用户名: 密码: 验证码:
铝纳米颗粒活性表征方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于激光-感应复合加热技术,制备了高活性的纳米铝粉,应用非水溶剂氧化还原滴定法准确测定了纳米铝粉中的单质铝含量为75.19%,比用传统方法测定的结果高20%左右。非水溶剂氧化还原滴定法消除了纳米铝粉单质铝含量在水溶液测定过程中的副反应的影响,解决了传统氧化还原滴定法测定纳米铝粉单质铝含量结果低不准确的难题。系统的研究和解释了消除这些影响因素的所用到化学原理及纳米铝粉的独特性质;另外,应用TG-DTA试验方法研究了纳米铝粉的放热效应和在不同温度下的失活效应,并且将试验得到的TG-DTA数据和化学方法测得的纳米铝粉单质铝含量数据进行对比,结果证明用非水溶剂氧化还原滴定法测定纳米铝粉的单质铝含量是可行的,试验结果为75.19%,和热分析结果69.8%基本相当。
     论文采用了XRD、SEM、TEM、HRTEM等手段对制备的纳米铝粉进行了物性表征。试验结果表明纳米铝颗粒粒径为50nm左右,颗粒的分布符合正态分布;TEM图片显示,未包覆的纳米铝颗粒存在氧化的现象,在纳米铝颗粒的表面有氧化铝层,同时XRD谱线中也出现了氧化铝的峰。
     论文采用无水乙醇作为溶解纳米铝粉的溶剂,消除纳米铝粉在溶解初期水环境对单质铝含量结果的影响。试验结果表明,无水乙醇替换溶解溶液中的溶剂水对纳米铝粉中单质铝含量的测定结果有显著的提高;另外,“破壳剂”稀硝酸的量和加入时间对纳米铝粉的溶解也有关键的作用。试验结果表明,只有在合适的稀硝酸加入量(350ml/g)和加入时间(24h)情况下,纳米铝粉单质铝含量的测定值才是准确的。最后详细讨论了无水乙醇、水、稀硝酸溶液在纳米铝粉溶解试验中的作用机理。
     论文采用热重量法(TG)和差热分析(DTA),分析得到纳米铝粉中单质铝含量为76.19%,系统研究了纳米铝粉放热效应。试验结果表明:相同质量的纳米铝粉试样在低升温速率情况下进行热分析试验发生的是缓慢氧化过程,在高升温速率情况下进行的是激烈燃烧过程;不同质量的纳米铝试样在相同的升温速率下进行热分析试验时,质量少的试样发生的是缓慢氧化过程,质量高的试样发生激烈燃烧过程。论文最后进一步探讨了纳米铝粉发生这些热效应现象的内在机理,并对试验结果进行了解释,同时考察了纳米铝粉的钝化失活效应。
The high reactivity Aluminum (Al) nanopowders were prepared by laser-induction complex heating technology. The Content of the Metallic Aluminum (CMA) in the Al nanopowders was characterized by a new chemical analysis method, which is the adaptation of the known permangantometric back titration method by the change of the Al nanopowders’dissolution condition and environment. The results is 20% higher than the conventional titration method. The change eliminates the by-reactions during the Al nanopowders dissolution process, and makes the analysis results more accurate than the conventional Al nanopowders chemical titration analysis method. More over, the chemical principles and the characteristics of Al nanopowders were used to account for the results. On the other hand, the thermal property and the reactivity dismissed at the different temperature of the Al nanopowders were analyzed by the TG-DTA results. The CMA results from the TG-DTA experiments data were compared to the chemical titration analysis. From this comparative, the chemical titration analysis method gets the better results than the results from the TG-DTA data, which illustrate that the usage of the changed redox titration method for the CMA characterization is reasonable and accurate. Not only the results from the changed chemical titration method better than the conventional titration method, but also better than the TG-DTA data.
     The XRD, SEM, TEM and HRTEM are used in the characterization of the peculiarity of the Al nanopowders in this paper. The results improved that the Al nanopowders’diameter is about 50nm, and it’s apply to the normal school. From the TEM pictures, its notice that the surface of the non-coated Al nanopowders have been partly oxidized, which also proved by the XRD pattern.
