用户名: 密码: 验证码:
中国及邻区岩石圈有效弹性厚度及其动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球岩石圈在地表和地下荷载作用下会进行均衡沉降或隆起,均衡响应的状态(局部均衡或区域均衡)和快慢,取决于岩石圈自身的热力学性质。利用这种均衡响应信息可以计算岩石圈有效弹性厚度(Te),其主要反映了岩石圈在长期(>105年)构造载荷作用下抵抗变形的能力,是研究大陆岩石圈大规模构造和岩石圈动力学的有力工具。研究岩石圈有效弹性厚度的空间变化,对于了解具有复杂地质构造和地壳形变的中国大陆岩石圈的力学特征和演化,进而对其动力学机制进行分析至关重要。
     中国大陆并非一个巨型前寒武纪克拉通为主体的单一大陆,而是由大量小型克拉通和夹持其间的造山带所组成的拼合大陆。大陆西南缘受到印度一澳大利亚板块快速向北运移的碰撞挤压,东部遭遇太平洋和菲律宾板块向欧亚大陆的俯冲,北部则受到西伯利亚板块的阻挡。考虑到如此复杂的结构和地球动力作用,必然造成中国大陆各主要陆块存在明显的相互作用。因此,非常有必要详细地研究整个中国大陆及邻区的岩石圈有效弹性厚度分布,有助于了解中国各陆块的岩石圈强度的变化,对研究华北克拉通破坏、青藏高原隆升以及整个中国大陆复杂的构造变形及其岩石圈动力学机制等具有非常重要的意义。
     本文采用基于地形和布格重力异常数据的多窗谱相关法和Fan小波谱相关法获得了完整且高分辨率的中国及邻区的岩石圈有效弹性厚度,并根据Te分布对中国大陆的大地构造和岩石圈动力学提出了新的认识。首先,通过模型实验,系统分析了多窗谱和Fan小波谱相关法的主要参数对反演结果的影响,并对比验证了两种谱方法反演Te的有效性。其次,基于实测地形和卫星重力场模型数据,获得了完整且高分辨率的中国及邻区岩石圈有效弹性厚度分布。反演结果表明:两种谱相关法获得的Te横向分布基本一致,都呈现出中国及邻区Te具有剧烈的空间横向变化;几个明显的高T。值主要分布在稳定的克拉通盆地;而低T。值主要分布于年轻的造山带地区,并且各构造单元内部的T。存在明显的不均一性。最后,利用获得的Te分布,结合地质、大地测量和地球物理等资料,得到了以下新认识:
     (1)对比中国大陆的Te横向变化和地震震中分布表明,岩石圈有效弹性厚度的大小和空间变化与地震分布存在密切的联系。Te高的地区一般对应构造相对稳定区,地震较少发生,说明了高强度的岩石圈具有抵抗变形和地震的能力。中国大陆板内地震主要集中在T。约为10-40km的区域或Te陡变带,表明了岩石圈强度弱的地区或岩石圈强度发生显著变化的陡变带,是岩石圈应力和能量最容易累积和释放的地区,往往是地震孕育的有利地带。
     (2)通过分析中国大陆及邻区的Te横向变化和构造单元热年龄、地表热流以及地幔横波速度分布表明,岩石圈热年龄和热结构的变化对中国大陆岩石圈有效弹性厚度的影响较大;高Te地区一般具有低的地表热流,而低Te的区域一般对应高的热流值:同时Te和地幔100km深度的横波速度呈正相关。但是,由于中国地区特殊的地质构造,加之岩石圈复杂的演化过程及其结构的各向异性,导致这些反映岩石圈性质和结构的参量与Te的关系也存在一定的离散性和不确定性。
     (3)对华北陆块Te空间变化分析表明,西陆块的鄂尔多斯盆地远远高出地壳平均厚度(约42km)的高Te值,说明了古老克拉通岩石圈的高强度主要反映了其具有强的上地幔岩石圈;相比稳定且高Te的西陆块,东陆块Te变化剧烈且明显偏小,表明华北东陆块高强度的太古宙岩石圈已经变弱,但是局部高Te值可能暗示了局部地区仍保留有较厚的克拉通岩石圈。
     (4)结合华南陆块Te分布和地幔成像结果表明,四川盆地可能不是一个均一的刚性克拉通,其盆地内部岩石圈存在明显的各向异性:扬子陆块的古老克拉通陆核可能存在于四川盆地中东部以及贵州北部、重庆武陵山和湖南雪峰山以西地区。华南陆块中东部大部分区域呈低Te值,结合地表构造特征和地幔热结构推断,俯冲到华南陆块之下的古大洋岩石圈引起的热地幔动力作用可能是显著降低华南陆块(特别是中东部)岩石圈的综合力学强度的主要原因。在受到四周多个板块汇聚的应力下,低强度的华南岩石圈更容易产生变形,从而在壳内形成现今宽广的褶皱带和广泛的岩浆活动。
     (5)青藏高原下地壳广泛分布的塑性地壳流、热上地幔和高热状态,可能是青藏高原中部、东部和东南部Te普遍低的主要影响因素。结合Te的分布表明,青藏高原的变形可能不仅局限在地体缝合线和走滑断裂带,低岩石圈综合强度的高原地体内部(尤其是中部和东南部)也具有连续形变的条件。
     (6)结合地质、大地测量和地球物理资料,对中国东部华北陆块、华南陆块、西部青藏高原和塔里木盆地的岩石圈有效弹性厚度分析表明,中国大陆岩石圈综合强度主要受深部地幔结构的影响;特别是中新生代以来西南印度—欧亚大陆碰撞俯冲,东部太平洋板块的俯冲和三叠纪华南陆块和华北陆块的陆陆碰撞俯冲,引起的地幔热动力过程对中国岩石圈强度结构进行了强烈的改造,也正是这种复杂的岩石圈强度结构影响着中国大陆中生代以来复杂的岩石圈构造演化和变形。
Under surface and subsurface loading, the lithosphere should respond isostatically by subsidence or uplift. The nature and degree of these responses or compensation-local or regional, fast or slow, are determined by the thermal and mechanical properties of the lithosphere. These responses can be used to estimate the effective elastic thickness (Te), which shows the deformation-resistant capacity of the lithosphere subjected to the long-term (>105yr) tectonic loading, and is also an effective tool to study the large-scale tectonics of continent and dynamics of lithosphere. The spatial variations of Te are of great importance to address lithospheric mechanical behavior, evolution and dynamics of China Mainland with complex geological structure and deformation.
