用户名: 密码: 验证码:
自旋轨道耦合冷原子费米气体中的量子效应及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于最近几年实验的飞速进展,自旋轨道耦合冷原子气体引起了人们极大的关注。有了自旋轨道耦合效应之后,冷原子气体会表现出一些全新的性质。人们预言在这个体系中会出现拓扑超流态以及Marjorana费米子。同时,自旋轨道耦合效应的引入,也使得人们可以利用冷原子这样一个非常易于操控的体系,来模拟拓扑绝缘体等其他重要的量子效应。自旋轨道耦合的冷原子气体也成为了实现拓扑量子计算的重要平台。
     本文主要研究了自旋轨道耦合冷原子费米气体的量子效应,并且涉及了利用开放量子体系实现量子计算的一些理论问题。
     首先,我们研究了单通道模型处理Feshbach共振附近的自旋轨道耦合冷原子费米气体的有效性问题。在不存在自旋轨道耦合时,人们认为当开通道和闭通道的耦合强度很大时,单通道模型和双通道模型等价。我们通过对比存在自旋轨道耦合时两个模型的处理结果,发现此时两个模型等价的条件不仅与开通道和闭通道的耦合强度有关,还与自旋轨道耦合强度相关。我们给出了新的两个模型等价的条件,并且提出了实验上检验的方法。
     然后我们研究了二维光晶格中的自旋轨道耦合费米气体,给出了这个体系具有动量分辨能力的射频谱的性质。这种射频谱信号,可以在实验中有效的探测到,并且可以利用它得到体系单粒子能量以及能量本征态的信息。另外,我们通过这种射频谱的信号,发现了体系中一个有趣的自旋动量反转对称性,并在理论中给出了证明。
     在开放量子体系的量子信息处理方面,我们首先研究了利用开放量子体系实现量子计算的一种模型:对偶量子计算,对其给出了一个规范统一的描述。然后我们研究了量子操作算子按照幺正矩阵线性展开的性质,给出了相消干涉最小的展开方式以及幺正矩阵个数最小的展开方式。另外我们研究一个一般的量子操作和幺正操作的区别的度量,我们把这种区别叫做这个量子操作的非幺正性。它的大小反映了这个量子操作噪声的强度。我们提出了量子操作非幺正性的度量方式,给出了单比特常见量子信道的计算结果,并且研究了量子操作非幺正性分布及其随环境维度大小的影响。
Following unprecedented experimental development, spin-orbit coupled atomicgases have attracted much attention in recent years. Due to the spin-orbit coupling ef-fect, atomic gases exhibit many new important properties. Topological superfluid andMajorana fermions have been predicted in this system. Also, as spin-orbit atomic gasesare easy to control in experiment, they can be used to simulate other important phys-ical phenomena, such as topological insulators. They are also important resources fortopological quantum computing.
     In this thesis, we mainly study the quantum effect of ultracold spin-orbit atomicFermi gases. Some theoretical problems related to quantum computing in open quantumsystems will also be touched upon.
     Firstly, we study the validity of the single channel model for a spin-orbit-coupledatomicFermigasnearFeshbachresonances. Itiswidelyaccepted, incaseswithoutspin-orbitcoupling, that when the channel couplingbetweentheclosedandtheopenchannelsis strong, the two-channel model is equivalent to the single-channel model. However,in the presence of spin-orbit coupling, we find that the condition for the equivalencebecomes much more stringent and is related to the strength of the spin-orbit coupling.We give new criteria for the equivalence in the presence of spin-orbit coupling and givea scheme for experiment testing.
     Secondly, we study the momentum-resolved radio frequency spectroscopy of spin-orbit atomic Fermi gases in a two-dimension optical lattice. Momentum-resolved ra-dio frequency spectroscopy is a powerful tool to probe single-particle energies andeigenstates. We also find an interesting spin-momentum reversed symmetry from themomentum-resolved radio frequency spectroscopy and prove it theoretically.