     The CMA of the prepared Al nanopowders was characterized by the improved the Al nanopowders dissolution environment in conventional chemical titration method, which replaced the water by the ethanol as solvent to eliminate the by-reactions in the Al nanopowders dissolving process. The results showed that the ethanol replaced the water as the solvent is better for the CMA of the Al nanopowders characterization (75.19%). On the other hand, the added time and the volume of the dilute HNO3 solution are the other key points of the Al nanopowders dissolution in the chemical titration. The results illustrated that the accurate CMA can obtain only when the HNO3 added in appropriate volume (350ml/g) and time (24h). More over, the mechanism of the water, ethanol and dilute HNO3 solution is discussed in this paper.
     The thermogravimetry (TG) and Differential scanning calorimetry (DSC) apparatus were used to analyze the CMA (69.8%) and the thermal characteristic of the Al nanopowders. The results showed that the samples of Al nanopowders experienced different process in the thermal experiments due to different masses and temperature accelerated velocity. It’s processing slow oxidation in low temperature accelerated velocity or low samples mass while occurring drastic combustion in the high temperature accelerated velocity and high samples mass. The mechanism of the Al nanopowders oxidation and combustion is discussed in the paper. Further more, the process of the Al nanopowders reactivity lost is also described.
引文
[1]梁彦,张驰,征宏建.火箭推进剂的发展特点分析.飞航导弹, 2003, (7): 47~55
    [2]李葆萱,王克秀.固体推进剂性能.西安:西北工业大学出版社, 1990. 16~19
    [3] I. Glassman .Combustion .Academic Press, Inc. 1996
    [4] T. M. Tillotson, L. W. Hrubesh, R. S. Lee, R. L. Simpson, R. W. Swansiger, L. R. Simpson. Sol-gel Processing of Energetic Materials. Journal of Non-crystalline solids, 1998, 225:358~363
    [5] E. L. Dreizin, Y. L. Shoshin, R. S. Mudryy, V. K. Hoffmann. Constant pressure flames of Aluminum and aluminum-magnesium Mechanical alloy Aerosols in Microgravity. Combustion and flame, 2002, 130(4):381~385.
    [6] A. S. Dubrovin, L. V. Slepova, V. L. Kuznetsov. Combustion Explosive Shockwaves, 1970, 6, 60.
    [7] M. M. Mench, K. K. Kuo, C. L. Yeh, Y. C. Lu. Comparison of thermal behavior of regular and ultrafine aluminum powders (Alex) made from plasma explosion process. Combustion Science Technology, 1998, 135(1~6):269~292
    [8] Abstracts of Sixth International Conference on Nanostructural Materials (NANO 2002). Orlando. 2002.
    [9] Proceedings of the Fifth International Conference on Nanostructrual Materials (NANO 2000). Scrpta Mater, 2001, 44:1161~2372
    [10] N. Boucharat, H. Rosner, G. Wilde. Development of Nanocrystals in amorphous Al-alloys. Materials Science and Engineering, C, 2003, C23(1~2):55~59
    [11] S. K. Das, J. H. Perepezko, R. I. Wu, G. Wilde. Undercooling and glass Formation in Al-based alloys. Material Science Engineering, A, 2001, 304~A306:159~165
    [12] O. G. Glotov,V. Ya. Zyryanov. The Condensed Combustion Products ofAluminized Solid Propellants: I. The Method of Quenching at Various Distances from Burning Surface for Studying the Evolution of Particles. Combustion, Explosion and Shock Waves .1995, 31(1).
    [13] A. Makino, C. K. Law. SHS Combustion Characteristics of several Ceramics and intermetallic Compounds. Journal of American Ceramic Society, 1994, 77(3):778~786
    [14] T. D. Fedotova, O. G. Glotov, V. E. Zarko. Chemical analysis of Aluminum as Propellant ingredient and Determination of Aluminum and Aluminum Nitride in condensed Combustion Products. Propellants, Explosive, Pyrotechnics, 2000, 25(6):325~332
    [15] I. M. Kolthoff. Treatise on Analytical Chemistry .2nd ed. Wiley, New york. 1978.
