大坝及其周围地质体中渗流与应力场耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进行大坝及其周围地质体中渗流场与应力场耦合分析,是解决评价和预测
    大坝、坝基、坝肩稳定性,库岸边坡稳定性等问题的关键。本文运用岩体力学、
    渗流力学和结构力学相结合,理论分析与工程应用相结合,大坝与周围地质体
    相结合的系统研究方法,以大坝及其周围有限的地质体为研究对象,以大坝及
    岩体的结构类型为基础,进行裂隙渗流力学基础研究,分析大坝─地质体系统
    的渗流问题,同时考虑渗流对介质作用的渗透静水压力和渗透动水压力(渗流
    体积力或裂隙壁切向拖曳力),建立大坝─地质体系统渗流场与应力场(或温度
    场)耦合分析的多重裂隙网络非线性数学模型,开发求解此耦合分析模型的三
    维有限元程序与软件,并进行小湾水电站坝区和龙滩碾压混凝土坝渗流场与应
    力场耦合分析,以及龙滩碾压混凝土坝渗流场与温度场耦合分析。本文在大坝
    ─地质体系统渗流场与应力场耦合分析的多重裂隙网络模型、渗透动水压力引
    起的裂隙壁切向拖曳力、渗流场与温度场耦合分析的数学模型、以及大坝─地
    质体系统渗流场与应力场(或温度场)耦合分析的数值方法与软件等方面作了
    创新性的研究。实际工程计算结果表明,考虑耦合作用时,由于裂隙(层面)
    隙宽的减小而使总渗流量减小,使渗流场水头分布发生变化;也使岩体(坝体)
    各应力分量的最大值增加10%~20%左右;当水力坡度较大时,裂隙壁切向拖
    曳力使剪应力明显增加;和耦合分析相比较,不考虑耦合作用得出的应力结果
    偏于不安全。随着渗透系数的增大,渗流场对温度场的影响更加明显,而温度
    场对渗流场的影响减弱;渗流由低温向高温流动时,使温度场温度普遍降低,
    但使渗流场水头普遍升高。
It is the issue for evaluating and predicting the stability of the dam, founation
    and abutment to investigate the analysis of coupled seepage and stress fields in the
    dam and its surrounding rock mass. In this dissertation, the systematic research
    methd is utilized, in which rock mass mechanics, seepage theory and structural
    mechanics are combined, theoretical anaiysis and engineering application are
    combined, and the dam and its surrounding rock mass are combined. The dam and its
    surrounding finite rock mass are the main research object. Based on the structure of
    the dam and rock mass, analysis of seepage through the dam and its surrounding rock
    mass is pefformed. With the hydrotatic seepage pressure and the hydrodynamic
    seepage pressure (seepage body force or hauling force applied on the fissure walls)
    being simultaneously considered, the multiple-level fracture network non-linear
    mathmatical model for coupled seepage and stress (or temperatur) fields in the dam
    and its surrounding rock mass is proposed. The 3-D finite element program and
    software for solving the couple model is developed. The above couple models and
    software are applied in the hydroelectric projects such as Xiaowan and Longtan
    Hydropower Station Project. The theories such as hauling force applied on the fissure
    walls, the multiple-level fracture network model for coupled seepage and stress (or
    temperature) fields, and the numerical method and softwar are newly established in
    this dissertation. It can be shown from engineering computation that, by means of the
    couple analysis, the total flow rate decreases and the hydraulic head distribution
    changes, and the maximum values of stress components increase by 10~20%. When
    the hydraulic gradient is sharp, the shearing stress increases obviously because of the
    hauling force applied on the fissure walls. Compared with the couple analysis, the
    stress values of single analysis is non-conservative. The higher the hydraulic
    conductivity the more obvious the effect of seepage on temperature, and the less
    obvious the effect of tomperature on seepage. When seepage flows from where the
    temperature is low to where the temperature is high, the temperature decreases and the
    Wdraulic head increases due to the couple analysis.