     In the field of quantum computing in open quantum systems, we first study a circuitmodel, i.e., duality quantum computer model, and give it a unified description. Then westudy the properties of a Kraus operator as a linear combination of unitary matrices. Wefind the expansion with the maximum constructive interference and also the expansionrequiring the minimum number of unitary matrices. Finally, we study the measure of thedistance between a general quantum operation and the unitary operations, which we callthe non-unitarity of the quantum operation. This also qualifies the noise of the quantum operation. We propose a new measure for the non-unitarity of a quantum operation andgivetheresultsforsomeimportantsinglequbitquantumchannels. Wealsostudythedis-tribution of the non-unitarity of quantum operations and the its relation to the dimensionof the environment.
引文
[1] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein Condensationin a Dilute Atomic Vapor. Science,1995,269(5221):198–201.
    [2] Bradley C C, Sackett C A, Tollett J J, et al. Evidence of Bose-Einstein Condensation in anAtomic Gas with Attractive Interactions. Phys. Rev. Lett.,1995,75:1687–1690.
    [3] DavisKB,MewesMO,AndrewsMR,etal. Bose-EinsteinCondensationinaGasofSodiumAtoms. Phys. Rev. Lett.,1995,75:3969–3973.
    [4] Jin D S, Ensher J R, Matthews M R, et al. Collective Excitations of a Bose-Einstein Conden-sate in a Dilute Gas. Phys. Rev. Lett.,1996,77:420–423.
    [5] Mewes M O, Andrews M R, Druten N J, et al. Collective Excitations of a Bose-EinsteinCondensate in a Magnetic Trap. Phys. Rev. Lett.,1996,77:988–991.
    [6] Matthews M R, Anderson B P, Haljan P C, et al. Vortices in a Bose-Einstein Condensate.Phys. Rev. Lett.,1999,83:2498–2501.
    [7] Madison K W, Chevy F, Wohlleben W, et al. Vortex Formation in a Stirred Bose-EinsteinCondensate. Phys. Rev. Lett.,2000,84:806–809.
    [8] Abo-Shaeer J R, Raman C, Vogels J M, et al. Observation of Vortex Lattices in Bose-EinsteinCondensates. Science,2001,292(5516):476–479.
    [9] Andrews M R, Townsend C G, Miesner H J, et al. Observation of Interference Between TwoBose Condensates. Science,1997,275(5300):637–641.
    [10] DeMarco B, Jin D S. Onset of Fermi Degeneracy in a Trapped Atomic Gas. Science,1999,285(5434):1703–1706.
    [11] Feshbach H. Unified theory of nuclear reactions. Annals of Physics,1958,5(4):357–390.
    [12] FeshbachH. Aunifiedtheoryofnuclearreactions.II. AnnalsofPhysics,1962,19(2):287–313.
    [13] O’hara K, Hemmer S, Gehm M, et al. Observation of a strongly interacting degenerate Fermigas of atoms. Science,2002,298(5601):2179–2182.
    [14] Chin C, Bartenstein M, Altmeyer A, et al. Observation of the pairing gap in a strongly inter-acting Fermi gas. Science,2004,305(5687):1128–1130.
    [15] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, et al. Vortices and superfluidity in a stronglyinteracting Fermi gas. Nature,2005,435(7045):1047–1051.
    [16] Eagles D. Possible pairing without superconductivity at low carrier concentrations in bulkand thin-film superconducting semiconductors. Physical Review,1969,186(2):456.
    [17] J L A. In: Pekalski A, Przystawa J,(eds.). Proceedings of in Modern Trends in the Theory ofCondensed Matter. Berlin: Springer,1980:.
    [18] Hasan M Z, Kane C L. Colloquium: topological insulators. Reviews of Modern Physics,2010,82(4):3045.
    [19] Qi X L, Zhang S C. The quantum spin Hall effect and topological insulators. Physics Today,2010,63(1):33–38.
    [20] Qi X L, Zhang S C. Topological insulators and superconductors. Reviews of Modern Physics,2011,83(4):1057.
    [21] LinYJ,ComptonRL,Jimenez-GarciaK,etal. Syntheticmagneticfieldsforultracoldneutralatoms. Nature,2009,462(7273):628–632.10.1038/nature08609.