    [16] T. D. Fedotova, O. G. Glotov, V. E. Zarko. Application of cerimetric methods for determining the metallic aluminum content in ultrafine aluminum Powders. Propellants, Explosives, Pyrotechnics, 2007, 32(2):160~164
    [17] D. Mukherjee, A. Rai, M. R. Zachariah. Quantitative Laser-induced Breakdown Spectroscopy for Aerosols via Internal Calibration: Application to the Oxidative Coating of Aluminum Nanoparticles. Journal of Aerosol Science, 2006, 37(6):677-695
    [18] E. K. Damon, R. G. Thomlinson. Observation of Ionization of Gases by a ruby Laser. Applied Optics, 1963, 2:546-547
    [19] J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn. On-line analysis of Ambient air Aerosols Using Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56B (6):851-864
    [20] D. W. Hahn, W. L. Flower, K. R. Hencken .Discrete particles detection and Metal Emissions monitoring Using Laser-Induced breakdown Spectroscopy. Applied Spectroscopy.1997, 51(12), 1836-1844.
    [21] U. Panne, R. E. Neuhauser, H. Fink, R. Niessner.Analysis of heavy metal Aerosolson filters by Laser-Induced Plasma Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56B (6):839-850
    [22] G. Charlot. Methods of Analytical Chemistry: Quantitative Analysis of Inorganic Compounds. Moscow, Chemistry, 1965, 976
    [23] J. K. Sambamurthi, E. W. Price, R. K. Sigman. Aluminum Agglomeration in Solid Propellant Combustion. AIAA J.1985, 22(8):1132~1138
    [24] V. A. Babuk, V. P. Belov, V. V. Khodosov, G. G. Shelukhin .Study of the Structure of Agglomerates with Combustion of Aluminized Mixed Condensed Systems. Combustion, Explosion and Shock Waves. 1988, 24(5).
    [25] T. K. Liu, H. C. Pemg, S. P. Luh, F. Liu. Aluminum Agglomeration in AP/RDX/Al/HTPB Propellant Combustion. Journal Propulsion, 1992, 8:1177~1184
    [26] P. C. Braithwaite, W. N. Christensen, V. Daugherty .Quench Bomb Investigation of Aluminum Oxide Formation from Solid Rocket Propellants (I): Experimental Methodology. CPIA-Pub-498-VI, Laurel, MD.1988, 175-184.
    [27] E. W. Price, R. K. Sigman, J. R. Sambamurthi, C. J. Park. Behavior of Aluminum in Solid Propellant Combustion. Report AFOSR-TR, 1982, 82, 0964
    [28] L. M. Budanova, R. S. Volodarskaya, N. A. Kanaev. Analysis of Aluminum and Magnesium Alloys. Metallurgiya, 1966
    [29] I. Yu.Andreeva .Analysis of Aluminum Nitride. Factory Laboratory .1966, 34(1):35~37
    [30] R. Sarathi, T. K. Sindhu, S. R. Chakravarthy. Generation of Nano-aluminum powder through wire Explosion process and it’s Characterization. Materials Characterization, 2007, 58(2):148~155
    [31] A. G. Ajaz. Estimation of Ammonium Perchlorate in HTPB Based Composite Solid Propellants Using Kjeldahl Method. Propellants, Explosive, Pyrotechnics, 1996, 21(1):51-53
    [32] A. Gromov, A. IIyin. Characterization of Aluminum Powders: II. Aluminum Nanopowders Passevated by Non-Inert coatings. Propellants, Explosives, Pyrotechnics, 2006, 31(5):401~409
    [33] A. P. II’in, A. A. Gromov. Combustion of Ultra-Fine Aluminum and Boron .Tomsk State University Publ., Tomsk, 2002[monograph, in Russian]
    [34] E. Norbert, F. Harald, Juez-Lorenzo, M. Maria. On the Mechanism of Low Temperature Oxidation for Aluminum Particles down to the Nanoscale. Propellants, Explosives, Pyrotechnics, 2004, 29(3):137-145
    [35] P. R. Prajakta, V. N. Krishnamurthy. Differential Scannning Calorimetric study of HTPB based Composite propellants in presence of Nano-Ferric Oxide. Propellants, Explosives, Pyrotechnics, 2006, 6(31):442~446
    [36] K. J. Klabunde(ED.). Nanoscale Materials in Chemistry. Wiley. 2001.