引文
[1] Arturo A. Keller. Paul V. Roberts, and Martin J. Blunt, Effect of fracture aperture variations on the dispersion of contaminants, Water Resources Research, (1999) 35(1) ,55-64
    [2] B. Li, V K. Garga, M. H. Davies, Relationships for no-Darcy flow in rockfill. Journal of Hydraulic Engineering, (1998) 124(2) , 206-212
    [3] B. Li. V. K. Garga, Theoretical solution for seepage flow in overtopped rockfill. Journal of Hydraulic Engng. ,(1998) 124(2) , 213-217
    [4] B. M. Das, Principles of Geotechnical Engineering, Boston: PWS Publishers, 1985
    [5] Barenblatt, et al, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech.. Engl. Transl., 1960(5)
    [6] Benjamin Ross and Ning Lu, Dynamics of DNAPL(dense nonaqueous phase liquid) into fractured porous media, Ground Water, (1999) 37(1) , 140-147
    [7] C. M. Wicks. I. S. Herman, Regional hydrogeochemistry of a modern coastal mixing zone. Water Resources Research, ( 1 996) 32(2) , 401-408
    [8] Chai Junrui. Wu Yanqing, Analysis of Seepage through Dam Foundation of Fractured Rock Mass, Proceedings of XUT-NU Symposium on Water Resources and Environment, Xi'an China, 1999. 9. 9, p70
    [9] Chao Shan, Iraj Javandel, Paul A. Witherspoon, Characterization of leaky faults: Study of air flow in faulted vadose zones, Water Resources Research, (1999) 35(8) , 2007-2013
    [10] D. G. Fredlund. H. Rahardjo. Soil Mechanics for Unsaturated Soils, New York: John Wiley & Sons.1993(中译本:陈仲颐、张在明、陈愈炯、蒋国澄、吴肖(?)、石振华合译,非饱和土土力学,北京:中国建筑工业出版社,1997)
    [11] D. H. Hutson. T. R. Roberts, Environmental Fate of Pesticides. John Wiley & Sons, 1990
    [12] D. J. Goode, Direct simulation of groundwater age. Water Resources Research, ( 1996) 32(2)
    [13] D. W. Watkins, D. C. Mckinney, et al. Use of geographic information systems in groundwater flow modeling, Journal of Water Resources Planning and Management, (1996) 122(2) ,88-96
    [14] Erichsen C.. Gekoppelte Spannungs-Sickerstr O mungs beurechnungon von Bauwerken in kluftigem fels unter Berucksichtigung des nichtilinea-ren Spannung-Sverschicbungs ver-haltens von Trennflachen. Ver O ffentlichungen des Institutes fur Grundbau, Bodenmechanik, Felsmechanik und Verkch-swasscrbau der RWTH Aachen, 1987
    [15] Gangi A. F. The variation of mechanical and transport properties of cracked rock with pressure. Proc. 22nd U.S. Rock Mech., 1981
    [16] Huyakorn P. S. et al, Finite element techniques for modeling ground water flow in fractured aquifers. Water Resources Research. (1983) 19(5)
    [17] J. Bear. Dynamics of Fluids in Porous Media. New York: Elsevier. 1979 (中译本:李竞生 陈崇希 译,孙纳正 校,多孔介质流体动力学,北京:中国建筑工业出版社,1983)
    [18] J. Bear. Hydraulics of Groundwater, McGraw-Hill. 1979 中译本 涓铭 等 译.地下水水力学.北京:地质出版社,1985)