     The Chinese Mainland is not a single giant craton; it comprises a number of the stable blocks and several active orogens. Several major processes control its tectonics:the rapid collision of the India-Australia plates with Eurasia in the southwest, the subduction of the Pacific and Philippine Sea plates in the east, and the continental extension in the Baikal rift in the north. Due to such complex structure and dynamics, there must be interactions amongs different blocks. Thus, it is necessary to investigate in detail Te distribution for the whole Chinese mainland, in order to study the destruction of the North China Craton and the uplift of Tibetan Plateau, and to better understand the whole continental tectonic deformation and lithopheric dynamics.
     Based on the topography and Bouguer gravity anomaly data, this thesis has obtained the spatial variations of Te in China and surroundings with high resolution using multitaper and wavelet coherence methods. Some new understandings of the geotectonics and dynmanics are presented on the basis of the new Te map. Firstly, to evaluate the performance of the multitaper and wavelet coherence methods, the synthetic model tests with the given Te are carried out. The model tests clearly indicate that both methods are capable of resolving Te efficiently. Secondly, based on the topography and gravity data from the new combined satellite-terrestrial model, Te variations over China and surroundings are estimated using these two methods. The results show that the Te values estimated by the multitaper are agreement with those of the Fan wavelet; and the variations of Te are significant over Chinese Mainland. Generally, Te is high in the cold stable cratonic blocks and low Te generally correspond to the young Phanerozoic orogens, however significant lateral changes also exist within these structures. Finally, combined with the information from geology, GPS, and seismic tomography, the new understandings of the geotectonics and dynmanics in China and surroundings are as follows:
     (1) Comparison of the Te spatial variations and distribution of earthquakes indicates that there are close link between elastic thickness and seismicity over Chinese Mainland. The stable areas with high Te are characterized by a lack of seismicity, which suggests that the stable tectonic provinces with high Te effectively resist deformation. Most of the earthquakes are situated in the low Te areas (10-40km) or steep Te gradient zones, which indicates that the weak lithosphere and areas with steep change of Te are prone to accumulate and then release tectonic stresses causing earthquakes.
     (2) The quantitative analysis by comparing the lateral variations of Te over China and surroundings with the thermal age of tectonic provinces, heat flow and shear-velocity for the mantle indicates that the thermal structure of lithosphere has great influence on Te variations over China Mainland, and Te positively correlates with the mantle S-velocity at100km. Area of high Te exhibit low heat flow and high mantle seismic velocities at~100km, and vice versa. However, due to the special geological structure, complex lithospheric evolution and anisotropy over China Mainland, the correlations between Te and other lithospheric proxies may be scattered, resulting in some degree of uncertainty.
     (3) The spatial variations of Te in the NCB show that Te values of the Ordos craton are much higher than the average crustal thickness (-42km). This suggests that the high Te in the old stable craton largely relates to a strong and thick lithospheric mantle. Compared with the stable West Block with remarkably higher Te, the Te values within the East Block are lower and vary dramatically. This suggests that the originally strong Archean lithosphere of the eastern NCB has been weakened, but the localized high Te zones indicate that the Archaean mantle relics are likely preserved in some parts.
     (4) Combining with the tomography models, The Te variations of South China Block show that the Sichuan basin is not a uniform rigid craton, but is obviously anisotropic; the old cratonic nucleus of the Yangtze Block may exist in the eastern Sichuan Basin, northern Guizhou, Chongqing and northwestern Hunan. Low Te (<20km) prevail over most areas of the middle and eastern parts of the SCB. Combining with the surface tectonic features and mantle themal structure, we propose that the lithospheric strength of the SCB (especially in the eastern part) has been reduced by the processes related to the subduction of the old oceanic lithosphere. In turn, the weakened lithosphere tends to deform under the surrounding strong convergence stresses, leading to the broad fold belts and a wide range of magmatic activity observed today.
     (5) Within the Tibetan Plateau, the prevailing low Te values in the middle, eastern and southeastern parts might be associated with the ductile crustal flow, hot upper mantle and high thermal regime. The prevailing low Te values of the Tibetan plateau indicate that the deformation of the Tibetan lithosphere might be not only sistributed in the suture or fault zone, but also coherently distributed within the Plateau, particularly in the middle, eastern and southeastern parts.
     (6) The variations of Te over the NCB, SCB, and Tibet Plateau together with the geological, GPS, and seismic tomography data indicate that the lithospheric strength of China Mainland is a result of various interacting tectonic processes, which continuously modified and reworked the lithosphere structure. In particularly, hydration and thermal dynamic processes associated with the subduction of the ancient Pacific plate under Eurasia, and the rapid convergence of India and Eurasia in the southwest during Mesozoic-Cenozoic are the dominant processes, which modified (mainly weaken) the lithosphere of the China Mainland.
