm2。
Integrated circuit (IC) manufacturing is one of the strategic industries to whichis given great attention in our country. With the continuous development oflithography technology, the density of integrated circuit has become higher, and thesize has become smaller. Since the end of the20th century, ArF excimer laserprojection lithography has become the mainstream equipment of90nm and65nmnode huge scale integrated circuit manufacturing. Therefore,193nm optical thin filmdevices which applied in ArF excimer laser and its corresponding optical systemhave played an important role. In this paper, the research and preparation have beencarried on the high reflection (HR) coatings which is used by193nm laser opticalsystem, the technical requirements of low loss and high damage threshold for opticalthin film components have been proposed. The main contents are as follows:
     1. In order to prepare the optical thin film components which meet theperformance requirements, you must accurately identify the optical constants(refractive index and extinction coefficient) of the thin film materials used in thecorresponding wavelength range. The optical constants of the materials in the thinfilm state and the block state vary greatly, and depend on the deposition methods.Under various specific preparation conditions, accurate analysis of thin film opticalconstants is one of the most important aspects of the preparation of highperformance film optical elements. According to LaF3film growth characteristicsprepared by thermal evaporation, this paper proposes a characterization of the refractive index inhomogeneity of thin film optical constants, which is based oninhomogeneous model and spectrophotometry method to determine the opticalconstants of thin film at the same time, and to do the mutual authentication with themethod of ellipsometry, and to improve the optical constants of analytic precisionwhen the thin film is in the deep ultraviolet wavelength range.
     2. The optical properties of thin film depend on the deposition methods andconditions, and the analysis on the thin film which prepared under differentdeposition conditions and process parameters are needed. Detailed study on theoptical properties and structure of LaF3, MgF2, GdF3and AlF3film that prepared bythermal evaporation under different deposition temperature and deposition rate, andsystematical characterization on optical properties, microstructure, chemicalcomposition and laser calorimetry of thin film. So as to determine the film propertiesunder various process parameters.
     3. Based on the distribution characteristics of electric field intensity in the bodyof HR coatings, the thin film has been optimized designed. According to the result ofdesign and optimization of deposition process, the193nm HR coatings has beenprepared, the thin film loss and error of inversion have been analyzed, and identifythe reasons of the error between the theoretical design and practical preparation, soas to improve the HR coatings deposition process.
     4. For the preparation193nm HR coatings, ArF excimer laser damage test hasbeen done, analyze the thin film’s damage morphology, systematically research thecorrelation between the thin film properties and its evolution and the coating damage.Starting from the two aspects of theory and experiment, deduce the ArF excimerlaser damage mechanism of fluoride HR coatings, increase the film laser induceddamage threshold from1.0J/cm2to2.25J/cm2on the basis of optimizing use ofsurface defects, packing density and coating design under1-on-1damage mode.