    [19] J Constantz. Interaction between stream temperature. stream flow and groundwater exchanges in atpine streams. Water Resources Research. (1998) 34(7) , 1609-1615
    [20] I J Nitao & J Bear. Potentials and their role in transport in porous media. Water Resources Research (1996) 32(2) . 225-250
    [21] J. Li & D Helm. Viscous drag, driving forces and their reduction to Darcy s taw. Water Resources Research. (1998) 34(7) . 1675-1684
    [22] J. S Reichard, D. I. Leap, The effects of pore pressure on the conductivity of fractured aquifers, Groundwater. (1998) 36(3) , 450-456
    [23] K. Jardine. L. Smith, T. Clemo, Monitoring Networks in fractured Rocks: a decision analysis approach, Groundwater. (1996) 34(3) , 504-518
    [24] Killsall P. C.. et al, Evaluation of excavation induced changes in rock permeability, Int. J. Rock Mech. Min. Sci.,1984(3)
    [25] L. M. Abrola, Groundwater Contamination, IAHS Press, 1989
    [26] L. Wei, J. A. Hudson, A hybrid discrete-continuum approach to model hydro-mechanical behavior of jointed rocks, Engineering Geology, 1998(49) , 317-325
    [27] Long J. C. S. et al. Porous media equivalents for networks of discontinuous fractures, Water Resources Research, (1982) 18(3)
    [28] Louis C., Rock hydraulics in rock mechanics, edited by L. Muller, Verlay Wien, New York, 1974
    [29] M. Bai, F. Meng, D. Elsworth, J.-C. Roegiers, Analysis of stress-dependant permeability in nonorthogonal flow and deformation fields, Rock Mech. Rock Engng., (1999) 32(3) ,195-219
    [30] M. F. Lough, S. H. Lee, J. Kamath, An efficient boundary integral formulation for flow through fractured porous media, Journal of Computational Physics, 1998(143) , 462-483
    [31] M. Oda, T. Yamabe, et al, Elastic stress and strain in jointed rock masses by means of crack tensor analysis, Rock Mech. Rock Engng., (1993) 26(2) , 89-112
    [32] Niwa Y.,S. Kobayashi &T.Fukui,An application of the integral equation method to seepage problems, Theoretical and Applied Mechanics 24,Tokyo:Univ. Of Tokyo Press, 1976
    [33] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses, Water Resources Research, 1986(13)
    [34] P. Gavrilenko, Y. Gueguen, Flow in fractured media: a modified renormali.zation method, Water Resources Research, (1998) 34(2) , 177-191
    [35] P. H. S. W. Kulatilake, J. Um, G. Pan, Requirements for accurate estimation of fractal parameters for self-affine roughness profiles using the line scaling method, Rock Mech. Rock Engng. (1997) 30(4) , 181-206
    [36] P. K. Banerjee, R. Butterfield, Boundary Element Methods in Engineering Science, McGraw-Hill, 1981
    [37] Per Loll, Per Moldrup, Per Schj φ nning, Hugh Riley, Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling, Water Resources Research, (1999) 35(8) , 2387-2400
    [38] Peter Dijk. Brian Berkowitz, and Peter Bendel, Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI), Water Resources Research, (1999) 35(2) ,347-360
