用户名: 密码: 验证码:
结构化多相反应器多尺度传递和加氢脱硫反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构化反应器具有压降小、操作范围大、传质性能好、扩散距离短、返混小和催化剂利用效率高等优点,是替代常规多相反应器、强化多相催化反应过程的新反应器形式。
     本文以结构化多相反应器强化加氢脱硫过程为背景,采用实验和理论方法在单通道和床层两个尺度上研究结构化多相反应器的传递和加氢脱硫反应性能。
     首先,采用计算流体力学的方法研究了毛细管中泰勒流的气液传质及轴向混合特性,结果表明:在整个气液界面上传质系数出现三个峰值,分别位于半球帽顶端、半球帽下方以及液膜处,膜接触时间增加时,液膜处的传质系数降低,而半球帽处传质系数变化较小。采用场协同原则对单元胞内速度场和浓度场进行分析,解释了局部传质特性及强化机理,并给出了分别预测短和长膜接触时间下泰勒流液侧体积传质系数的关联式,该式在较宽的管径尺度范围(0.25-3mm)内的预测效果良好。此外,在Bo数大于10~5时泰勒流的液相返混程度随液栓长度增大略有减小,随液膜长度和气泡速度增大而增大,最后给出了预测轴向扩散准数(VDN)的关联式。
     第二,研究了泰勒流下结构化反应器床层压降、持液量和气液传质性能,重点考察了两种不同分布器对床层内流动和气液传质的影响。结果表明:分布器对结构化床层中的压降和持液量有很大影响,相比喷嘴分布器,玻璃珠填充床分布器具有较大的压降和持液量,这主要归因于后者具有较高的气液分散性能。通过对压降和持液量数据的分析,分别给出了相应的预测关联式。床层中的不稳定区对分布器也较敏感,玻璃珠填充床分布器下床层具有更小的不稳定区。在实验的操作条件下,床层内的液侧体积传质系数随液体表观速度增大而增大,随气体表观速度变化的影响较小。玻璃珠填充床分布器下的传质系数高于相同条件下喷嘴分布器下的值。三种不同载体的液侧体积传质系数均与各自的摩擦压降呈现线性关系。对Jepsen的关联式进行了修正,得到的关联式的预测值误差在±30%以内。
     第三,采用微电导实验测量了两种不同分布器下结构化反应器床层内不同孔道的气液分布状态。结果表明:床层液体分布均匀性随液体表观速度增大而改善,而对于喷嘴,气速增大可能导致床层出现气体主导的孔道,比较两种分布器可知玻璃珠填充床分布器的液体分布效果更好。通过半经验的分析获得了床层中的液栓长度,比较两种分布器下的液栓长度发现,相同气液条件下,玻璃珠填充床分布器下的液栓长度偏小。建立了全床尺度传质模型预测了整体床层的液侧体积传质系数,结果与实验值偏差大部分在±30%以内。
     最后,在温度为300-380°C,压力为3-5MPa的条件下,实验研究了负载Ni_2P/SBA-15的堇青石催化剂上噻吩和二苯并噻吩(DBT)加氢脱硫反应动力学,分别采用Langmuir-Hinshelwood型动力学和一级动力学模型拟合了噻吩和二苯并噻吩加氢脱硫反应的动力学实验数据,比较发现在本文操作条件下Ni-P催化剂的DBT加氢脱硫反应活性与工业上常用的双金属Co-Mo催化剂相当。建立了单通道结构化反应器和滴流床模型,比较了两者加氢脱硫反应性能,结果发现,在处理含相同浓度DBT的物料时结构化反应器的催化剂用量是滴流床的三分之一,但是前者所用的反应器体积更大。而本文提出的两段反应器组合(前段为结构化反应器,后段为滴流床)体积产率和催化剂质量产率均优于滴流床反应器。分布对结构化反应器加氢脱硫反应性能有显著影响,表观气速增大,结构化床层加氢脱硫性能略有降低,表观液速增大,结构化床层加氢脱硫性能改善。相比喷嘴分布器,填充床分布器下床层的加氢脱硫性能更接近均匀分布的情况,在较大液速下,尽管仍然存在液体的不均匀分布,填充床分布器下床层加氢脱硫性能接近单通道模型的计算结果。
Monolithic reactors (MRs) present advantages such as low pressuredrop, uniform flow distribution, enhanced mass transfer, low liquid axialmixing, and high catalyst effectiveness. Therefore, MRs are viewed asnew “process intensification” three-phase reactors to replace theconventionally used trickle beds and slurry bubble columns.
     This work aims to intensification of the hydrodesulfurization (HDS)process by using MRs. The transport and HDS performance of MRs werestudied experimentally and theoretically at a single scale and monolithbed scale.