引文
[1]杨向荣,张明,王晓临等.新型光刻技术的现状与进展[J].材料导报,2007,21(5):102-104
    [2]K.Ronse, A.M.Goethals, G.Vanderghe, et al. Recent trends and progress indeep-UV lithography [C]. Proc of SPIE,1999,3741:34-39
    [3]V.Liberman, M.Rothschild, J.H.C.Sedlacek, et al. Assessment of optical coatingsfor193nm lithography [C]. Proc of SPIE,1998,3334:470-479
    [4]苏雪莲.新世纪光刻技术及光刻设备的发展趋势[J].微电子技术,2001,29(2):8-17
    [5]佟军民,胡松,余国彬.下一代光刻技术[J].电子工业专用设备,2005,130:27-33
    [6]P.Dentinger, G.Cardinale, C.Henderson, et al. Photoresist film thickness forextreme ultraviolet lithography [C]. Proc of SPIE,2000,3997:588-599
    [7]李艳秋.浸没式ArF光刻最新进展[J].电子工业专用设备,2006,134:27-35
    [8]J.Finders, M.Dusa, P.Nikolsky, et al. Litho and patterning challenges for memoryand logic applications at the22nm node [C]. Proc of SPIE,2010,7640:76400C
    [9]王光伟.准分子激光光刻技术及进展综述[J].天津工程师范学院学报,2008,18(1):1-5
    [10]楼棋洪.准分子激光器的发展和应用[J].中国激光,1994,A21(5):361-364
    [11]余吟山,游利兵,梁勖等.准分子激光技术发展[J].中国激光,2010,37(9):2253-2270
    [12]N.Kaiser, H.Lauth, H.Bernitzki. Optical coatings for excimer laser applications
    [M]. Berlin: springer,2005.119-126
    [13]J.Ullmann, M.Mertin, C.Zeiss, et al. Coated optics for DUV Excimer laserapplications [C]. Proc of SPIE,2000,3902:514-527
    [14]S.Martin, S.Bock, E.Welsch, et al. Optical measurement of DUV absorption indielectric coatings [C]. Proc of SPIE,2001,4347:93-101
    [15]C.Muhlig, W.Triebel, S.Kufert, et al. Direct measurements of residual absorptionin fluoride thin films and optical materials for DUV laser applications [C]. Proc ofSPIE,2007,6403:640317
    [16]K.Mann, U.Leinhos, B.Schafer. Characterization of absorption losses in deep UVoptical materials [C]. Proc of SPIE,2007,6403:64031J
    [17]O.Apel, K.Mann, J.Heber, et al. Nonlinear absorption phenomena in oxidecoatings for193nm [C]. Proc of SPIE,2000,3902:235-241
    [18]O.Apel, K.Mann, A.Zoeller, et al. Nonlinear absorption of thin Al2O3films at193nm [J]. Applied Optics,2000,39(18):3165-3169
    [19]H.Blaschke, D.Ristau, E.Welsch, et al. Absolute measurements of non-linearabsorption near LIDT at193nm [C]. Proc of SPIE,2001,4347:447-453
    [20]O.Apel, K.Mann, G.Marowsky. Quadratic increase of nonlinear absorption in thinAl2O3films at193nm [C]. Proc of SPIE,2001,4347:74-80
    [21]J.F.Borrull, A.Duparre, E.Quesnel. Roughness and light scattering of ion beamsputtered fluoride coatings for193nm [J]. Applied Optics,2000,39(31):5854-5864
    [22]P.Kadkhoda, H.Welling, S.Guenster, et al. Investigation on total scattering at157nm and193nm [C]. Proc of SPIE,2000,4099:65-73
    [23]P.Kadkhoda, A.Muller, D.Ristau. Total scatter losses of optical components in theDUV/VUV spectral range [C]. Proc of SPIE,2000,3902:118-127
    [24]S.Gliech, J.Steinert, A.Duparre. Light scattering measurements of opticalthin-film components at157nm and193nm [J]. Applied Optics,2002,41(16):3224-3235
    [25]B.C.Li, S.Martin, E.Welsch. Thermoelastic influence of substrate on damagethreshold of ultraviolet dielectric coatings [C]. Proc of SPIE,2000,3902:145-153
    [26]H.Blaschke, W.Arens, D.Ristau, et al. Thickness dependence of damagethresholds for193nm dielectric mirrors [C]. Proc of SPIE,2000,3902:242-249
    [27]H.L.Gao, N.Y.Wang. Possible damage mechanism of the dielectric coatings for aKrF laser [J]. Applied Optics,1993,32(34):7084-7088
    [28]H.Krol, C.Amra, C.G.Besset, et al. Effect of electric field distribution on the laserdamage probability curves of multilayer coatings [C]. Proc of SPIE,2007,6720:67200V