    [22] Lin Y J, Jimenez-Garcia K, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates.Nature,2011,471(7336):83–86.10.1038/nature09887.
    [23] Williams R A, LeBlanc L J, Jiménez-García K, et al. Synthetic Partial Waves in UltracoldAtomic Collisions. Science,2012,335(6066):314–317.
    [24] Jiménez-García K, LeBlanc L J, Williams R A, et al. Peierls Substitution in an EngineeredLattice Potential. Phys. Rev. Lett.,2012,108:225303.
    [25] Wang P, Yu Z Q, Fu Z, et al. Spin-Orbit Coupled Degenerate Fermi Gases. Phys. Rev. Lett.,2012,109:095301.
    [26] Cheuk L W, Sommer A T, Hadzibabic Z, et al. Spin-Injection Spectroscopy of a Spin-OrbitCoupled Fermi Gas. Phys. Rev. Lett.,2012,109:095302.
    [27] Dalibard J, Gerbier F, Juzeliūnas G, et al. Colloquium: Artificial gauge potentials for neutralatoms. Reviews of Modern Physics,2011,83(4):1523.
    [28] Hu H, Jiang L, Liu X J, et al. Probing Anisotropic Superfluidity in Atomic Fermi Gases withRashba Spin-Orbit Coupling. Phys. Rev. Lett.,2011,107:195304.
    [29] YuZQ,ZhaiH. Spin-orbitcoupledFermigasesacrossaFeshbachresonance. Physicalreviewletters,2011,107(19):195305.
    [30] Zhai H. Spin-orbit coupled quantum gases. International Journal of Modern Physics B,2012,26(01).
    [31] Vyasanakere J P, Shenoy V B. Bound states of two spin-12fermions in a synthetic non-Abeliangauge field. Phys. Rev. B,2011,83:094515.
    [32] Vyasanakere J P, Zhang S, Shenoy V B. BCS-BEC crossover induced by a synthetic non-Abelian gauge field. Phys. Rev. B,2011,84:014512.
    [33] Gong M, Tewari S, Zhang C. Bcs-bec crossover and topological phase transition in3d spin-orbit coupled degenerate fermi gases. Physical Review Letters,2011,107(19):195303.
    [34] Zhou K, Zhang Z. Opposite effect of spin-orbit coupling on condensation and superfluidity.Physical Review Letters,2012,108(2):25301.
    [35] Han L, Melo C S. Evolution from BCS to BEC superfluidity in the presence of spin-orbitcoupling. Physical Review A,2012,85(1):011606.
    [36] Iskin M. Vortex line in spin-orbit coupled atomic Fermi gases. Physical Review A,2012,85(1):013622.
    [37] He L, Huang X G. BCS-BEC crossover in three-dimensional Fermi gases with sphericalspin-orbit coupling. Physical Review B,2012,86(1):014511.
    [38] Martone G I, Li Y, Pitaevskii L P, et al. Anisotropic dynamics of a spin-orbit-coupled Bose-Einstein condensate. Physical Review A,2012,86(6):063621.
    [39] Doko E, Suba A, Iskin M. Counterflow of spontaneous mass currents in trapped spin-orbit-coupled Fermi gases. Physical Review A,2012,85(5):053634.
    [40] Dell’Anna L, Mazzarella G, Salasnich L. Tuning Rashba and Dresselhaus spin-orbit cou-plings: Effects on singlet and triplet condensation with Fermi atoms. Physical Review A,2012,86(5):053632.
    [41] Wu Y, Yu Z. Short-range asymptotic behavior of the wave functions of interacting spin-1/2fermionic atoms with spin-orbit coupling: A model study. Physical Review A,2013,87(3):032703.
    [42] YuZ. Short-rangecorrelationsindiluteatomicFermigases withspin-orbitcoupling. PhysicalReview A,2012,85(4):042711.
    [43] Jiang L, Liu X J, Hu H, et al. Rashba spin-orbit-coupled atomic Fermi gases. Physical ReviewA,2011,84(6):063618.