    [39] Philip J. R., Evaporation, moisture and heat fields in the soil, J. Metoro. 14, 1957d, 354-366
    [40] R. E. Goodman, Methods of Geological Engineering in Discontinuous Rocks, West Publishing, 1976 (日译本:赤井浩一 等 译,不连统性岩盘地质工学,森北出版株式会社, 1978)
    [41] R. Weiss, L. Smith, Parameter space methods in joint parameter estimation for groundwater flow models. Water Resources Research, (1998) 34(4) , 647-661
    [42] S. A. Grant. A. Salehzadeh, Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions, Water Resources Research, (1996) 32(2) , 261-270
    [43] S. Christensen, K. R. Rasmussen, K. Moller, Prediction of regional groundwater flow to streams, Groundwater, (1998) 36(2) , 351-360
    [44] S. Thevanayagam, S. Nesarajah, Fractal model for flow through saturated soils, Journal of Geotechnical and Geoenvironmental Engng. ,(1998) 124(1) , 53-66
    [45] Tsang Y.W., Tsang C.F., Channel model of flow through fractured media, Water Resources Research,(1987)23(3)
    [46] Wilson C. R., et al, Large-scale hydraulic conductivity measurements in fractured granite, Int. J. Rock Mech. Min. Geomech., Abstr., 1983(6)
    [47] Witherspoon P. A. et al, New approaches to problems of fluid flow in fractured rock mass, Proc. U. S. Symp. Rock Mech. 22~(nd), 1981
    [48] Wu Yanqing, Chai Junrui, A Modified Iterative Approach for Solving Seepage Free Surface By BEM, Proceedings of XUT-NU Symposium on Water Resources and Environment, Xi'an China, 1999.9.9, p51~52
    [49] Wu Yan-Qing, On mechanical property of rock or soil masses by the action of seepage, Proceedings of 8~(th) International Congress of IAEGE, A.A. BALKEMA, 1998,p3481-3486
    [50] Yuzo Ohnishi,Akirako Bayashi,Makoto Nishigaki,地下工程围岩的热力—水力—力学特性,第六届国际岩石力学会议论文选集《岩石力学的进展》,重庆:重庆大学出版社,1990
    [51] 艾瑶、高明、戴水汉,玄武岩地区水----岩作用的数值模拟,水文地质工程地质,(1998)25(3),9~13
    [52] 柴军瑞、韩群柱,岩体渗流场与温度场耦合的连续介质模型,地下水,(1997)19(2)
    [53] 柴军瑞、韩群柱、寇效忠,闸坝地基面渗透压力研究,陕西水力发电,(1996)12(4)
    [54] 柴军瑞、仵彦卿,均质土坝渗流场与应力场耦合分析的数学模型,陕西水力发电,(1997)13(3),4-7
    [55] 柴军瑞、仵彦卿,岩体渗流与应力耦合机理研究综述,中国水利水电发展文库,中国水利水电出版社,1999
    [56] 陈斌林等,定向爆破坝体结构与渗透特性的研究,水利学报,1998(1),51-55
    [57] 陈剑平、肖树芳、王清,随机不连续面三维网络计算机模拟原理,长春:东北师范大学出版社,1995
    [58] 陈尤雯、莫海鸿,裂隙岩体中的对流扩散研究,岩土力学,(1997)18(3),47~52
    [59] 陈征宙、胡伏生、方磊 等,岩体节理网络模拟技术研究,岩土工程学报,(1998)20(1),22~25
    [60] 成建梅、陈崇希,广西北仙岩溶管道——裂隙——孔隙地下水数值模拟初探,水文地质工程地质,(1998)25(4),50~54
    [61] 杜守继、孙钧、江崎哲郎、蒋宇静,岩体不连续面的几何特性与剪切强度的关系,同济大学学报,(1999)27(4),379~383
    [62] 杜延龄、许国安,渗流分析的有限元法和电网络法,北京;水利电力出版社,1992
    [63] 耿克勤、吴永平,拱坝和坝肩岩体的力学和渗流的耦合分析实例,岩石力学与工程学报,(1997)16(2),125~131
    [64] 顾冲时、吴中如,渗流影响下坝体和坝基应力场的分析模型研究,水电能源科学,(1999)17(1),1~4
    [65] 郭洪兴、速宝玉、詹美礼,三维复杂排渗体的结构特性及有限元网格加密技术,河海大学学报,(1999)27(5),90~93
    [66] 郭耀煌等,运筹学与工程系统分析,北京:中国建筑工业出版社,1986