    [29]李仲伢,李成富,范正修等.不同膜系结构的光学薄膜的激光损伤研究[J].光学学报,1991,11(1):93-96
    [30]J.E.Rudisill, N.Corporation. Design/deposition process tradeoffs for highperformance optical coatings in the DUV spectral region [C]. Proc of SPIE,2004,5273:30-40
    [31]S.Schroder, H.Uhlig, A.Duparre, et al. Nanostructure and optical properties offluoride films for high quality DUV/VUV optical components [C]. Proc of SPIE,2005,5963:59630R
    [32]S.Laux, H.Bernitzki, D.Fasold, et al. Low loss HR coatings on fused silicasubstrates for193nm micro-lithography applications [C]. Proc of SPIE,2008,7101:71010Y
    [33]R.Thielsch, J.Heber, N.Kaiser, et al. Absorption limited performance ofSiO2/Al2O3multilayer coatings at193nm a systematic study [C]. OSA/OIC,2001,THA6:1-3
    [34]R.Thielsch, A.Duparre, U.Schulz, et al. Properties of SiO2and Al2O3films for usein UV optical coating [C]. Proc of SPIE,1997,3133:183-193
    [35]H.Blaschke, M.Lappschied, D.Ristau. Performance enhancement of ion beamsputtered oxide coatings for193nm [C]. Proc of SPIE,2007,6720:67200T
    [36]R.Gotzelmann, D.H.Hagedorn, A.Zoller, et al. Oxide and fluoride coatings for theexcimer wavelength193nm [C]. Proc of SPIE,2005,5963:59630L
    [37]尚淑珍,易葵,侯海虹等.高反射率193nm Al2O3/MgF2反射膜的实验研究[J].中国激光,2005,32(5):685-688
    [38]S.Z.Shang, J.D.Shao, C.Y.Liao, et al. High reflectance193nm Al2O3/MgF2mirrors [J]. Applied Surface Science,2005,249:157-161
    [39]S.Z.Shang, K.Yi, J.B.Huang, et al. Optical properties of Al2O3and MgF2coatingsdeposited by electron beam evaporation in the DUV/VUV spectral range [C]. Proc ofSPIE,2004,5774:385-388
    [40]常艳贺,金春水,李春等.深紫外氧化物薄膜的光学特性[J].中国激光,2011,38(12):1207004
    [41]B.Blanckenhagen, D.Tonova, T.Koslowski. Influence of the amorphous characterof Al2O3layers on their use in the Deep UV spectral range [C]. Proc of SPIE,2005,5963:59630K
    [42]S.Gunster, D.Ristau, S.B.Puig. Spectrophotometric determination of absorption inthe DUV/VUV spectral range for MgF2and LaF3thin films [C]. Proc of SPIE,2000,4099:299-310
    [43]B.C.Li, D.W.Lin, Y.L.Han, et al. Antireflective fluoride coatings for widelytunable deep-ultraviolet diode-pumped solid-state laser applications [J]. CHIN. PHYS.LETT.2010,27(4):044201
    [44]H.Uhlig, R.Thielsch, J.Heber, et al. Lanthanide tri-fluorides:a survey of theoptical, mechanical and structural properties of thin films with emphasis of their usein the DUV-VUV-spectral range [C]. Proc of SPIE,2005,5963:59630N
    [45]M.C.Liu, C.C.Lee, B.H Liao, et al. Fluoride antireflection coatings deposited at193nm [J]. Applied Optics,2008,47(13): C214-C218
    [46]J.Heber, R.Thielsch, H.Blaschke, et al. Microstructure and radiation interactionsof optical interference coatings for193nm applications [C]. Proc of SPIE,1999,3738:159-165
    [47]T.Izawa, N.Yamamura, R.Uchimura, et al. Damage thresholds and opticalstabilities of fluoride HR coatings for193nm [C]. Proc of SPIE,1994,2114:297-308
    [48]D.Ristau, S.Gunster, S.Bosch, et al. Ultraviolet optical and microstructuralproperties of MgF2and LaF3coatings deposited by ion beam sputtering and boat andelectron-beam evaporation [J]. Applied Optics,2002,41(16):3196-3204
    [49]T.Yoshida, K.Nishimoto, K.Etoh. Fluoride antireflection multilayers with hightransmittance for ArF excimer laser by ion beam sputtering method [J]. JapaneseJournal of Applied Physics,2004,43(2B): L258-L260