     Firstly, the characteristics of liquid side mass transfer and liquidaxial mixing under Taylor flow in capillaries were studied withComputational Fluid Dynamics (CFD) method. Three peak values oflocal mass transfer coefficient were found on bubble surface. Masstransfer coefficient in liquid film decreases with an increase in filmcontact time, whereas that in the caps changes little. Moreover, theprinciple of field synergy was used to explain the characteristics andenhancement of local mass transfer. The results also show that short filmcontact time for the same contact area could enhance the gas-liquid masstransfer under Taylor flow. Empirical correlations were proposed topredict the liquid side volumetric mass transfer coefficients for short andlong film contact time respectively, and the predicted values in capillarieswith diameters of0.25-3mm have a relative error within±20%. To study the liquid axial mixing, the vessel dispersion number (VDN) wasevaluated by using particle tracking method at high Bodenstein numbers.The VDN increases with increasing liquid film length and bubble velocity.An empirical correlation was proposed to predict the vessel dispersionnumber for Bo>10~5.
     Secondly, total pressure drop, liquid holdup and gas-liquid masstransfer coefficients in three different monolith packings wereinvestigated experimentally in the Taylor flow regime. The effect ofdistributor design on the flow distribution was investigated using twodifferent types of distributor (nozzle distributor and packed beddistributor with1mm glass beads). A close relation of the distributordesign to the hydrodynamics in monolith beds was observed to exist,evidenced by the larger pressure drop and liquid hold-up values for themonolith packings with the use of the packed bed distributor, whencompared with the nozzle distributor. An analysis of the unstable flowphenomenon characterized by negative pressure drops within bed showsthat the unstable region is not only dependent on the operating conditionsand properties of monolith but also on the distributor design. Empiricalcorrelations of friction factor and liquid hold-up for the three monolithswere proposed. The mass transfer coefficient increases with increasingsuperficial gas or liquid velocities. Moreover, the mass transfercoefficients for these three types of monolith packing show a linearrelation to bed pressure drop. An empirical correlation of mass transfercoefficients based on Jepsen’s correlation was proposed, which has arelative error within±30%.
     Thirdly, flow distribution experiments were carried out in a columnwith monolith packings of cell density of50cpsi with two differentdistributors. Liquid saturation in individual channels was measured byusing a self-made micro-conductivity probe. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths.For liquid flow distribution, it is found that the superficial liquid velocityis a crucial factor and the packed bed distributor is better than the nozzledistributor. A semi-theoretical analysis using single channel modelsshows that the packed bed distributor always yields shorter and uniformlydistributed liquid slugs compared to the nozzle distributor, which in turnensures a better mass transfer performance. A bed scale mass transfermodel is proposed by employing the single channel models in individualchannels and incorporating effects of non-uniform liquid distributionalong the bed cross-section. The model predicts the overall gas-liquidmass transfer coefficient with a relative error within±30%.
     Finally,reaction kinetics of thiophene and dibenzothiophene (DBT)hydrodesulfurization over Ni_2P/SBA-15/cordierite catalyst wasinvestigated at temperatures of300-380°C and total pressures of3.0-5.0MPa. Comparison studies of the performance of the two types of reactors(the trickle bed and monolithic reactor) were performed by using theLangmuir-Hinshelwood model and the first-order model for fitting thethiophene and DBT experimental data in a batch recycle operation,respectively. It was found that, both the activation energy and the rateconstant over Ni-P monolithic catalyst in the stated operating conditionsare close to those over conventionally used HDS catalysts. The resultsindicat that, the productivity of the monolithic reactor is3times higherthan that of the trickle bed reactor on the catalyst weight basis due to aneffective utilization of the catalyst in the monolithic reactor, but thevolumetric productivity of the monolithic reactor is lower for HDS ofDBT. Here, we proposed two-stage reactors, i.e., a monolithic reactorfollowed by a tickled bed reactor and it was found that, the two-stagereactor outperforms the trickle bed reactor in both reactor volume andcatalyst weight basis. The effect of the flow distribution on HDS performance of the monoliths was discussed. The results show the HDSperformance of the monoliths is improved with the increasing liquidvelocity and decreasing gas velocity and the packed bed distributor isbetter than the nozzle distributor. At high liquid velocity, thoughmal-distribution was observed, the HDS simulation results of themonoliths with packed bed distributor are close to those of the singlechannel with10%decrease.