引文
[1]Burov, E.B., Diament, M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res.,1995,100 (B3):3905-3927.
    [2]Watts, A.B. An analysis of isostasy in the world's oceans,1, Hawaiian-Emperor seamount chain. J. Geophys. Res.,1978,83:5989-6004.
    [3]Watts, A.B. Isostasy and Flexure of the Lithosphere. London:Cambridge Univ. Press,2001, 472pp.
    [4]Tesauro, M., Kaban, M.K., Cloetingh, S. How rigid is Europe's lithosphere? Geophys. Res. Lett.,2009,36, L16303, doi:10.1029/2009GL039229.
    [5]Tesauro, M., Kaban, M.K., Cloetingh, S. A new thermal and rheological model of the European lithosphere. Tectonophysics,2009,476:478-495.
    [6]Tesauro, M., Kaban, M.K., Cloetingh, S. Global strength and elastic thickness of the lithosphere. Global and Planetary Change,2012,90-91:51-57.
    [7]Banks, R.J., Parker, R.L., Huestis, S.P. Isostatic compensation on a continental scale:local versus regional mechanisms. Geophys. J. R. astr. Soc.,1977,51:431-452.
    [8]Bechtel, T.D., Forsyth, D.W., Sharpton, V.L., et al. Variations in effective elastic thickness of the North American lithosphere. Nature,1990,343:636-638.
    [9]Zuber, M.T., Bechtel, T.D., Forsyth, D.W. Effective elastic thicknesses of the lithosphere and mechanisms of isostatic compensation in Australia. J. Geophys. Res.,1989,94(7): 9353-9367.
    [10]Perez-Gussinye,M., Watts, A.B. The long-term strength of Europe and its implications for plate-forming processes. Nature,2005,436:381-384.
    [11]Audet, P., Burgmann, R. Dominant role of tectonic inheritance in supercontinent cycles. Nat. Geosci.,2011,4:184-187.
    [12]Schellart, W.P., Lister, G.S. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia. J. Geol. Soc. London,2005,162: 959-972.
    [13]Barrell, J. The strength of the Earth's crust. V. The depth of masses producing gravity anomalies and deflection residual. J. Geol.,1914,22,441-468,537-555.
    [14]Vening Meinesz, F.A. Comments on Isostasy. In Bowie, W. (ed.), Comments on Isostasy. Washington DC:National Research Council,1932,27pp.
    [15]Gunn, R. A quantitative study of mountain building on an unsymmetrical earth. J. Franklin Inst.,1937,224:19-53.
    [16]Gunn, R. A quantitative evaluation of the influence of the lithosphere on the anomalies of gravity. J. Franklin Inst.,1943,236:47-65.
    [17]Gunn, R. Quantative aspects of Juxtaposed Ocean Deeps, Mountain Chains and Volcanic Ranges. Geophysics,1947,12:238-255.
    [18]Walcott, R.I. Flexural rigidity, thickness and viscosity of the lithosphere. J. Geophys. Res., 1970,75:3941-3954.
    [19]Walcott, R.I. Flexure of the lithosphere at Hawaii, Tectonophysics,1970,9:435-446.
    [20]Walcott, R.I. An isostatic origin for basement uplifts. Can. J. Earth Sci.,1970,7:931-937.
    [21]Walcott, R.I. Gravity, flexure, and the growth of sedimentary basins at a continental edge. Geol. Soc. Am. Bull.,1972,83:1845-1848.
    [22]Watts, A.B. An analysis of isostasy in the world's oceans,1, Hawaiian-Emperor seamount chain. J. Geophys. Res.,1978,83:5989-6004.
    [23]Minshull, T.A., Brozena, J.M. Gravity Anomalies and Flexure of the Lithosphere at Ascension Island. Geophys. J. Int.,1997,131:347-360.
    [24]Calmant, S., Cazenave, A. The effective elastic lithosphere under the Cook-Austral and Society Islands. Earth Planet. Sci. Lett.,1986,77:187-202.
    [25]Calmant, S. The elastic thickness of the lithosphere in the Pacific Ocean. Earth Planet. Sci. Lett.,1987,85:277-288.
    [26]Goodwillie, A.M., Watts, A.B. An altimetric and bathymetric study of elastic thickness in the central Pacific Ocean. Earth Planet. Sci. Lett.,1993,118:311-326.
    [27]Filmer, P.E., McNutt, M.K., Wolee, C.J. Elastic thickness of the lithosphere in the Marquesas and Society Islands. J. Geophys. Res.,1993,98(11):19565-19577.
    [28]Cochran, J.R. An analysis of isostasy in the world's oceans:2. Midocean ridge crests. J. Geophys. Res.,1979,84(B9):4713-4729.
    [29]Wang, X., Cochran, J.R. Gravity anomalies, isostasy, and mantle flow at the East Pacific rise crest. J. Geophys. Res.,1993,98(11):19505-19531.
    [30]Karner, G.D., Watts, A.B. Gravity anomalies and flexure of the lithosphere at mountain ranges. J. Geophys. Res.,1983,88:10449-10477.
    [31]Verhoef, J., Jackson, H.R. Admittance signatures of rifted and transform margins:examples from eastern Canada. Geophys. J. Int.,1991,105:229-239.
    [32]Watts, A.B. Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough. Earth Planet. Sci. Lett.,1988,89:221-238.