    [44] ChenG,GongM,ZhangC. BCS-BECcrossoverinspin-orbit-coupledtwo-dimensionalFermigases. Physical Review A,2012,85(1):013601.
    [45] HeL,HuangXG. BCS-BECCrossoverin2DFermiGaseswithRashbaSpin-OrbitCoupling.Physical Review Letters,2012,108(14):145302.
    [46] Yang X, Wan S. Phase diagram of a uniform two-dimensional Fermi gas with spin-orbitcoupling. Physical Review A,2012,85(2):023633.
    [47] Zhang P, Zhang L, Zhang W. Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling. Physical Review A,2012,86(4):042707.
    [48] HeL,HuangXG. UnusualZeeman-fieldeffectsintwo-dimensionalspin-orbit-coupledFermisuperfluids. Physical Review A,2012,86(4):043618.
    [49] Wu F, Guo G C, Zhang W, et al. Unconventional superfluid in a two-dimensional Fermigas with anisotropic spin-orbit coupling and Zeeman fields. Physical Review Letters,2013,110(11):110401.
    [50] Liu X J, Hu H. Topological superfluid in one-dimensional spin-orbit-coupled atomic Fermigases. Physical Review A,2012,85(3):033622.
    [51] Gong M, Chen G, Jia S, et al. Searching for Majorana Fermions in2D Spin-Orbit CoupledFermi Superfluids at Finite Temperature. Phys. Rev. Lett.,2012,109:105302.
    [52] SeoK,HanL,MeloCAR. EmergenceofMajoranaandDiracParticlesinUltracoldFermion-s via Tunable Interactions, Spin-Orbit Effects, and Zeeman Fields. Phys. Rev. Lett.,2012,109:105303.
    [53] Hu H, Jiang L, Pu H, et al. Universal impurity-induced bound state in topological superfluids.Physical review letters,2013,110(2):020401.
    [54] Liu X J, Jiang L, Pu H, et al. Probing Majorana fermions in spin-orbit-coupled atomic Fermigases. Physical Review A,2012,85(2):021603.
    [55] Liao R, Yi-Xiang Y, Liu W M. Tuning the Tricritical Point with Spin-Orbit Coupling inPolarized Fermionic Condensates. Physical Review Letters,2012,108(8):80406.
    [56] Zhou J, Zhang W, Yi W. Topological superfluid in a trapped two-dimensional polarized Fermigas with spin-orbit coupling. Physical Review A,2011,84(6):063603.
    [57] He L, Huang X G, Hu H, et al. BCS-BEC crossover at finite temperature in spin-orbit coupledFermi gases. arXiv preprint arXiv:1303.4136,2013..
    [58] Fu Z, Huang L, Meng Z, et al. Radio-frequency spectroscopy of a strongly interacting spin-orbit coupled Fermi gas. arXiv preprint arXiv:1303.2212,2013..
    [59] Liu X J, Drummond P. Manipulating Majorana fermions in one-dimensional spin-orbit-coupled atomic Fermi gases. Physical Review A,2012,86(3):035602.
    [60] Fano U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev.,1961,124:1866–1878.
    [61] Stwalley W C. Stability of Spin-Aligned Hydrogen at Low Temperatures and High MagneticFields: New Field-Dependent Scattering Resonances and Predissociations. Phys. Rev. Lett.,1976,37:1628–1631.
    [62] Chin C, Grimm R, Julienne P, et al. Feshbach resonances in ultracold gases. Rev. Mod. Phys.,2010,82:1225–1286.
    [63] PethickCJ,SmithH. Bose-Einsteincondensationindilutegases. Cambridgeuniversitypress,2002.
    [64] Bardeen J, Cooper L N, Schrieffer J R. Theory of Superconductivity. Phys. Rev.,1957,108:1175–1204.
    [65] Madelung O. Introduction to solid-state theory, volume2. Springer,1995.
    [66] HollandM,KokkelmansSJJMF,ChiofaloML,etal. ResonanceSuperfluidityinaQuantumDegenerate Fermi Gas. Phys. Rev. Lett.,2001,87:120406.