引文
[1] Roy S, Bauer T, Al-Dahhan M, et al. Monoliths as multiphase reactors: A review[J]. AIChEJournal,2004,50(11):2918-2938
    [2] Williams J L. Monolith structures, materials, properties and uses[J]. Catalysis Today,2001,69(1-4):3–9
    [3] Qi A D, Wang S D, Ni C J, et al. Autothermal r eforming of gasoline on Rh-basedmonolithic catalysts[J]. International Journal of Hydrogen Energy,2007,32(8):981–991
    [4] Maestri M, Beretta A, Faravelli T, et al. Two-dimensional detailed modeling of fuel-richH2combustion over Rh/Al2O3catalyst[J] Chemical Engineering Science,2008,63(10):2657–2669
    [5] Liu H, Zhao J D, Li C Y, et al. Conceptual design and CFD simulation of a novelmetal-based monolith reactor with enhanced mass transfer, Catalysis Today,2005,105(3-4):401–406
    [6] Tronconi E, Lietti L, Forzatti P, et al. Expermental and theoretical investigation of thedynamics of the SCR-DeNOx reaction, Chemical Engineering Science,1996,51(11):2965-2970
    [7] Tomasic V. Application of the monoliths in DeNOx catalysis, Catalysis Today,2007,119(1-4):106–113
    [8] Schmitz C, Datsevitch L, Jess A. Deep desulfurization of diesel oil: kinetic studies andprocess-improvement by the use of a two-phase reactor with pre-saturator[J]. ChemicalEngineering Science,2004,59(14):2821-2829
    [9] Hatziantoniou V, Andersson B. The segmented two-phase flow monolithic catalyst reactor.an alternative for liquid-phase hydrogenations[J].Ind. Eng. Chem. Fundam,1984,23(1):82-88
    [10] Kawakami K, Kawasaki K, Shiraishi F, et al. Performance of a honeycomb monolithbioreactor in a gas–liquid–solid three-phase system[J], Ind. Eng. Chem. Res.,1989,28(4):394-400
    [11] Irandoust S, Gahne O. Competitive hydrodesulfurization and hydrogenation in amonolithic reactor[J]. AIChE Journal,1990,36(5):746-752
    [12] Edvinsson R, Irandoust S. Hydrodesulfurization of dibenzothiophene in a monolithiccatalyst reactor[J]. Ind. Eng. Chem. Res.,1993,32(2):391-395
    [13] Edvinsson R K, Holmgren A M, Irandoust S. Liquid-phase hydrogenation of acetylene in amonolithic catalyst reactor[J]. Ind. Eng. Chem. Res.,1995,34(1):94-100
    [14] Klinghoffer A A, Cerro R L, Abraham M A. Catalytic wet oxidation of acetic acid usingplatinum on alumina monolith catalyst[J]. Catalysis Today,1998,40(1):59-71
    [15] Ber i G. Influence of operating conditions on the observed reaction rate in the singlechannel monolith reactor[J], Catalysis Today,2001,69(1-4):147-152
    [16] Liu W, Addiego W P, Sorensen C M, et al. Monolith reactor for the dehydrogenation ofethylbenzene to styrene[J], Ind. Eng. Chem.Res.,2002,41(13):3131-3138
    [17] Marwana H, Winterbottom J M. The selective hydrogenation of butyne-1,4-diol bysupported palladiums: a comparative study on slurry, fixed bed, and monolith downflowbubble column reactors[J]. Catalysis Today2004,97(4):325–330
    [18] Natividad R, Kulkarni R, Nuithitikul K, et al. Analysis of the performance of singlecapillary and multiple capillary(monolith) reactors for the multiphase Pd-catalyzedhydrogenation of2-Butyne-1,4-Diol[J]. Chemical Engineering Science,2004,59(2):5431–5438
    [19] Bussard A G, Waghmare Y G, Dooley K M, et al. Hydrogenation of α-methylstyrene in apiston-oscillating monolith reactor[J]. Ind. Eng. Chem. Res.,2008,47(14):4623-4631
    [20] Liu D S, Zhang, J G, Li D F, et al. Hydrogenation of2-ethylanthraquinone under Taylorflow in single square channel monolith reactors[J]. AIChE Journal,2009,55(3),726-736
    [21] Díuska E., Wroński S., Hubacz R. Mass transfer in gas–liquid Couette–Taylor flow reactor[J].Chemical Engineering Science,2001,56(3):1131-1136
    [22]乐军,陈光文,袁权,等.微通道内气-液传质研究[J].化工学报.2006,57(6):1296-1303
    [23] Günther A, Jhunjhunwala M, Thalmann M, et al. Micromixing of Miscible Liquids inSegmented Gas Liquid Flow[J]. Langmuir,2005,21(4):1547–1555
    [24] Irandoust S, Andersson B. Simulation of flow and mass transfer in Taylor flow through acapillary[J], Computers&Chemical Engineering,1989,13(4-5):519-526
    [25] Dukler A E, Wicks M, Cleveland R G. Frictional Pressure drop in two-phase flow: A. acomparison of existing correlations for pressure loss and hold-up[J]. AIChE J.1964,10(1):38-43