    [33]Watts, A.B., Peirce, C., Collier, J., et al. A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands. Earth Planet. Sci. Lett.,1997,146:431-447.
    [34]Lin, A.T., Watts, A.B. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. J. Geophys. Res.,2002,107,2185, doi:10.1029/2001JB000669.
    [35]Parsons, B., Molnar, P. The origin of outer topographic rises associated with trenches. Geophys. J. R. astr. SOC.,1976,45:707-712.
    [36]Judge, A.V., McNutt, M.K. The relationship between plate curvature and elastic plate thickness:a study of the Peru-Chile Trench. J. Geophys. Res.,1991,96:16625-16639.
    [37]Levitt, D.A., Sandwell, D.T. Lithospheric bending at subduction zones based on depth soundings and satellite gravity. J. Geophys. Res.,1995,100:379-400.
    [38]马辉,许鹤华,施小斌,等.南沙海槽前陆盆地热流变结构.地球科学—中国地质大学学报,2011,36(5):939-948.
    [39]Lewis, B.T.R., Dorman, L.M. Experimental isostasy,2, Isostatic model for the U.S.A. derived from gravity and topography data. J. Geophys. Res.,1970,75:3367-3386.
    [40]McNutt, M.K., Parker, R.L. Isostasy in Australia and the evolution of the compensation mechanism. Science,1978,199:773-775.
    [41]Kirby, J.F., Swain, C.J. A reassessment of spectral Te estimation in continental interiors: the case of North America. J. Geophys. Res.,2009,114, B08401, doi:10.1029/2009 JB006356.
    [42]Tassara, A., Swain, C.J., Hackney, R.I., et al. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet. Sci. Lett.,2007, 253:17-36.
    [43]Perez-Gussinye, M., Swain, C.J., Kirby, J.F., et al. Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods:examples from synthetic data and application to South America. Geochem. Geophys. Geosyst.,2009,10, Q04005.doi:10.1029/2008GC002229.
    [44]Banks, R.J., Swain, C.J. The isostatic compensation of east Africa. Proc. R. Soc. Lond. A., 1978,364:331-352.
    [45]Ebinger, C.J., Hayward, N.J. Soft plates and hot spots:Views from Afar. J. Geophys. Res., 1996,101:21859-21876.
    [46]Perez-Gussinye, M., Metois, M., Fernandez, et al. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet. Sci. Lett.,2009,287:152-167.
    [47]Lyon-Caen, H., Molnar, P. Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. Geophys. Res.,1983,88: 8171-8191.
    [48]Lyon-Caen, H., Molnar, P. Gravity anomalies and the structure of western Tibet and the southern Tarim Basin, Geophys. Res. Lett.,1984,11:1251-1254.
    [49]McNutt, M.K., Diament, M., Kogan, M.G. Variations of elastic plate thickness at continental thrust belts. J. Geophys. Res.,1988,93(B8):8825-8838.
    [50]Jin, Y., McNutt, M.K., Zhu, Y. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J. Geophys. Res.,1996,101(B5): 11275-11290.
    [51]王勇,许厚泽.中国大陆及其邻区岩石层挠曲强度变化和均衡补偿机制.地球物理学 报,1996,39(Supp.):105-112.
    [52]汪洋,汪集吻,熊亮萍,等.中国大陆主要地质构造单元岩石圈地热特征.地球科学,2001,22(1):17-22.
    [53]Braitenberg, C., Wang, Y., Fang, J., et al. Spatial variations of flexure parameters over the Tibet-Quinghai plateau. Earth Planet. Sci. Lett.,2002,6464:1-14.
    [54]Jordan, T.A., Watts, A.B. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth Planet. Sci. Lett.,2005,236:732-750.
    [55]袁炳强,Yvette H. Poudjom Djomani,程顺有,等.大陆岩石圈有效弹性厚度的计算及其地质意义.地球学报,2002,23(3):269-272.
    [56]袁炳强,张国伟.大陆岩石圈有效弹性厚度与有关地球物理参数的关系—以泉州黑水地学断面为例.地球学报,2005,26(03):203-208.
    [57]赵俐红,姜效典,金煜,等.中国西部大陆岩石圈的有效弹性厚度研究.地球科学—中国地质大学学报,2004,29(2):183-190.
    [58]Liu, S.W., Wang, L.S., Gong, Y.L., et al. Thermal-rheological structure of the lithosphere beneath Jiyang Depression:Its implications for geodynamics. Science in China Ser. D Earth Sciences,2005,48(10):1569-1584.
    [59]刘绍文,王良书,贾承造,等.中国中西部盆地区岩石圈热—流变学结构及其对前陆盆地成因演化的意义.地学前缘,2008,15(3):113-122.
    [60]Mao, X., Wang, Q., Liu, S., et al. Effective elastic thickness and mechanical anisotropy of South China and surrounding regions. Tectonophysics,2012,550-553:47-56.
    [61]Fielding, E.J., McKenzie, D. Lithospheric flexure in the Sichuan Basin and Longmen Shan at the eastern edge of Tibet. Geophys. Res. Lett.,2012,39, L09311, doi:10.1029/2012GL051680.
    [62]郑勇,李永东,熊熊.华北克拉通岩石圈有效弹性厚度及其各向异性.地球物理学报,2012,55(11):3576-3590.
    [63]Dorman, L.M., Lewis, B.T.R. Experimental isostasy,1, Theory of the determination of the earth's isostatic response to a concentrated load. J. Geophys. Res.,1970,75:3357-3365.
    [64]McKenzie, D., Bowin, C. The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res.,1976,81:1903-1915.