    [67] Schunck C H, Shin Y i, Schirotzek A, et al. Determination of the fermion pair size in aresonantly interacting superfluid. Nature,2008,454(7205):739–743.
    [68] Dao T L, Georges A, Dalibard J, et al. Measuring the One-Particle Excitations of UltracoldFermionic Atoms by Stimulated Raman Spectroscopy. Phys. Rev. Lett.,2007,98:240402.
    [69] Stewart J, Gaebler J, Jin D. Using photoemission spectroscopy to probe a strongly interactingFermi gas. Nature,2008,454(7205):744–747.
    [70] Moore G E, et al. Cramming more components onto integrated circuits,1965.
    [71] FeynmanRP. Simulatingphysicswithcomputers. Internationaljournaloftheoreticalphysics,1982,21(6):467–488.
    [72] Bennett C H, Brassard G, et al. Quantum cryptography: Public key distribution and coin toss-ing. Proceedings of Proceedings of IEEE International Conference on Computers, Systemsand Signal Processing, volume175. Bangalore, India,1984.
    [73] Shor P W, Preskill J. Simple proof of security of the BB84quantum key distribution protocol.Physical Review Letters,2000,85(2):441–444.
    [74] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. Proceed-ings of Foundations of Computer Science,1994Proceedings.,35th Annual Symposium on.IEEE,1994.124–134.
    [75] Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Physicalreview letters,1997,79(2):325–328.
    [76] Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits.Reviews of Modern Physics,2007,79(1):135.
    [77] Singer K, Poschinger U, Murphy M, et al. Colloquium: Trapped ions as quantum bits: Essen-tial numerical tools. Reviews of Modern Physics,2010,82(3):2609.
    [78] DuanLM,MonroeC. Colloquium:Quantumnetworkswithtrappedions. ReviewsofModernPhysics,2010,82(2):1209.
    [79] Makhlin Y, Sch n G, Shnirman A. Quantum-state engineering with Josephson-junction de-vices. Reviews of modern physics,2001,73(2):357.
    [80] Vandersypen L M, Chuang I L. NMR techniques for quantum control and computation. Re-views of modern physics,2005,76(4):1037.
    [81] Childress L, Dutt M G, Taylor J, et al. Coherent dynamics of coupled electron and nuclearspin qubits in diamond. Science,2006,314(5797):281–285.
    [82] Jaksch D, Zoller P. The cold atom Hubbard toolbox. Annals of physics,2005,315(1):52–79.
    [83] Einstein A, Podolsky B, Rosen N. Can Quantum-Mechanical Description of Physical RealityBe Considered Complete? Phys. Rev.,1935,47:777–780.
    [84] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum com-puter. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1985,400(1818):97–117.
    [85] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. Proceed-ings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1992,439(1907):553–558.
    [86] Long G L, Li Y S, Zhang W L, et al. Phase matching in quantum searching. Physics LettersA,1999,262(1):27–34.
    [87] Long G L. Grover algorithm with zero theoretical failure rate. Physical Review A,2001,64(2):022307.
    [88] Grover L K. Fixed-point quantum search. Physical review letters,2005,95(15):150501.
    [89] Nielsen M A, Chuang I L. Quantum computation and quantum information. Cambridgeuniversity press,2010.
    [90] NielsenMA. Asimpleformulafortheaveragegatefidelityofaquantumdynamicaloperation.Physics Letters A,2002,303(4):249–252.
    [91] Pedersen L H, M ller N M, M lmer K. Fidelity of quantum operations. Physics Letters A,2007,367(1):47–51.
    [92] Partridge G B, Strecker K E, Kamar R I, et al. Molecular Probe of Pairing in the BEC-BCSCrossover. Phys. Rev. Lett.,2005,95:020404.
    [93] Liu X J, Hu H. Self-consistent theory of atomic Fermi gases with a Feshbach resonance at thesuperfluid transition. Phys. Rev. A,2005,72:063613.
    [94] Diener R B, Ho T L. The condition for universality at resonance and direct measurement ofpair wavefunctions using rf spectroscopy. arXiv preprint cond-mat/0405174,2004..