    [26] Cicchitti A, Lombardi C, Silverstri M, et al. Two-phase cooling experiments-pressure drop,heat transfer and burnout measurement[J]. Energ. Nucl.(Milan),1960,7,407-411
    [27] Lin S, Kwok C C K, Li R Y, et al. Local frictional pressure drop during vaporization forR-12through capillary tubes[J]. Int. J. Multiphase Flow,1991,17,95-101
    [28] Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase,two-component flow in pipes[J].Chemical Engineering Progress,1949,45:39-48
    [29] Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phaseflow[J]. Int. J. Heat Mass Transfer,1967,10,1767-1772
    [30] Zhao T S, Bi Q C. Pressure drop characteristics of gas-liquid two-phase flow in verticalminiature triangular channels[J]. Int. J. Heat Mass Transfer,2001,44:2523-2534
    [31] Kawahara A, Chung P M-Y, Kawaji M. Investigations of two-phase flow pattern, voidfraction and pressure drop in a microchannel[J]. Int. J. Multiphase Flow,2002,28:1411-1435
    [32] Lee H J, Lee S Y. Pressure drop correlations for two-phase flow within horizontalrectangular channels with small heights[J]. Int. J. Multiphase Flow,2001,27:783-796
    [33] Yue J, Chen G.W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics ingas–liquid flow through a rectangular microchannel[J]. Chemical Engineering Science,2009,64(16):3697-3708
    [34] Saisorn S, Wongwises S. Flow pattern, void fraction and pressure drop of two-phaseair–water flow in a horizontal circular micro-channel[J].Experimental Thermal and FluidScience,2008,32(5):748–760
    [35] Kreutzer M T, van der Eijnden M G, Kapteijn F, et al. The pressure drop experiment todetermine slug lengths in multiphase monoliths[J]. Catalysis Today,2005,105(3-4):667–672
    [36] Yue J, Luo L A, Gonthier Y, et al. An experimental study of air–water Taylor flow andmass transfer inside square microchannels[J]. Chemical Engineering Science,2009,64(16):3697-3708
    [37] Liu H, Vandu C O, Krishna R. Hydrodynamics of Taylor flow in vertical capillaries: flowregimes, bubble rise velocity, liquid slug length and pressure drop[J]. Ind. Eng. Chem.Res.,2005,44(14):4884-4897
    [38] Satterfield C N, Ozel F. Some characteristics of two-phase flow in monolithic catalyststructures.[J]. Ind. Eng. Chem. Fundam.,1977,16(1):61-67
    [39] Gladden L F, Anadon L D, Dunckley C P, et al. Insights into gas–liquid–solid reactorsobtained by magnetic resonance imaging [J].Chemical EngineeringScience,2007,62(24):6969-6977
    [40] Mewes D, Loser T, Millis M. Modelling of two-phase flow in packings and monoliths[J].Chemical Engineering Science,1999,54(21):4729-4747
    [41] Reinecke N, Mewes D. Oscillatory transient two-phase flows in single channels withreference to monolithic catalyst supports[J]. Int. J. Multiphase Flow,1999,25(9):1373-1393
    [42] Heiszwolf J J, Engelvaart L B, van den Eijnden M G, et al. Hydrodynamic aspects of themonolith loop reactor[J]. Chemical Engineering Science,2001,56(3):805-812
    [43] Grolman E, Edvinsson R K, Stankiewicz A, et al. Hydrodynamic instabilities in gas-liquidmonolithic reactors[J]. American Society of Mechanical Engineers, Heat Transfer Division,1996,334(3):171-178
    [44] Ishii M. One-dimensional drift-flux model and constitutive equations for relative motionbetween phases in various two-phase flow regimes[R].America: Argonne National Lab,1977
    [45] Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in small diametervertical tubes[J]. Int. J. Multiphase Flow,1996,22:703-712
    [46] Zhao T S, Bi Q C. Co-current air-water two-phase flow patterns in vertical trianglarmicrochannels[J]. Int. J. Multiphase Flow,2001,27:765-782
    [47] Coddington P, Macian R. A study of the performance of void fraction correlations used inthe context of drift-flux two-phase flow[J]. Nuclear Engineering and Design,2002,215:199-216
    [48] Roy S, Al-Dahhan M. Flow distribution characteristics of a gas-liquid monolith reactor [J].Catalysis Today,2005,105:396-400
    [49] Bauer T, Roy S, Lange R, et al. Liquid saturation and gas–liquid distribution in multiphasemonolithic reactors[J]. Chemical Engineering Science,2005,60(11):3101-3106
    [50] Laborie S, Cabassud C, Durand-Bourlier L, et al. Characterisation of gas-liquid two-phaseflow inside capillaries[J]. Chemical Engineering Science,1999,54(36):5723-5735