    [67] 国家自然科学基金委员会,自然科学学科发展战略调研报告-地球物理学,北京:科学出版社,1994,144~146
    [68] 国家自然科学基金委员会,自然科学学科发展战略调研报告-水利科学,北京:科学出版社,1994,139~148
    [69] 黄涛、杨立中,隧洞裂隙岩体温度—渗流耦合数学模型研究,岩土工程学报,(1999)21(5),554~558
    [70] 江崎哲郎、蒋宇静、杜守继、小林和昭、孙钧,岩体不连续面的表面形状的分形几何特征与剪切强度间关系的研究,三峡库区地质环境暨第二届中日地层环境力学国际学术讨论会论文集,北京:煤炭工业出版社,1996,124~131
    [71] 金曲生、马凤山,岩体结构面水力学模型及应用,水文地质工程地质,(1998)25(2),26~29
    [72] 金为芝,水文地质工程地质数值法,上海;同济大学出版社,1992
    [73] 赖远明、吴紫江、朱元林、朱林楠,寒区隧洞温度场、渗流场和应力场耦合问题的非线性分析,岩土工程学报,(1999)21(5),529~553
    [74] 雷志栋、杨涛秀、谢森传,土壤水动力学,北京:清华大学出版社,1988
    [75] 李守义、陈尧隆、柴军瑞,碾压砼坝渗流体积力研究,应用基础与工程科学学报,(1996)4(4),395-402
    [76] 李锡夔、范益群,非饱和土变形及渗流过程的有限元分析,岩土工程学报,(1998)20(4),20~24
    [77] 李瓒,石门拱坝坝基某些渗流问题分析,水力发电学报,1999(3),No.66,16~24
    [78] 梁业国、熊文林、周创兵,有自由面渗流分析的子单元法,水利学报,1997(8),34-38
    [79] 刘继山,单裂隙受正应力时的渗流公式,水文地质工程地质,1987(2)
    [80] 刘继山,结构面力学参数与水力参数耦合关系及其应用,水文地质工程地质,1988(2)
    [81] 刘杰,砂砾石地基上闸坝渗流控制原理与方法,水电站设计,(1997)13(4),12~19
    [82] 刘连峰、王泳嘉,三维节理岩体计算模型的建立,岩石力学与工程学报,(1997)16(1),36-42
    [83] 毛昶熙,流体计算分析与控制,北京:水利电力出版社,1991
    [84] 毛昶熙、陈平、李祖贻、李定方,裂隙岩体渗流计算方法研究,岩土工程学报,(1991)13(6),1~10
    [85] 毛昶熙、周名德、柴恭纯,闸坝工程水力学与设计管理,北京:水利电力出版社,1995
    [86] 茅春浦,流体力学,上海;上海交通大学出版社,1995
    [87] 莫海鸿、林德璋,裂隙介质网络水流模型的拓扑研究,岩石力学与工程学报,(1997)16(2),97~103
    [88] 碾压砼筑坝编写组,碉压砼筑坝——设计与施工,北京:电子工业出版社,1991
    [89] 祁庆和,水工建筑物,北京:水利电力出版社,1986
    [90] 钱颂迪,运筹学,北京:清华大学出版社,1990
    [91] 申晋、朱维申、赵阳升,三峡永久船闸高边坡岩体裂隙分布的分形研究,岩土工程学报,(1998)20(5),97~100
    [92] 沈洪俊、高海鹰、夏颂佑,应力作用下裂隙岩体渗流特性的试验研究,长江科学院院报,(1998)15(3),35~39
    [93] 沈洪俊、陆绍俊、夏颂佑,堆石坝心墙与防渗墙不同联结方式抗渗性能的试验研究,长江科学院院报,(1999)16(5),28~32
    [94] 盛金昌、速宝玉,裂隙岩体渗流应力耦合研究综述,岩土力学,(1998)19(2),92~98
    [95] 水谷敏则、竹林亚夫等,地下空间拓<——地下空间建设技術,山海堂,1994
    [96] 速宝玉、詹美礼、郭笑娥,交叉裂隙水流的模型实验研究,水利学报,1997(5),1-6
    [97] 速宝玉、詹美礼、王嫒,裂隙渗流与应力耦合特性的试验研究,岩土工程学报,(1997)19(4),73~77
    [98] 速宝玉、詹美礼、赵坚,光滑裂隙水流模型实验及其机理初探,水利学报,1994(5)
    [99] 速宝玉、朱岳明,不变网格法确定渗流自由面的节点虚流量法,河海大学学报,1991(3)
    [100] 田开铭、万力,各向异性裂隙介质渗流性的研究与评价,北京:学苑出版社,1989
    [101] 田中正隆、田中喜久昭,境界要素法——基磁応用,东京:丸善侏式会社,1982(中译本,郎德宏译,刘文斌校,边界元法的基础与应用,北京:煤炭工业出版社,1987)
    [102] 万力等,三维裂隙网络的多边形单元渗流模型,水利水运科学研究,1993(4)
    [103] 王恩志、王洪涛、孙役,双重裂隙系统渗流模型研究,岩石力学与工程学报,(1998)17(4)
    [104] 王洪涛、李永祥,三维随机裂隙网络非稳定渗流模型,水利水运科学研究,1997(2),139~146
    [105] 王洪涛、王恩志,岩体主干裂隙系统三维非稳定渗流分析模型,水动力学研究与进展(A辑),(1998)13(2),206~213
    [106]王谦源,分形分布节理的模拟研究,岩石力学与工程学报,(1999)18(3),271~274
    [107]王贤能、黄润秋,有自由面渗流分析的高斯点法,水文地质工程地质,(1997)24(6),1~4
    [108]王勖成、邵敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1997
    [109]王泳嘉、邢纪波,离散单元法及其在岩土力学中的应用,沈阳:东北工学院出版社,1991
    [110]王嫒,求解有自由面渗流问题的初流量法的改进,水利学报,1998(3),68-73
    [111]王嫒、速宝玉、徐志英,等效连续裂隙岩体渗流与应力全耦合分析,河海大学学报,1998(26)2,26~30
    [112]王嫒、徐志英、速宝玉,裂隙岩体渗流与应力耦合分析的四自由度全耦合法,水利学报,1998(7),55~59
    [113]吴林高、缪俊发等,渗流力学,上海:上海科学技术文献出版社,1996
    [114]吴梦喜、张学勤,有自由面渗流分析的虚单元法,水利学报,1994(8)
    [115]仵彦卿,岩体裂隙系统渗流场与应力场耦合模型,地质灾害与环境保护,(1996)7(1)
    [116]仵彦卿,岩土体系统渗流场与应力场耦合的连续介质模型,西安公路交通大学学报,(1996)16(Sup.)