    [95] Hu H, Liu X J, Drummond P D. Equation of state of a superfluid Fermi gas in the BCS-BECcrossover. EPL (Europhysics Letters),2006,74(4):574.
    [96] Liu X J, Hu H. BCS-BEC crossover in an asymmetric two-component Fermi gas. EPL(Europhysics Letters),2006,75(3):364.
    [97] Liu X J. Momentum-resolved radio-frequency spectroscopy of ultracold atomic Fermi gasesin a spin-orbit-coupled lattice. Physical Review A,2012,86(3):033613.
    [98] SteaneAM. ErrorCorrectingCodesinQuantumTheory. Phys.Rev.Lett.,1996,77:793–797.
    [99] Shor P W. Fault-tolerant quantum computation. Proceedings of Foundations of ComputerScience,1996. Proceedings.,37th Annual Symposium on. IEEE,1996.56–65.
    [100] Preskill J. Fault-tolerant quantum computation. Introduction to quantum computation andinformation,1998.213–269.
    [101] Kitaev A Y. Fault-tolerant quantum computation by anyons. Annals of Physics,2003,303(1):2–30.
    [102] Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computa-tion. Rev. Mod. Phys.,2008,80:1083–1159.
    [103] Childs A M, Farhi E, Preskill J. Robustness of adiabatic quantum computation. Phys. Rev.A,2001,65:012322.
    [104] Zanardi P, Rasetti M. Holonomic quantum computation. Physics Letters A,1999,264(2):94–99.
    [105] KastoryanoM,WolfM,EisertJ. Preciselytimingdissipativequantuminformationprocessing.Physical Review Letters,2013,110(11):110501.
    [106] Krauter H, Muschik C A, Jensen K, et al. Entanglement Generated by Dissipation and SteadyState Entanglement of Two Macroscopic Objects. Phys. Rev. Lett.,2011,107:080503.
    [107] Verstraete F, Wolf M M, Cirac J I. Quantum computation and quantum-state engineeringdriven by dissipation. Nature Physics,2009,5(9):633–636.
    [108] Diehl S, Micheli A, Kantian A, et al. Quantum states and phases in driven open quantumsystems with cold atoms. Nature Physics,2008,4(11):878–883.
    [109] Kraus B, Büchler H P, Diehl S, et al. Preparation of entangled states by quantum Markovprocesses. Phys. Rev. A,2008,78:042307.
    [110] Kastoryano M J, Reiter F, S rensen A S. Dissipative Preparation of Entanglement in OpticalCavities. Phys. Rev. Lett.,2011,106:090502.
    [111] Muschik C A, Polzik E S, Cirac J I. Dissipatively driven entanglement of two macroscopicatomic ensembles. Phys. Rev. A,2011,83:052312.
    [112] Vollbrecht K G H, Muschik C A, Cirac J I. Entanglement Distillation by Dissipation andContinuous Quantum Repeaters. Phys. Rev. Lett.,2011,107:120502.
    [113] Pastawski F, Clemente L, Cirac J I. Quantum memories based on engineered dissipation.Phys. Rev. A,2011,83:012304.
    [114] Mizel A. Critically damped quantum search. Physical review letters,2009,102(15):150501.
    [115] Gui-Lu L. General quantum interference principle and duality computer. Communications inTheoretical Physics,2006,45(5):825. Also see arXiv:quant-ph/0512120. It was briefly men-tioned in an abstract (5111-53)(Tracking No. FN03-FN02-32) submitted to SPIE conference”Fluctuations and Noise in Photonics and Quantum Optics” in18Oct2002.
    [116] Gui-LuL,YangL. Dualitycomputinginquantumcomputers. CommunicationsinTheoreticalPhysics,2008,50(6):1303.
    [117] Gui-Lu L, Yang L, Chuan W. Allowable generalized quantum gates. Communications inTheoretical Physics,2009,51(1):65.
    [118] Gudder S. Mathematical theory of duality quantum computers. Quantum Information Pro-cessing,2007,6(1):37–48.