    [51] Heiszwolf J J, Kreutzer M T, van den Eijnden G M,et al. Gas-liquid mass transfer ofaqueous Taylor flow in monoliths[J].Catalysis Today,2001,69(1-4):51-55
    [52] Kreutzer M T. Hydrodynamics of Taylor flow in capillaries and monolith reactors[D]. DelftUniversity of Technology, Delft, the Netherlands. Ph D Thesis,2003
    [53] Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in aT-junction microchannel[J]. Chemical Engineering Science,2006,61(23):7609-7625
    [54] Sobieszuk P, Cyganski P, Pohorecki R. Bubble lengths in the gas–liquid Taylor flow inmicrochannels[J]. Chemical Engineering Research and Design,2010,88(3):263-269
    [55] Mogalicherla A K, Mahuya De, Kunzru D. Effect of distributor on gas-liquid downwardflow in capillaries[J]. Ind. Eng. Chem. Res.,2007,46(17):8406-8412
    [56] Kreutzer M T, Bakker J J W, Kapteijn F, et al. Scaling-up multiphase monolith reactors:linking residence time distribution and feed maldistribution[J], Ind. Eng. Chem. Res.,2005,44(10),4898-4913
    [57] Roy S. Phase distribution and performance studies of gas-liquid monolith reactor [D].Washington University, Saint Louis, Missouri, America. Ph D Thesis,2006
    [58] Behl M, Roy S. Experimental investigation of gas–liquid distribution in monolithreactors[J]. Chemical Engineering Science,2008,62(24):7463-7470
    [59] Sederman A J, Heras J J, Mantle M D, et al. MRI strategies for characterising two-phaseflow in parallel channel ceramic monoliths[J]. Catalysis Today,2007,128(1-2):3-12
    [60] Gladden L F, Lim M H M, Mantle M D, et al. MRI visualisation of two-phase flow instructured supports and trickle-bed reactors[J]. Catalysis Today,79-80,203-210
    [61] Al-Dahhan M H, Kemoun A, Cartolano A R, et al. Measuring gas–liquid distribution in apilot scale monolith reactor via an Industrial Tomography Scanner (ITS)[J].ChemicalEngineering Journal,2007,130(2-3):147-152
    [62] Jepsen J C. Mass transfer in two-phase flow in horizontal pipelines [J]. AIChE J1970,16(5):705-711
    [63] Luo D, Ghiaasiaan S M. Liquid-side interphase mass transfer in cocurrent verticaltwo-phase channel flows [J]. lnt J Heat Mass Transfer1996,40(3):641-655.
    [64] Tomida T, Yoshida M, Okazaki T. Liquid-side volumetric mass transfer coefficient inupward two-phase flow of air-liquid mixtures [J]. J Chem Eng Jpn1976,9(6):464-468
    [65] Banerjee S, Scott D S, Rhodes E. Studies on cocurrent gas liquid flow in helically coiledtubesⅡ: Theory and experiments on turbulent mass transfer with and without chemicalreaction [J]. Can J Chem Eng,1970,48(5):542-551
    [66] Kulic E, Rhodes E. Chemical mass transfer in co-current gas-liquid slug flow in helicalcoils [J]. Can J Chem Eng.1974,52(1):114-116
    [67] Bercic G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in theTaylor flow through capillaries [J]. Chemical Engineering Science,1997,52(21-22):3709-3719
    [68] Irandoust S, Ertle S, Andersson B. Gas-liquid mass transfer in Taylor flow through acapillary [J]. Can J Chem Eng.1992,70(1):115-119
    [69] Van Baten J M, Krishna R. CFD simulations of wall mass transfer for Taylor flow incircular capillaries [J]. Chemical Engineering Science,2004,59(12):2535-2545
    [70] Vandu C O, Ellenberger J, Krishna R. Hydrodynamics and mass transfer in an upflowmonolith loop reactor [J]. Chem Eng Prog,2005,44(3):363-374
    [71] Shao N, Gavriilidis A, Angeli P. Mass transfer during Taylor flow in microchannels withand without chemical reaction[J]. Chemical Engineering Journal,2010,160(3):873-881
    [72] Heiszwolf J J, Kreutzer M T, van den Eijnden M G, et al. Gas–liquid mass transfer ofaqueous Taylor flow in monoliths [J]. Catalysis Today,2001,69(1-4):51-55
    [73] Vandu C O, Ellenberger J, Krishna R. Hydrodynamics and mass transfer in an up-flowmonolith loop reactor [J].Chemical Engineering Science,2005,60:363-374
    [74] Pedersen H, Horvdth C. Axial dispersion in a segmented gas-liquid flow[J]. Ind. Eng.Chem. Fundam.,1981,20:181-186
    [75] Thulasidas T C, Abrahams M A, Cerrot R L. Dispersion during bubble-train flow incapillaries[J]. Chemical Engineering Science,1999,54(1):61-76