    [50]M.Bischoff, M.Sode, D.Gabler, et al. Metal fluoride coatings prepared byion-assisted deposition [C]. Proc of SPIE,2008,7101:71010L
    [51]P.Kelkar, B.Tirri, R.Wilklow, et al. Deposition and characterization of challengingDUV coatings [C]. Proc of SPIE,2008,7067:706708
    [52]T.Yoshida, K.Nishimoto, K.Sekine, et al. Fluoride antireflection coatings for deepultraviolet optics deposited by ion beam sputtering [J]. Applied Optics,2006,45(7):1375-1379
    [53]Y.Taki. Film structure and optical constants of magnetron sputtered fluoride filmsfor deep ultraviolet lithography [J]. Vacuum,2004,74:431-435
    [54]K.Iwahori, M.Furuta, Y.Taki, et al. Optical properties of fluoride thin filmsdeposited by RF magnetron sputtering [J]. Applied Optics,2006,45(19):4598-4602
    [55]V.D.Zvorykin, R.V.Gaynutdinov, et al. Fluorine resistant optics for high-energyKrF lasers [C]. Proc of SPIE,2007,6611:66110M
    [56]G.Abromavicius, R.Buzelis, R.Drazdys, et al. Influence of ion assisted depositionon laser induced damage threshold and microstructure of optical coatings [C]. Proc ofSPIE,2005,5991:59911F
    [57]F.R.Wagner, A.Hildenbrand, L.Gallais, et al. Statistical interpretation of S-on-1data and the damage initiation mechanism [C]. Proc of SPIE,2008,7132:71320Y
    [58]H.Bernitzki, H.Lauth, R.Thielsch, et al. Current status of radiation resistance ofdielectric mirrors in the DUV [C]. Proc of SPIE,1998,3578:105-116
    [59]H.Blaschke, S.Martin, A.Morak, et al. The influence of thermal substrateproperties on the damage threshold of UV coatings [C]. Proc of SPIE,1998,3578:117-126
    [60]N.Kaiser, H.Uhlig, U.B.Schallenberg, et al. High damage threshold Al2O3/SiO2dielectric coatings for excimer lasers [J]. Thin Solid Films,1995,260:86-92
    [61]E.Welsch, K.Ettrich, H.Blaschke, et al. Investigation of the absorption induceddamage in ultraviolet dielectric thin films [J]. Optical Engineering,1997,36(2):504-514
    [62]C.Y.Wei, J.D.Shao, H.B.He, et al. Mechanism initiated by nanoabsorber for UVnanosecond pulse driven damage of dielectric coatings [J]. Optics Express,2008,16(5):3376-3382
    [63]J.H.Apfel. Optical coating design with reduced electric field intensity [J]. AppliedOptics,1977,16(7):1880-1885
    [64]O.Arnon, P.Baumeister. Electric field distribution and the reduction of laserdamage in multilayers [J]. Applied Optics,1980,19(11):1853-1855
    [65]J.Dijon, E.Quesnel, C.Pelle, et al. Laser damage of optical coatings from UV toDeep UV at193nm [C]. Proc of SPIE,1998,3578:54-63
    [66]S.Gunster, H.Blaschke, D.Ristau. Laser resistivity of selected multilayer designsfor DUV/VUV applications [C]. Proc of SPIE,2007,6403:640318
    [67]C.C.Lee, M.C.Liu, M.Kaneko, et al. Influence of thermal annealing andultraviolet light irradiation on LaF3thin films at193nm [J]. Applied Optics,2005,44(32):6921-6926
    [68]C.Zaczek, S.Mullender, H.Enkisch, et al. Coatings for next generation lithography
    [C]. Proc of SPIE,2008,7101:71010X
    [69]R.Thielsch, J.Heber, N.Kaiser, et al. Critical issues on the assesment of laserinduced damage thresholds of fluoride multilayer coatings at193nm [C]. Proc of SPIE,2000,3902:224-234
    [70]G.Abromavicius, R.Buzelis R.Drazdys, et al. Influence of electric fielddistribution on laser induced damage threshold and morphology of high reflectanceoptical coatings [C]. Proc of SPIE,2007,6720:67200Y
    [71]O.Apel, M.S.Grosser, U.Leinhos, et al. Interfacial absorption of DUV coatings
    [C]. Proc of SPIE,2001,4347:17-23
    [72]唐晋发,郑权.应用薄膜光学[M].上海:上海科学技术出版社,1984.82-89