    [65]Forsyth, D.W. Subsurface loading estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res.,1985,90:12623-12632.
    [66]Goetze, C., Evans, B. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. astr. Soc.,1979,59:463-478.
    [67]Burov, E.B., Diament, M. Flexure of the continental lithosphere with multilayered rheology. Geophys. J. Int.,1992,109,449-468.
    [68]Hetenyi, M.I. Beams on Elastic Foundations:Theory with Applications in the Fields of Civil and Mechanical Engineering. University of Michigan Press, Ann Arbor,1979,255pp.
    [69]Sheffels, B., McNutt, M. Role of subsurface loads and regional compensation in the isostatic balance of the transverse ranges, Califorina:evidence for intracontinental subduction. J. Geophys. Res.,1986,91(B6):6419-6431.
    [70]Van Wees, J.D., Clcetingh, S. A finite difference technique to incorporate spatial variation in rigidity and planar faults into 3D models for lithospheric flexure. Geophys. J. Int.,1994, 117:179-196.
    [71]Stewart, J., Watts, A.B. Gravity anomalies and spatial vaiations of flexural rigidity at mountain ranges. J. Geophys. Res.,1997,102(B3):5327-5352.
    [72]Stewart, J. Gravity anomalies and lithospheric flexure:Implications for the thermal and mechanical evolution of the continental lithosphere [Ph.D. thesis]. Dep. of Earth Sci., Oxford Univ., Oxford, U. K.,1998.
    [73]Byerlee, J.D. Friction of rocks. Pure and Applied Geophysics,1978,116 (4-5):615-626.
    [74]Goetze, C. The mechanisms of creep in olivine. Philos. Trans. R. Soc. London A.,1978, 288:99-119.
    [75]Bodine, J.H., Steckler, M.S., Watts, A.B. Observations of flexure and the rheology of the oceanic lithosphere. J. Geophys. Res.,1981,86,3695-3707.
    [76]Lago B., Cazenave A. State of stress in the oceanic lithosphere in response to loading. Geophys. J. R. astr. Soc.,1981,64:785-799.
    [77]McNutt, M.K., Menard, H.W. Constraints on yield strength in the oceanic lithosphere derived from observations of flexure. Geophys. J. R. Astr. Soc.,1982,71:363-394.
    [78]McAdoo, D. C., Martin. C. F., Poulouse. S. Seasat observations of flexure:Evidence for a strong lithosphere. Tectonophysics,1985,116:209-222.
    [79]Tesauro, M., Kaban, M.K. Cloetingh, S., et al.3D strength and gravity anomalies of the European lithosphere. Earth Planet. Sci. Lett.,2007,263(1-2):56-73.
    [80]Maggi, A., Jackson, J.A., McKenzie, D., et al. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology,2000,28:495-498.
    [81]Jackson, J. Strength of the continental lithosphere:Time to abandon the jelly sandwich? GSA Today,2002,12(9):4-10.
    [82]Watts, A.B., Burov, E. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet. Sci. Lett.,2003,213:113-131.
    [83]Burov, E.B. Watts, A.B. The long-term strength of continental lithosphere:"jelly sandwich" or "creme-brule"? GSA Today,2006,16:4-10.
    [84]Burov, E.B. Rheology and strength of the lithosphere. Marine and Petroleum Geology,2011, 28:1402-1443.
    [85]Cochran, J.R. An analysis of isostasy in the world's oceans 2. Midocean ridge crests. J. Geophys. Res.,1979,84(B9):4713-4729.
    [86]Detrick, R.S., Watts, A.B. An analysis of isostasy in the world's oceans 3. Aseismic ridges. J. Geophys. Res.,1979,84(B7):3637-3653.
    [87]McNutt, M. Implications of regional gravity for state of stress in the earth's crust and upper mantle. J. Geophys. Res.,1980,85(B11):6377-6396.
    [88]Louden, K.E. A comparison of the isostatic response of bathymetric features in the North Pacific Ocean and the Philippine Sea. Ceophys. J. R. astr. SOC.,1981,64:393-424.
    [89]Ribe, N.M., Watts, A.B. The distribution of intraplate volcanism in the Pacific Ocean:A spectral approach. Geophys. J. Roy Astr. Soc.,1982,71:333-362.
    [90]Karner, G.D., Watts, A.B. On isostasy at Atlantic-type continental margins. J. Geophys. Res.,1982,87:2923-2948.
    [91]Tamsett, D. An application of the response function technique to profiles of bathymetry and gravity in the Gulf of Aden. Geophys. J. R. Astron. Soc.,1984,78:349-369.
    [92]McKenzie, D., Fairhead, D. Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. J. Geophys. Res.,1997,102(B12): 27523-27552.
    [93]McKenzie, D. Estimating Te in the presence of internal loads. J. Geophys. Res.,2003, 108(B9),2438, doi:10.1029/2002JB001766.
    [94]Bechtel, T.D., Forsyth, D.W., Swain, C.J. Mechanisms of isostatic compensation in the vicinity of the East African Rift, Kenya. Geophys. J. R. Astron. Soc.,1987,90:445-465.
    [95]Ebinger, C.J., Deino, A.L., Drake, R.E., et al. Chronology of volcanism and rift basin propagation:Rungwe volcanic province, East Africa. J. Geophys. Res.,1989,94(B11):doi: 10.1029/89JB01088.
    [96]Blackman, D., Forsyth, D. Isostatic compensation of tectonic features of the Mid-Atlantic Ridge:25-27°30'S. J. Geophys. Res.,1991,96(B7):doi:10.1029/91JB00602.