    [117]仵彦卿,专题讲座:岩体水力学基础(二)岩体水力学的基本理论,水文地质工程地质,(1997)24(1)
    [118]仵彦卿,专题讲座:岩体水力学基础(六)岩体渗流场与应力场耦合的双重介质模型,水文地质工程地质,(1998)25(1)
    [119]仵彦卿,专题讲座:岩体水力学基础(七)岩体水力学参数的确定方法,水文地质工程地质,(1998)25 (2)
    [120]仵彦卿,专题讲座:岩体水力学基础(三)岩体渗流场与应力场耦合的集中参数模型和连续介质模型,水文地质工程地质,(1997)24(2)
    [121]仵彦卿,专题讲座:岩体水力学基础(四)岩体渗流场与应力场耦合的等效连续介质模型,水文地质工程地质,(1997)24(3)
    [122]仵彦卿,专题讲座:岩体水力学基础(五)岩体渗流场与应力场耦合的裂隙网络模型,水文地质工程地质,(1997)24(5)
    [123]仵彦卿,专题讲座:岩体水力学基础(一)岩体水力学的基本问题,水文地质工程地质,(1996)23(6)
    [124]仵彦卿、张倬元,岩体水力学导论,成都:西南交通大学出版社,1995
    [125]仵彦卿、张倬元,岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究,工程地质学报,1996(3)
    [126]仵彦卿等,地下水动态观测网的优化设计,成都:成都科技大学出版社,1993
    [127]肖裕行、王思敬、王泳嘉,离散单元法中接触变化诱导的水头变化,岩土工程学报,(1999)20(2),No.64,5~9
    [128]肖裕行、王永嘉等,裂隙岩体水力等效连续介质中物理量的讨论,岩土力学,(1997)18(4),13~17
    [129]肖裕行、王泳嘉、卢世宗、陈殿强、王思敬,裂隙岩体水力等效连续介质存在性的评价,岩石力学与工程学报,1999(18)1,75~80
    [130]肖裕行、王泳嘉、王思敬、卢世宗,裂隙岩体水力离散介质网络的建立,岩石力学与工程学报,(1998)17(4),412-418
    [131]谢和平,分形——岩石力学导论,北京:科学出版社,1996
    [132]谢和平、于广明、杨伦等,采动岩体分形裂隙网络研究,岩石力学与工程学报,1999(18)2,147~151
    [133]谢和平、周宏伟,多孔介质物理参数的分形描述,三峡库区地质环境暨第二届中日地层环境力学国际学术讨论会论文集,北京;煤炭工业出版社,1996,117~123
    [134]谢卫红、谢和平、赵鹏,分形节理粗糙度对应力状态影响的研究,岩石力学与工程学报,(1998)17(3),253-258
    [135]薛禹群,地下水动力学原理,北京:地质出版社,1986
    [136]杨米加、贺永年,蒙特卡洛模拟的随机性及裂隙岩体渗透张量分析,岩土工程学报,(1999)21(4)
    [137]杨太华、孙钧,岩体裂隙非规则几何水力学特性研究,岩土工程学报,(1997)19(4),10~14
    [138]于学馥,现代工程岩土力学基础,北京:科学出版社,1995
    [139]余常昭,环境流体力学导论,北京:清华大学出版社,1992
    [140]詹美礼、速宝玉,交叉裂隙水流N-S方程有限元分析,水科学进展,(1997)8(1),1~8
    [141]詹美礼、速宝玉,接触型裂隙水力等效张开度研究,岩土力学,(1997)18(1),40~47
    [142]詹美礼、速宝玉、刘俊勇,碾压砼坝层(缝)面渗流分析的界面元方法,水电站设计,(1999)15(2)
    [143]张光斗,碾压砼筑坝新技术,水力发电学报,1993(1)