    [76] Salman W, Gavriilidis A, Angeli P. A model for predicting axial mixing during gas–liquidTaylor flow in microchannels at low Bodenstein numbers[J]. Chemical EngineeringJournal,2004,101:391–396
    [77] Jr Patrick R H, Klindera T, Crynes L L,et al. Residence time distribution in three-phasemonolith reactor[J].Journal of American Institute of Chemical Engineers,1995,41(3):649-657
    [78] Edvinsson R K, Cybulski A A comparison between the monolithic reactor and thetrickle-bed reactor for liquid-phase hydrogenations[J]. Catalysis Today,1995,24(1-2):173-179
    [79] Cybulski A, Stankiewicz A, Albers, R K E, et al. Monolithic reactors for fine chemicalsindustries: a comparative analysis of a monolithic reactor and a mechanically agitatedslurry reactor[J]. Chemical Engineering Science,1999,54(13-14):2351-2358
    [80] Marwan H, Winterbottom J M. The selective hydrogenation of butyne-1,4-diol bysupported palladiums: a comparative study on slurry, fixed bed, and monolith downflowbubble column reactors[J]. Catalysis Today,2004,97(4):325–330
    [81] Boger T, Zieverink M M P, Kreutzer M T, et al. Monolithic catalysts as an alternative toslurry systems: hydrogenation of edible Oil[J]. Ind. Eng. Chem. Res.2004,43::2337-2344
    [82] Enache D I, Landon P, Martin Lok C, et al. Direct comparison of a trickle bed and amonolith for hydrogenation of pyrolysis gasoline[J]. Ind. Eng. Chem. Res.2005,44:9431-9439
    [83] Bauer T, Guettel R, Roy S, et al. Modeling and simulation of the monolithic reactor forgas-liquid-solid reactions[J]. Chemical Engineering Research and Design,2005,83(7):811–819
    [84] Nijhuis T A, Dautzenberg F M, Moulijna J A. Modeling of monolithic and trickle-bedreactors for the hydrogenation of styrene[J]. Chemical Engineering Science,2003,58(7):1113–1124
    [85] Fishwick R P, Natividad R, Kulkarni R, et al. Selective hydrogenation reactions: Acomparative study of monolith CDC, stirred tank and trickle bed reactors[J]. CatalysisToday,2007,128(1-2):108–114
    [86] Guettel R, Knochen J, Kunz U, et al. Preparation and catalytic evaluation of cobalt basedmonolithic and powder catalysts for Fischer–Tropsch synthesis[J]. Ind. Eng. Chem. Res.,2008,47(1):65-69
    [87] Eisenbeis C, Guettel R, Kunz U, et al. Monolith loop reactor for hydrogenation ofglucose[J]. Catalysis Today,2009,147S: S342–S346
    [88] Furimsky E., Selection of catalysts and reactors for hydroprocessing[J]. Applied CatalysisA: General,1998,171(2):177-206
    [89] Babich I V, Moulijn J A, Science and technology of novel processes for deepdesulfurization of oil refinery streams: a review[J]. Fuel,2003,82(6):607-631
    [90] Song C, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurizationand deep dearomatization[J]. Applied Catalysis B: Environmental,2003,41(1-2):207-238
    [91] Song C, Reddy K M. Mesoporous molecular sieve MCM-41supported Co-Mo catalyst forhydrodesulfurization of dibenzothiophene in distillate fuels[J]. Applied Catalysis A:General,1999,176(1):1–10
    [92]李翔,王安杰,孙仲超.全硅MCM-41担载的Ni2W催化剂上二苯并噻吩加氢脱硫反应动力学研究[J].石油学报(石油加工),2003,19(4):1-7
    [93] Korányi T, Vít Z, Poduval DG, et al. SBA-15-supported nickel phosphide hydrotreatingcatalysts[J]. Journal of Catalysis,2008,253(1):119-131
    [94] Sugioka M, Sado F, Matsumoto Y, et al. New hydrodesulfurization catalysts: noble metalssupported on USY zeolite[J]. Catalysis Today,1996,29(1-4):255-259
    [95] Sugioka M, Sadoa F, Kurosakaa T, et al. Hydrodesulfurization over noble metals supportedon ZSM-5zeolites[J]. Catalysis Today,1998,45(1-4):327-334
    [96] Wang C M, Tsai T C, Wang I. Deep hydrodesulfurization over Co/Mo catalysts supportedon oxides containing vanadium[J]. Journal of Catalysis,2009,262(2):206-214
    [97] Wang D H, Qian W H, Ishihara A, et al. Elucidation of sulfidation state andhydrodesulfurization mechanism on Mo/TiO2catalyst using35S radioisotope tracermethods[J]. Applied Catalysis A: General,2002,224(1-2):191-199
    [98] Wang D H, Li W, Zhang MH, et al. Promoting effect of fluorine on titania-supportedcobalt–molybdenum hydrodesulfurization catalysts[J]. Applied Catalysis A:General,2007,317(1):105-112
    [99] Furimsky E. Metal carbides and nitrides as potential catalysts for hydroprocessing[J].Applied Catalysis A: General,2003,240(1):1-28