    [97]Jin, Y., McNutt, M.K., Zhu, Y.S. Evidence from gravity and topography data for folding of Tibet. Nature,1994,371(20):669-674.
    [98]Macario, A., Malinverno, A., Haxby, W. On the robustness of elastic thickness estimates obtained using the coherence method. J. Geophys. Res.,1995 100(B8):doi: 10.1029/95JB00980.
    [99]Lowry, A.R., Smith, R.B. Flexural rigidity of the Basin and Range Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topography. J. Geophys. Res., 1994,99:20123-20140.
    [100]Lowry, A., Smith, R. Strength and rheology of the western U.S. Cordillera. J. Geophys. Res.,1995,100(B9):doi:10.1029/95JB00747.
    [101]Simons, F.J., Zuber, M.T., Korenaga, J. Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis. J. Geophys. Res.,2000,105:19163-19184.
    [102]Thompson, D.J. Spectrum estimation and harmonic analysis. Proc. IEEE,1982,70: 1055-1096.
    [103]Simons, F.J., van der Hilst, R.D., Zuber, M.T. Spatiospectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy:Implications for lithospheric deformation. J. Geophys. Res.,2003,108 (B5),2250, doi:10.1029/2001JB000704.
    [104]Audet, P., Mareschal, J. Anisotropy of the flexural response of the lithosphere in the Canadian Shield. Geophys. Res. Lett.,2004,31(20):doi:10.1029/2004GL021080.
    [105]Perez-Gussinye, M., Lowry, A.R., Watts, A.B., et al. On the recovery of effective elastic thickness using spectral methods:Examples from synthetic data and from the Fennoscandian Shield. J. Geophys. Res.2004,109, B10409, doi:10.1029/2003JB002788.M.
    [106]Stark, C.P., Stewart, J., Ebinger, C.J. Wavelet transform mapping of effective elastic thickness and plate loading:Validation using synthetic data and application to the study of southern African tectonics. J. Geophys. Res.,2003,108(B12),2558, doi:10.1029/2001JB000609.
    [107]Kirby, J.F., Swain, C.J. Global and local isostatic coherence from the wavelet transform. Geophys. Res. Lett.,2004,31(24), L24608, doi:10.1029/2004GL021569.
    [108]Swain, C.J., Kirby, J.F. An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth's method. Geophys. Res. Lett.,2006, 33, L02314, doi:10.1029/2005GL025090.
    [109]Audet, P., Mareschal, J.C. Wavelet analysis of the coherence between Bouguer gravity and topography:Application to the elastic thickness anisotropy in the Canadian Shield. Geophys. J. Int.,2007,168(1):287-298.
    [110]Perez-Gussiny6, M., Lowry, A.R., Watts, A.B. Effective elastic thickness of South America and its implications for intracontinental deformation. Geochem. Geophys. Geosyst.,2007,8, Q05009, doi:10.1029/2006GC001511.
    [111]Kirby, J.F., Swain, C.J. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Computers & Geosciences,2011,37: 1345-1354.
    [112]Timoshenko, S.P., Woinowsky-Krieger, S. Theory of Plates and Shells.2nd ed. McGraw-Hill, New York,1959.
    [113]Gahli, A., Neville, A.M. Structural Analysis:A Unified Classical and Matrix Approach. 3rd ed. Chapman and Hall, New York,1989,870pp.
    [114]Parker, R.L. The rapid calculation of potential anomalies, Geophys. J. R. Astron. Soc., 1972,31:447-455.
    [115]Kirby, J.F., Swain, C.J. An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochem. Geophys. Geosyst.9, Q03022, doi:10.1029/2007GC001773. (Correction, Geochem. Geophys. Geosyst.,2008,9, Q05021, doi:10.1029/2008GC002071,2008.)
    [116]Kirby, J.F., Swain, C.J. Mapping the mechanical anisotropy of the lithosphere using a 2D wavelet coherence, and its application to Australia, Phys. Earth Planet. Inter.,2006,158, 122-138.
    [117]Thomson, D.J., Chave, A.D. Jackknifed error estimates for spectra, coherences, and transfer functions. In:Haykin, S. Advances in Spectrum Analysis and Array Processing. Prentice-Hall, Old Tappan, N. J.1991,58-113.
    [118]Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al. Numerical Recipes in Fortran 77.2nd edn. Cambridge University Press, Cambridge,1992,933pp.
    [119]Ojeda, G.Y., Whitman, D. Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method:Results from northern South America. J. Geophys. Res., 2002,107(B11),2275, doi:10.1029/2000JB000114.
    [120]Prieto, G.A., Parker, R L., Thomson, D.J., et al. Reducing the bias of multitaper spectrum estimates. Geophys. J. Int.,2007,171:1269-1281.
    [121]Percival, D.B., Walden, A.T. Spectral Analysis for Physical Applications, Multitaper and Conventional Univariate Techniques, Cambridge Univ. Press, New York,1993, pp.1-19.
    [122]Lees, J., Park, J. Multiple-taper spectral analysis:A stand-alone C-subroutine. Computers & Geosciences,1995,21:199-236.
    [123]Kirby, J.F. Which wavelet best reproduces the Fourier power spectrum? Computers & Geosciences,2005,31(7):846-864.
    [124]Addison, P.S. The Illustrated Wavelet Transform Handbook. Institute of Physics Publishing, Bristol, UK,2002,353pp.
    [125]Peitgen, H.-O., Saupe, D. The Science of Fractal Images. Springer, NewYork,1988,312pp.