    [73]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.33-35
    [74]尚淑珍,邵建达,范正修.低损耗193nm反射膜的设计[J].光学精密工程,2008,16(3):392-397
    [75]S.Gliech, J.Steinert, M.Flemming, et al. DUV/VUV light scattering measurementof optical components for lithography applications [C]. Proc of SPIE,2000,4099:74-81
    [76]A.Duparre, M.Flemming, J.Steinert, et al. Optical coatings with enhancedroughness for ultra-hydrophobic, low scatter applications [J]. Applied Optics,2002,41(16):3294-3298
    [77]T.Lindstrom, J.Isidorsson, G.A.Niklasson. Surface roughness in sputtered tinoxide films studied by light scattering and atomic force microscopy [C]. Proc of SPIE,1997,3141:48-56
    [78]H.Giovannini, A.Sentenac, C.Amra. Scattering from overcoated roughstructures-Application to the reduction of scattering [C]. Proc of SPIE,1999,3738:376-380
    [79]S.Logunov, S.Kuchinsky. Scattering loss in fused silica and CaF2for DUVapplications [C]. Proc of SPIE,2003,5040:1396-1407
    [80]P.Baumeister. Design of multilayer filters by successive approximations [J]. J. Opt.Soc. Am,1958,48:955-958
    [81]A.V.Tikhonravov. Synthesis of optical coatings using optimality conditions [J].Vestn. Mosk. Univ. Fiz. Astronomiya,1982,23:91-93
    [82]A.V.Tikhonravov, M.K.Trubetskov, G.W.Debell. Application of the needleoptimization technique to the design of optical coatings [J]. Applied Optics,1996,35(28):5439-5508
    [83]A.V.Tikhonravov, M.K.Trubetskov, G.W.Debell. Optical coating designapproaches base on the needle optimization technique [J]. Applied Optics,2007,46(5):704-710
    [84]H.K.Pulker. Coatings on glass (Second, revised edition)[M]. Liechtenstein,Elsevier Publications,1999.343-414
    [85]余华,崔云,申雁鸣等.沉积温度对LaF3薄膜性能的影响[J].强激光与粒子束,2007,19(9):1507-1511
    [86]M.C.Liu, C.C.Lee, M.Kaneko, et al. Microstructure and composition relatedcharacteristics of LaF3thin films at193nm [J]. Optical Engineering,2006,45(8):083801
    [87]余华,崔云,申雁鸣等.沉积速率对热舟蒸发LaF3薄膜性能的影响[J].中国激光,2007,34(11):1557-1561
    [88]H.Yu, Y.M.Shen, Y.Cui, et al. Characterization of LaF3coatings prepared atdifferent temperatures and rates [J]. Applied Surface Science,2008,254:1783-1788
    [89]薛春荣,易葵,魏朝阳等.真空紫外到深紫外波段基底材料的光学特性[J].强激光与粒子束,2009,21(2):287-290
    [90]D.Schonfeld, U.Klett, C.Muhlig, et al. Measurement of initial absorption of fusedsilica at193nm using laser induced deflection technique (LID)[C]. Proc of SPIE,2007,6720:67201A
    [91]V.Liberman, M.Rothschild, J.H.C.Sedlacek, et al. Excimer laser induceddegradation of fused silica and calcium fluoride for193nm lithographic applications[J]. Optics Letters,1999,24(1):58-60
    [92]J.Moll, P.Dewa. Laser resistance of fused silica for microlithography: experimentsand models [C]. Proc of SPIE,2002,4691:1734-1741
    [93]单耀莹,赵江山,李慧等.熔融石英棱镜在准分子激光光谱控制系统中的应用研究[J].中国激光,2013,40(4):0402008
    [94]V.Liberman, M.Rothschild, J.H.C.Sedlacek, et al. Marathon testing of opticalmaterials for193nm lithographic applications [C]. Proc of SPIE,1999,3578:2-15
    [95]C.Muhlig, W.Triebel, G.Topfer, et al. Calcium fluoride for ArF laserlithography-characterization by in situ transmission and LIF measurements [C]. Procof SPIE,2003,4932:458-466
    [96]A.Hultaker, S.Gliech, H.Gessner, et al. Characterization of CaF2substrates forVUV fluoride coatings [C]. Proc of SPIE,2004,5250:119-126
    [97]C.Muhlig, W.Triebel, H.Stafast, et al. Influence of Na-related defects on ArF laserabsorption in CaF2[J]. Applied Physics B,2010,99:525-533
    [98]方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2003.