    [144]张金才、张玉卓,应力对裂隙岩体渗流影响的研究,岩土工程学报,(1998)20(2),19~22
    [145]张有天 等,有自由面渗流问题分析的初始流量法,水利学报,1988(8)
    [146]张有天、刘中,降雨过程裂隙网络饱和/非饱和、非恒定渗流分析,岩石力学与工程学报,(1997)16(2),104~111
    [147]张有天、王镭、孙平,边界元方法及其在工程中的应用,北京:水利电力出版社,1989
    [148]张玉卓、张金才,裂隙岩体渗流与应力耦合的试验研究。岩土力学,(1998)19(2),59~62
    [149]赵坚,岩石节理剪切强度的JRC-JMC新模型,岩石力学与工程学报,(1998)17(4),349-357
    [150]赵坚,岩石节理吻合系数及其对节理特性的影响,岩石力学与工程学报,(1997)16(6),514-521
    [151]赵坚,岩石裂隙中的水流----岩石热传导,岩石力学与工程学报,1999(18)2,119~123
    [152]赵阳升,矿山岩石流体力学,北京:煤炭工业出版社,1994
    [153]赵阳升、胡耀青、杨栋、郑少河,气液二相流体裂缝渗流规律的模拟实验研究,岩石力学与工程学报,(1999)18(3),354~356
    [154]郑少河、赵阳升、段康廉,三维应力作用下天然裂隙渗流规律的实验研究,1999(18)2,133~136
    [155]周创兵,叶自桐、熊文林,岩石节理非饱和渗流特性研究,水利学报,1998(3),22-25
    [156]周创兵、熊文林,不连续面渗流与变形耦合的机理研究,水文地质工程地质,(1996)23(3),14-17
    [157]周创兵、叶自桐、韩冰,岩石节理面形态与水力特性研究,水科学进展,(1997)8(3),233~239
    [158]周创兵、叶自桐、何炬林、张辉,岩石节理张开度的概率模型与随机模拟,岩石力学与工程学报,(1998)17(3),267-272
    [159]周志芳、顾长存,裂隙水研究进展,河海科技进展,1994(3)
    [160]周志芳、李艳,复杂岩体地下水运动问题的有限分析法,水科学进展,(1997)8(3),240~246
    [161]周志芳、李艳,解裂隙水运动问题的混合网络有限元法,河海大学学报,(1996)24(3)
    [162]周志芳、朱学愚、李艳,岩体透系数张量的半解析计算,水利学报,1997(9),6-11
    [163]周志芳等,有限分析法在反求裂隙岩体渗透张量中的应用,水利学报,1993(5),68-75
    [164]朱明善、林兆庄、刘颖、彭晓峰,工程热力学,北京:清华大学出版社,1995
    [165]朱学愚、谢春红,地下水运移模型,北京:中国建筑工业出版社,1990
    [166]朱岳明,大坝渗流计算与渗控措施研究综述,河海科技进展,1993(4)
    [167]朱岳明,张燎军等,龙滩高碾压混凝土重力坝的渗控设计研究,水利学报,1997(3),1-8
    [168]朱岳明、张燎军,渗流场求解的改进排水子结构法,岩土工程学报,(1997)19(2),69~76
    [169]朱珍德、孙钧,裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用,长江科学院院报,(1999) 16(5),22~27
    [170]最上武雄、久保田敬一等,透水——设计,鹿岛出版会,1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700