    [126]Turcotte, D. Fractals and Chaos in Geology and Geophysics.2nd edn. Cambridge, UK: Cambridge Univ. Press, New York,1997,398 pp.
    [127]Swain, C.J., Kirby, J.F. The effect of 'noise' on estimates of effective elastic thickness of the continental lithosphere by the coherence method. Geophy. Res. Lett.,2003,30,1574, doi:10.1029/2003GL017070.
    [128]Crosby, A. An assessment of the accuracy of admittance and coherence estimates using synthetic data, Geophys. J. Int.,2007,171,25-54.
    [129]李廷栋.中国岩石圈的基本特征.地学前缘,2010,17(3):1-13
    [130]Bird, P. An updated digital model of plate boundaries, Geochem. Geophys. Geosyst.,2003, 4(3),1027, doi:10.1029/2001GC000252.
    [131]Kreemer, C., Holt, W.E., Haines, A.J. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int.,2003,154:8-34.
    [132]Kusky, T.M. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res.,2011,20:26-35, doi:10.1016/j.gr.2011.01.004.
    [133]Zhao, G., Sun, M., Wilde, S., et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Res.,2005,136:177-202.
    [134]李廷栋,戴维声,韦光明.亚洲地质.见:马丽芳.中国地质图集.北京:地质出版社,2002.
    [135]李廷栋.中国岩石圈构造单元.中国地质,2006,33(4):700-711.
    [136]Wang, Y., Fan, W.M., Zhao, G.C., et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and itsimplications on the Caledonian event in the South China Block. Gondwana Res.,2007,12:404-416.
    [137]Shu, L.S., Faure, M., Yu, J.H., et al. Geochronological and geochemical features of the Cathaysia block (South China):new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Res.,2011,187:263-276.
    [138]Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al. Widespread Archean basement beneath the Yangtze craton. Geology,2006,34(6):417-420.
    [139]Yu, J.H., OReilly, S.Y., Wang, L.J., et al. Where was South China in the Rodinia supercontinent? Evidence from U-Pb ages and Hf isotopes of detrital zircons. Precambrian Res.,2008,164(1-2):1-15.
    [140]Yu, J.H., O'Reilly, S.Y., Wang, L.J., et al. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Res.,2010,181:97-114.
    [141]Tapponnier, P., Xu, Z., Roger, F., et al. Oblique step-wise growth of the Tibetan Plateau. Science,2001,294:1671-1677.
    [142]许志琴,杨经绥,李海兵,等.印度—亚洲碰撞大地构造.地质学报,2011,85(1):1-33.
    [143]任纪舜.新一代中国大地构造图—中国及邻区大地构造图(1:5000000)附简要说明:从全球看中国大地构造.地球学报,24(1):1-2.
    [144]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用.地学前缘,1999,6(3):85-93.
    [145]马丽芳.中国地质图集.北京:地质出版社,2002.
    [146]杜劲松,陈超,梁青,等.球冠体积分的重力异常正演方法及其与Tesseroid单元体泰勒级数展开方法的比较.测绘学报,2012,41(3):339-346.
    [147]Bassin, C., Laske, G., Masters, G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU,2000,81, F897.
    [148]Stolk, W., Kaban, M., Beekman, F., et al. High resolution regional crustal models from irregularly distributed data:application to Asia and adjacent areas. Tectonophysics,2012, under review.
    [149]Yang, Y., Liu, M. Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan. Tectonics,2002,21(6),1059, doi:10.1029/2001TC001300.
    [150]Cloetingh, S., Ziegler, P., Beekman, F., et al. Lithospheric memory, state of stress and rheology:neotectonic controls on Europe's intraplate continental topography. Quat. Sci. Rev.,2005,24(3-4):241-304.
    [151]Handy, M.R., Brun, J.P. Seismicity, structure and strength of the continental lithosphere. Earth Planet. Sci. Lett.,2004,223:427-441.
    [152]Burov, E.B., Diament, M. Isostasy, equivalent elastic thickness and rheology of continents and oceans. Geology,1996,24:419-422
    [153]Parsons, B., Sclater, J. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res.,1977,82(B5):802-827.
    [154]Hu, S.B., He, L.J., Wang, J.Y. Heat flow and thermal regimes in the continental area of China:a new data set. Earth Planet. Sci. Lett.,2000,179(2):407-19.
    [155]Hyndman, R.D., Currie, C.A., Mazzotti, S.P., et al. Temperature control of continental lithosphere elastic thickness, Te vs Vs. Earth Planet. Sci. Lett.,2009,277:539-548.
    [156]汪集旸,黄少鹏.中国大陆地区热流数据汇编.地质科学,1988,2:196-204.
    [157]汪集旸,黄少鹏.中国大陆地区热流数据汇编(第二版).地震地质,1990,12(4):351-366.
    [158]胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版).地球物理学报,2001,44(5):611-626.
    [159]Tao, W., Shen, Z. Heat flow distribution in Chinese continent and its adjacent areas. Prog. Nat. Sci.,2008,18:843-849.
    [160]Pollack, H.N.1980. The heat flow from the earth:a review. In Mechanisms of Continental Drift and Plate Tectonics, ed. Davies, P.A. Runcorn, S.K., London:Academic.364pp.
    [161]Ritsema, J.E., Deuss, A., Van Heijst, H.J., et al. S40RTS:a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int.,2011,184:1223-1236.
    [162]Kustowski, B., Ekstrom, G., Dziewonski, A.M. The shear-wave velocity structure in the upper mantle beneath Eurasia. Geophys. J. Int,2008,174:978-992, doi:10.1111/j.1365-246X.2008.03865.x.