    [99]P.Kadkhoda, H.Blaschke, J.Kohlhaas, et al. Investigations of transmittance andreflectance in the DUV/VUV spectral range [C]. Proc of SPIE,2000,4099:311-318
    [100]S.Schroder, H.Uhlig, A.Duparre, et al. Nanostructure and optical properties offluoride films for high quality DUV/VUV optical components [C]. Proc of SPIE,2005,5963:59630R
    [101]邓文渊,金春水,靳京城.用于ArF准分子激光器的CaF2衬底性能的实验表征[J].中国激光,2011,38(10):1002004
    [102]常艳贺,金春水,李春等.热蒸发紫外LaF3薄膜光学常数的表征[J].中国激光,2012,39(8):0807002
    [103]郭春,林大伟,张云洞等.光度法确定LaF3薄膜光学常数[J].光学学报,2011,31(7):0731001
    [104]M.C.Liu, C.C.Lee, M.Kaneko, et al. Microstructure related properties oflanthanum fluoride films deposited by molybdenum boat evaporation at193nm [J].Thin Solid Films,2005,492(1-2):45-51
    [105]常艳贺,金春水,李春等.热蒸发紫外LaF3薄膜光学性能和结构表征[J].中国激光,2012,39(10):1007002
    [106]常艳贺,金春水,李春等.193nm氟化物薄膜的激光诱导损伤[J].中国激光,2013,40(7):0707001
    [107]D.Jacob, F.Peiro, E.Quesnel, et al. Microstructure and composition of MgF2optical coatings grown on Si substrate by PVD and IBS processes [J]. Thin SolidFilms,2000,360:133-138
    [108]D.Ristau, W.Arens, S.Bosch, et al. UV-optical and microstructural properties ofMgF2coatings deposited by IBS and PVD processes [J]. Proc of SPIE,1999,3738:436-445
    [109]尚淑珍,赵祖欣,邵建达.沉积温度对热舟蒸发MgF2薄膜性能的影响[J].强激光与粒子束,2008,20(3):396-400
    [110]C.C.Jaing, M.H.Shiao, C.C.Lee, et al. Effects of ion assist and substratetemperature on the optical properties and microstructure of MgF2films produced bye-beam evaporation [C]. Proc of SPIE,2005,5870:58700F
    [111]常艳贺,金春水,邓文渊等.193nm薄膜激光诱导损伤研究[J].激光技术,2011,35(3):308-311
    [112]钟迪生.真空镀膜-光学材料的选择与应用[M].沈阳:辽宁大学出版社,2001.181-190
    [113]李新昌.热蒸镀MgF2薄膜时的喷溅问题[J].电子工业专用设备,2000,29(2):28-30
    [114]M.C.Liu, C.C.Lee, M.Kaneko, et al. Microstructure of magnesium fluoride filmsdeposited by boat evaporation at193nm [J]. Applied Optics,2006,45(28):7319-7324
    [115]T.Roland, H.Joerg, U.Hein, et al. Optical, structural, and mechanical propertiesof gadolinium tri-fluoride thin films grown on amorphous substrates [C]. Proc of SPIE,2005,5963:59630O
    [116]M.C.Liu, C.C.Lee, M.Kaneko, et al. Microstructure related properties at193nmof MgF2and GdF3films deposited by a resistive heating boat [J]. Applied Optics,2006,45(7):1368-1374
    [117]J.Wang, R.Maier, P.G.Dewa, et al. Nanoporous structure of a GdF3thin filmevaluated by variable angle spectroscopic ellipsometry [J]. Applied Optics,2007,46(16):3221-3226
    [118]J.Wang, H.Schreiber, R.W.Davis, et al. Structural comparison of GdF3filmsgrown on CaF2(111) and SiO2substrates [J]. Applied Optics,2008,47(23):4292-4296
    [119]H.L.Chen, J.C.Hsu, P.W.Wang, et al. AlF3film deposited by IAD with end Hallion source using SF6as working gas [J]. Applied Surface Science,2009,256:1232-1235
    [120]B.H.Liao, M.C.Liu, C.C.Lee. Process for deposition of AlF3thin films [J].Applied Optics,2008,47(13): C41-C45
    [121]C.C.Lee, M.C.Liu, M.Kaneko, et al. Characterization of AlF3thin films at193nm by thermal evaporation [J]. Applied Optics,2005,44(34):7333-7338
    [122]M.C.Liu, C.C.Lee. Fluoride antireflection coatings at193nm by resistive heatingbota [C]. OSA/OIC,2007, FA7:1-3