    [100] Wu P Y, Ji S F, Hu L H, et al. Preparation, characterization, and catalytic properties of theMo2C/SBA-15catalysts[J]. Journal of Porous Materials,2008,15:181-187
    [101] Wang X Q, Clark P, Oyama S T. Synthesis, characterization, and hydrotreating activity ofseveral iron group transition metal phosphides[J]. Journal of Catalysis,2002,208(2):321-331
    [102] Shu Y Y, Lee Y K, Oyama S T. Structure-sensitivity of hydrodesulfurization of4,6-dimethyldibenzothiophene over silica-supported nickel phosphide[J]. Journal ofCatalysis,2005,236(1):112-121
    [103] Oyama S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides[J].Journal of Catalysis,2003,216(1-2):343-352
    [104] Oyama S T, Lee Y K. The active site of nickel phosphide catalysts for thehydrodesulfurization of4,6-DMDBT[J]. Journal of Catalysis,2008,258(2):393-400
    [105] Oyama S T, Gott T, Zhao H Y, et al. Transition metal phosphide hydroprocessingcatalysts: a review[J]. Catalysis Today,2009,143(1-2):94-107
    [106] Nagai M. Transition-metal nitrides for hydrotreating catalyst—Synthesis, surfaceproperties, and reactivities[J]. Applied Catalysis A: General,2007,322:178-190
    [107] Vanrysselb E V, Gall R L, Froment G F. Hydrodesulfurization of4-methyldibenzothiophene and4,6-dimethyldibenzothiophene on a CoMo/Al2O3catalyst:reaction network and kinetics[J]. Ind. Eng. Chem. Res.,1998,37(4):1235-1242
    [108] Wang Y, Sun Z, Wang A. Kinetics of hydrodesulfurization of dibenzothiophene catalyzedby sulfided CoMo/MCM-41[J]. Ind. Eng. Chem. Res.,2004,43(10):2324-2329
    [109]罗雄麟,李瑞丽.石油馏分加氢脱硫反应动力学模型[J].石油学报(石油加工),1995,11(2):15-23
    [110] Chu C I, Wang I. Kinetic study on hydrotreating[J]. Ind. Eng. Chem. Process Des. Dev.,1982,21(2):338-344
    [111]齐艳华,黄海涛,石玉林,加氢裂化动力学模型及其工业应用[J].石油学报(石油加工),1999,15(2):80-84
    [112]王瑶,孙仲超,王安杰. Co-Mo/MCM-41上二苯并噻吩加氢脱硫反应动力学研究[J].大连理工大学学报,2004,44(2):206-211
    [113]朱泽霖,李承烈.噻吩在Mo-Ni-Co/Al2O3催化剂上的加氢脱硫动力学[J].华东理工大学学报,1996,22(4):412-416
    [114] Ho T C. Inhibiting effects in hydrodesulphurization of4,6-diethyldibenzothiophene[J].Journal of Catalysis,2003,219(2):442-451
    [115] Breyssem P, Mariadassou D G. Deep desulfurization: reactions, catalysts and technologicalchallenges[J]. Catalysis Today,2003,84(3-4):129-138
    [116]黄海涛齐艳华,石玉林.催化裂化柴油深度加氢脱硫反应动力学模型的研究[J].石油炼制与化工,1999,30(1):55-59
    [117] Egorova M, Prints R. Hydrodesulfurization of dibenzothiophene and4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ-Al2O3catalysts[J]. Journal of Catalysis,2004,225(2):417-427
    [118] Vanrysselb E V, Froment G F. Hydrodesulfurization of dibenzothiophene on aCoMo/Al2O3catalyst: Reaction network and kinetics[J]. Ind. Eng. Chem. Res.,1996,35(10):3311-3318
    [119] Vanrysselb E V, Froment G F. Kinetic modeling of hydrodesulfurization of oil fractions:light cycle oil[J]. Industrial&Engineering Chemistry Research,1998,37(11):4231-4240.
    [120] Laredo G C, Cortes C A. Kinetics of hydrodesulfurization of dimethyldibenzothiophenesin a gas oil narrow-cut fraction and solvent effects[J]. Applied Catalysis A: General,2003,252(2):295-304.
    [121] Nooy F M. Oil and Gas [J]. Applied Catalysis,1984,12:152-156
    [122] Nava J A O, Krishna R. In-situ stripping of H2S in gasoil hydrodesulphurization reactordesign considerations [J]. Chem. Eng. Res. Des,2004,82(A2):208-214
    [123] Babichi V, Moulin J A. Science and technology of novel p rocesses for deepdesulfurization of oil refinery streams: a review[J]. Fuel,2003,82(6):607-631
    [124] Schmitz C, Datsevitch L, Jess A. Deep desulfurization of diesel oil: Kinetics studies andprocess-improvement by the of a two phase reactor with pre-saturator [J]. ChemicalEngineering Science,2004,59(14):2821-2829
    [125] Mochida I, Sakanishi K, Ma X L, et al. Deep hydrodesulfurization of diesel fuel: Design ofreaction process and catalysts[J]. Catalysis Today,1996,29(1-4):185-189
    [126] Ma X L, Sakanishi K, Isoda T, et al. Hydrodesulfurization reactivities of narrow-cutfractions in a gas oil[J]. Ind. Eng. Chem. Res.,1996,34(3):748-754
    [127] Gardner R.B., Schwartz E.A., Canadian refinery starts up first-of-kind gasolinedesulfurization unit[J]. Oil Gas Journal,2001,99(25):54-58.