    [37] Impact Analytical documentation for Thermal Analysis website. http://www.impactanalytical.com. 2002.
    [38] Q. S. M. Kwok, R. C. Fouchard, A. M. Turcotte. Characterization of Aluminum Nanopowder Compositions. Propellants, Explosives, Pyrotechnics, 2002, 27(4):229~240
    [39] U. Teipel, U. Forter-Barth. Rheology of Nano-Scale Aluminum Suspensions. Propellants, Explosive, Pyrotechnics, 2001, 26(6):268~272
    [40] Frank Caruso. Nanoengineering of Particle Surfaces. Advanced materials, 2001, 13(1):11~22
    [41] S. Linderoth, M. S. Pedersen. Fe-Al2O3 Nanocomposites prepared by high-energy ball milling. Apply Physics.1994, 75(10)
    [42] Jones, E. G. David, R. Turcotte, R. C. Fouchard, Q. S. M. Kwok, A. M. Turcotte, Z Abdel-Qader. Hazard characterization of Aluminum Nanopowder Compositions. Propellants, Explosives, Pyrotechnics, 2003, 28(3):120~131
    [43] A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, P. A. Pshenchenkov, N. G.Berezkina, M. N. Larichev, V. G. Krasovskii. Synthesis of coatings on the surface of dispersed Ultrafine Aluminum Particles. Chemical Physics (Khimicheskaya Fizika), 2002, 21(4): 72~79[in Russian]
    [44] Xie Changsheng, Hu Junhui, Wu Run, et al. Structure Transition Comparison between the Amorphous Nanosize Particles and Coarse-grained Polycrystalline of Cobalt. NanoStructured Materials, 1999, 11(8):1061~1066
    [45]陈寿椿.重要无机化学反应. (第二版).上海:上海科学技术出版社, 1982. 221~254
    [46]大连理工大学无机化学教研室编.无机化学.北京:高等教育出版社. 2001. 392~394
    [47]江治,李疏芬,李凯.含纳米金属粉的推进剂点火试验及燃烧性能研究.固体火箭技术, 2004, 27(2):117~120
    [48]李疏芬,金荣超.含金属固体推进剂燃烧残渣的成分分析.推进技术, 1996, 17(1):83~88
    [49]章燕豪.大学化学手册.上海:上海交通大学出版社. 2000. 364~374
    [50]黄宝贵,邓建春.铝粉中金属铝的测定.湖南冶金, 1998, 7(4), 34~36.
    [51] W. A. Trzcinski, C. Stanislaw, S. Leszek. Studies of Detonation Characteristics of Aluminum Enriched RDX Compositions. Propellants, Explosives, Pyrotechnics, 2007, 32(5):392~400
    [52] L. Galfetti, L. T. Deluca, F. Severini, G. Colombo, L. Meda, etc. Pre and post-burning Analysis of Nano-Aluminized Solid rocket Propellants. Aerospace Science and Technology, 2007, 11(1):26~32
    [53] E. W. Price, R. K. Sigman, Combustion of Aluminized Solid Propellants, Solid Propellant Chemistry, Combustion and Motor Interior ballistics, Chapter 2.18, Progress in Astronautics and Aeronautics, 1999, 185
    [54] 54. Internet WEB Site: ARGONIDE NANOMETAL TECHNOLOGIES
    [55] 55. I. M. K.Ismail and T. W. Hawkins. Evaluation of Electro Exploded Aluminum (ALEX) for Rocket Propulsion. CPIA Publication 1996, 650(2):25~29
    [56] 56. R. Friedman, A. Macek. Ignition and Combustion of Aluminum Particles in Hot, Ambient Gasses. Combustion and Flame, 1962, 6(1):9~19
    [57] 57. E. W. Price, Fundamental of Solid Propellant Combustion, Editors Kuo. K. K. and Summerfield. M. Progress in Astronautics and Aeronautics. 1983, 90, 479~513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700