    [123]薛春荣,易葵,齐红基等.深紫外/紫外薄膜材料的光学常数研究[J].中国激光,2009,36(8):2135-2139
    [124]D.U.Fluckiger. Analytic methods in the determination of optical properties byspectral ellipsometry [J]. J.Opt.Soc.Am.A,1998,15(8):2228-2232
    [125]J.L.Cardin, D.Leduc. Determination of refractive index, thickness, and theoptical loss of thin films from prism-film coupling measurements [J]. Applied Optics,2008,47(7):894-900
    [126]Y.J.Jen, C.H.Hsieh, T.S.Lo. Optical constant determination of an anisotropic thinfilm via surface plasmon resonance: analyzed by sensitivity calculation [J]. OpticsCommunications,2005,244(1-6):269-277
    [127]Y.J.Jen, C.Y.Peng, H.H.Chang. Optical constant determination of an anisotropicthin film via polarization conversion [J]. Optics Express,2007,15(8):4445-4451
    [128]D.Bhattacharyya. Spectroscopic ellipsometry of multilayer dielectric coatings [J].Vacuum,2001,60:419-424
    [129]R.P.Netterfield. Ellipsometric monitoring of multilayer coatings [C]. Proc ofSPIE,2005,5870:58700A
    [130]J.P.Borgogno, B.Lazarides, E.Pelletier. Automatic determination of the opticalconstants of inhomogeneous thin films [J]. Applied Optics,1982,21(22):4020-4029
    [131]A.V.Tikhonravov, M.K.Trubetskov, T.Brian, et al. Influence of smallinhomogeneities on the spectral characteristics of single thin films [J]. Applied Optics,1997,36(28):7188-7198
    [132]Y.Taki, K.Muramatsu. Hetero-epitaxial growth and optical properties of LaF3onCaF2[J]. Thin Solid Films,2002,420-421:30-37
    [133]A.V.Tikhonravov, M.K.Trubetskov, T.Amotchkina, et al. Reliable determinationof wavelength dependence of thin films refractive index [C]. Proc of SPIE,2003,5188:331-342
    [134]M.Bischoff, D.Gabler, N.Kaiser, et al. Optical and structural properties of LaF3thin films [J]. Applied Optics,2008,47(13): C157-C161
    [135]肖刚,苏光辉,李天柁等.计算高可靠性系统失效概率的统计估计蒙特卡罗方法[J].核科学与工程,2000,20(1):25-31
    [136]W.Y.Deng, C.S.Jin. Laser induced damage threshold testing of DUV opticalsubstrates [J]. Chinese Optics Letters,2013,11(Suppl.): S10702
    [137]陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社,1996.185-199
    [138]凌秀兰,黄伟,孔明东等.激光薄膜缺陷研究[J].光学仪器,2004,26(2):178-182
    [139]R.H Picard, D.Milam, R.A.Bradbury. Statistical analysis of defect caused laserdamage in thin films [J]. Applied Optics,1977,16(6):1563-1571
    [140]M.Commandre, C.Fossati, J.Y.Natoli, et al. Photothermal analysis ofsub-micrometric scale defects in laser damage studies [C]. Proc of SPIE,2004,5250:158-169
    [141]B.Bertussi, J.Y.Natoli, A.During, et al. Correlation between laser induceddamage and nano-sized absorbing defects [C]. Proc of SPIE,2004,5250:575-580
    [142]U.Natura, O.Sohr, M.Letz, et al. Excimer laser induced defect generation inLithosil [C]. Proc of SPIE,2004,5377:1708-1714
    [143]J.Steinert, S.Gliech, A.Wuttig, et al. Advanced methods for surface andsubsurface defect characterization of optical components [C]. Proc of SPIE,2000,4099:290-298
    [144]L.Gallais, J.Capoulade J.Y.Natoli, et al. Investigation of nanodefect properties inoptical coatings by coupling measured and simulated laser damage statistics [J].Journal of Applied Physics,2008,104:053120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700