    [128] W rner M., Ghidersa B., Onea A., A model for the residence time distribution ofbubble-train flow in a square mini-channel based on direct numerical simulation results[J].International Journal of Heat and Fluid Flow,2007,28(1):83–94
    [129] Levenspiel O, Turner J C R. The interpretation of residence-time experiments. ChemicalEngineering Science,1970,25:1605–1609
    [130] Levenspiel O, Lai BW, Chatlynne C Y. Tracer curves and the residence-time distribution.Chemical Engineering Science,1970,25:1611–1613
    [131]过增元.换热器中场协同原则及其应用[J].机械工程学报,2003,39(12):1-9
    [132] Chen Q, Meng J A. Field synergy and optimization of the convective mass transfer inphotocatalytic oxidation reactors[J]. International Journal of Heat and Mass Transfer,2008,51(11-12):2863-2870
    [133] Jackson M L, Shen C C. Aeration and mixing in deep tank fermentation systems[J]. AIChEJournal,1978,24(1):63-71
    [134]张庆勇,黄海,周媛,等.毛细管中两相流动特征的电导测量方法[J].北京化工大学学报(自然科学版),2008,35(3):9-13.
    [135]马沛生.石油化工基础数据手册续编[M].北京:化学工业出版社,1993
    [136] Korsten H, Hoffmann U. Three-phase reactor model pilot trickle-bed for hydrotreating inreactors[J]. AIChE. Journal,1996,42(5):1350-1360
    [137] Singhal G H, Espino R L, Sobel J E, et al. Hydrodesulfurization of sulfur heterocycliccompounds: kinetics of dibenzothiophene[J]. Journal of Catalysis,1981,67(2):457-468
    [138]余夕志,任晓乾,董振国,等.工业NiW/Al2O3催化剂上二苯并噻吩的加氢脱硫动力学[J].燃料化学学报,2005,33(4):483-486
    [139] Wang Y, Sun Z C, Wang A J, et al. Kinetics of hydrodesulfurization of dibenzothiophenecatalyzed by sulfided Co-Mo/MCM-41[J]. Ind. Eng. Chem. Res.,2004,43:2324-2329
    [140] Steiner P, Blekkan E A. Catalytic hydrodesulfurization of a light gas oil over a NiMocatalyst: kinetics of selected sulfur components[J]. Fuel Processing Technology,2002,79:1-12
    [141] Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromaticscatalyzed by sulfided CoO-MoO3/γ-Al2O3: the relative reactivities[J]. Journal of catalysis,1979,57(2):509-512
    [142] Houalla M, Broderick D, Sapre A V, et al. Hydrodesulfurization of methyl-substituteddibenzothiophenes catalyzed by sulfided CoO-MoO3/γ-Al2O3[J]. Journal of catalysis,1980,61(2):523-527
    [143] Rajashekharam M V, Jaganathan R, Chaudhari R V. A trickle-bed reactor model forhydrogenation of2,4dinitrotoluene: experimental verification[J]. Chemical EngineeringScience,1998,53(4):787-805
    [144] van Baten J M, Krishna R. CFD simulations of wall mass transfer for Taylor flow incircular capillaries. Chemical Engineering Science,2005,60(4):1117-2126
    [145] Xu M, Huang H, Zhan X P, et al. Pressure drop and liquid hold-up in multiphasemonolithic reactor with different distributors[J]. Catalysis Today,2009,147S: S132-S137
    [146] Goto S, Smith, J M. Trickle-bed reactor performance partⅠ: liquid-hold and mass transfereffects[J]. AIChE Journal,1975,21(4):706-713
    [147] Satterfield C N, van Eek M, Bliss G S. Liquid-solid mass transfer in packed beds withdownward concurrent gas-liquid flow[J]. AIChE Journal,1978,24(4):709-718
    [148] Iliuta I, Larachi F, Grandjean B P A. Residence time, mass transfer and back-mixing of theliquid in trickle flow reactors containing porous particles[J]. Chemical EngineeringScience,1999,54(18):4099-4109
    [149] Lu P Z, Smith J M, Herskowitz M. Gas-particle mass transfer in trickle beds[J]. AIChEJournal,1984,30(3):500-502
    [150] Hochmann J M, Effron E. Two phase cocurrent downflow in packed beds[J]. Ind. EngngChem. Fundam.,1969,8(1):63-71
    [151] Mills P L, Dudukovic M P. Evaluation of liquid-solid contacting in trickle bed reactors bytracer methods[J]. AIChE Journal,1981,27(6):893-904
    [152] Sato Y, Hirose T, Takahashi, F, et al. Pressure loss and liquid holdup in packed bed reactorwith cocurrent gas-liquid downflow[J]. Journal of Chemical Engineering of Japan,1973,6(2):147-156
    [153]张庆勇. Taylor流的流动液相混合和液侧传质特性实验研究[D].北京:北京化工大学,2008
    [154] Wei N, Ji S F, Wu P Y, et al. Preparation of nickel phosphide/SBA-15/cordierite monolithiccatalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. CatalysisToday,2009,147S: S66–S70
    [155] Froment G F, Bischoff K B. Chemical reactor analysis and design-Second Edition[M].New York: John Willey&Sons,1990
    [156] Crezee E, Hoffer B W, Berger R J, et al. Three-phase hydrogenation of D-glucose over acarbon supported ruthenium catalyst–mass transfer and kinetics[J]. Applied Catalysis A:General,2003,251(1):1-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700