    [119] Long G L. Mathematical theory of the duality computer in the density matrix formalism.Quantum Information Processing,2007,6(1):49–54.
    [120] Wang Y Q, Du H K, Dou Y N. Note on generalized quantum gates and quantum operations.International Journal of Theoretical Physics,2008,47(9):2268–2278.
    [121] Zou X, Qiu D, Wu L, et al. On mathematical theory of the duality computers. QuantumInformation Processing,2009,8(1):37–50.
    [122] Gudder S. Duality quantum computers and quantum operations. International Journal ofTheoretical Physics,2008,47(1):268–279.
    [123] Du H K, Wang Y Q, Xu J L. Applications of the generalized Lüders theorem. Journal ofMathematical Physics,2008,49:013507.
    [124] Zhang Y, Cao H, Li L. Realization of allowable qeneralized quantum gates. Science ChinaPhysics, Mechanics and Astronomy,2010,53(10):1878–1883.
    [125] Cao H, Li L, Chen Z, et al. Restricted allowable generalized quantum gates. Chinese ScienceBulletin,2010,55(20):2122–2125.
    [126] Hao L, Liu D, Long G. An N/4fixed-point duality quantum search algorithm. Science ChinaPhysics, Mechanics and Astronomy,2010,53(9):1765–1768.
    [127] ZhengC,HaoL,LongGL. ObservationofFastEvolutioninParity-Time-SymmetricSystem.arXiv preprint arXiv:1105.6157,2011..
    [128] Wiebe N, Childs A. Hamiltonian Simulation Using Linear Combinations of Unitary Opera-tions. Bulletin of the American Physical Society,2012,57.
    [129] Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dic-tionaries via l1minimization. Proceedings of the National Academy of Sciences,2003,100(5):2197–2202.
    [130] Wu P Y. Additive combinations of special operators. In: Zemnek J,(eds.). Proceedings ofFunctional Analysis and Operator Theory. Warsaw, Poland: Banach Center,1994:.
    [131] Zanardi P, Lidar D A. Purity and state fidelity of quantum channels. Phys. Rev. A,2004,70:012315.
    [132] Pedersen L H, M ller N M, M lmer K. The distribution of quantum fidelities. Physics LettersA,2008,372(47):7028–7032.
    [133] Magesan E, Blume-Kohout R, Emerson J. Gate fidelity fluctuations and quantum processinvariants. Physical Review A,2011,84(1):012309.
    [134] Ghosh J, Geller M R. Controlled-not gate with weakly coupled qubits: dependence of fidelityon the form of interaction. Physical Review A,2010,81(5):052340.
    [135] Radtke T, Fritzsche S. Simulation of n-qubit quantum systems. IV. Parametrizations of quan-tum states, matrices and probability distributions. Computer Physics Communications,2008,179(9):647–664.
    [136] GhoshJ. Anoteonthemeasuresofprocessfidelityfornon-unitaryquantumoperations. arXivpreprint arXiv:1111.2478,2011..
    [137] De Pasquale A, Giovannetti V. Quantifying the noise of a quantum channel by noise addition.Physical Review A,2012,86(5):052302.
    [138] Magesan E. Characterizing Noise in Quantum Systems[D]. Waterloo, Ontario, Canada: Uni-versity of Waterloo,2012.
    [139] Gilchrist A, Langford N K, Nielsen M A. Distance measures to compare real and ideal quan-tum processes. Physical Review A,2005,71(6):062310.
    [140] Wang X, Sun Z, Wang Z. Operator fidelity susceptibility: An indicator of quantum criticality.Physical Review A,2009,79(1):012105.
    [141] Blume-Kohout R, Ng H K, Poulin D, et al. Characterizing the Structure of Preserved Infor-mation in Quantum Processes. Phys. Rev. Lett.,2008,100:030501.
    [142] Oi D K. Interference of quantum channels. Physical review letters,2003,91(6):067902.
    [143] LuoS,FuS. Geometricmeasureofquantumdiscord. PhysicalReviewA,2010,82(3):034302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700