    [163]Kustowski, B., Ekstrdm, G., Dziewonski, A.M. The anisotropic shear-wave velocity structure of the Earth's mantle. J. geophys. Res.,2008,1390, doi:10.1029/2007JB005169.
    [164]Kustowski, B., Ekstrom, G., Dziewonski, A.M. Anisotropic shearwave velocity structure of the Earth's mantle:A global model. J. geophys. Res.,2008,113, B06306, doi:10.1029/2007JB005169.
    [165]Panning, M., Romanowicz, B. A three dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int.,2006,167, doi:10.1111/j.1365-246X.2006.03100.x.
    [166]Simmons, N.A., Forte, A.M., Boschi, L., et al. GyPSuM:A joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res.,2010,115, B12310, doi:10.1029/2010JB007631.
    [167]Houser, C., G. Masters, P. Shearer, et al. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int.,2008, 174:195-212.
    [168]Li, C., van der Hilst, R.D. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J. Geophys. Res.,2010,115, B07308, doi:10.1029/2009JB006882.
    [169]Li, S.Z., Santosh, M., Zhao, et al. Intracontinental deformation in a frontier of super-convergence:A perspective on the tectonic milieu of the South China Block. J. Asian Earth Sci.,2011,49:313-329.
    [170]Liu, M.J., Mooney, W.D., Li, S.L., et al. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics,2006, 420:253-266.
    [171]Lenardic, A., Moresi, L.N., Muhlhaus, H. Longevity and stability of cratonic lithosphere: Insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res.,2003,108,2303, doi:10.1029/2002JB001859.
    [172]Dixon, J., Dixon, T.H., Bell, D.R., et al. Lateral variation in upper mantle viscosity:Role of water. Earth Planet. Sci. Lett.,2004,222:451-467.
    [173]Huang, J., Zhao, D. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res.,2006,111(B9), B09305, doi:10.1029/2005JB004066.
    [174]Armstrong, G.D., Watts, A.B. Spatial variations in Te in the southern Appalachians, eastern United States. J. Geophys. Res.,2001,106:22009-22026.
    [175]Menzies, M., Xu, Y., Zhang, H., et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos,2007,96:1-21.
    [176]Gao, S., Rudnick, R.L., Carlson, R.W., et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet. Sci. Lett.,2002,198: 307-322.
    [177]Zheng, Y.F., Chen, R.X., Zhao, Z.F. Chemical geodynamics of continental subduction-zone metamorphism:Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics,2009,475(2):327-358.
    [178]Ames, L., Tilton, G.R., Zhou, G.Z. Timing of collision of the Sino-Korean and Yangtze cratons:U-Pb zircon dating of coesite-bearing eclogites. Geology,1993,21:339-342.
    [179]Pei, F.P., Xu, W.L., Yang, D.B., et al. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China:Constraints on the spatial extent of destruction of the North China Craton. J. Asian Earth Sci.,2011,40(2):636-650.
    [180]Yang, D.B., Xu, W.L., Pei, F.P., et al. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block:Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos,2012,136-139:246-260.
    [181]Hao, T.Y., Xu, Y., Suh, M., et al. East Marginal Fault of the Yellow Sea:a part of the conjunction zone between Sino-Korea and Yangtze Blocks? Geological Society, London, Special Publications,2007,280:281-291.
    [182]Chang, K.H., Zhao, X. North and South China suturing in the east end:What happened in Korean Peninsula? Gondwana Res.,2012,22:353-359.
    [183]Xu, P., Zhao, D. Upper-mantle velocity structure beneath the North China Craton: implications for lithospheric thinning. Geophys. J. Int.,2009,177:1276-1283.
    [184]Hyndman, R.D., Currie, C.A., Mazzotti, S.P. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today,2005,15:4-10.
    [185]Li, Z.X., Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology,2007,35(2):179-182.
    [186]Lee, G.H., Kwon, Y.I., Yoon, C.S., et al. Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Mar. Petrol. Geol.,2006, 23:631-645.
    [187]Lu, J., Zheng, J., Griffin, W.L., et al. Petrology and geochemistry of peridotite xenoliths from the Lianshan region:Nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Res.,2013,23,161-175.
    [188]Li, C.F., Chen, B., Zhou, Z.Y. Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Sci. China Ser. D-Earth Sci.,2009,52(7):984-993.
    [189]杨经绥,许志琴,李天福,等.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留?地质通报,2007,26(10):1277-1287
    [190]许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6(3):139-151.
    [191]许志琴,李思田,张建新,等.塔里木地块与古亚洲/特提斯构造体系的对接.岩石学报,2011,27(1):1-22.
    [192]Tapponnier, P., Xu, Z., Roger, F., et al. Oblique step-wise growth of the Tibetan Plateau. Science,2001,294:1671-1677.
    [193]Zhou, J., Xu, F., Wang, T., et al. Cenozoic deformation history of the Qaidam Basin, NW China:results from cross-section restoration and implications for Qinghai-Tibet. Earth Planet. Sci. Lett.,2006,243:195-210.
    [194]Roger, F., Jolivet, M., Malavieille, J. The tectonic evolution of the Songpan Garze (North Tibet) and adjacent areas from Proterozoic to present:a synthesis. J. Asian Earth Sci.,2010, 39:254-269.
    [195]Brandon, C., Romanowicz, B. A no-lid zone in the central Chang Thang platform of Tibet: evidence from pure path phase velocities of long period Rayleigh waves. J. Geophys. Res., 1986,91:6547-6564.
    [196]Curtis, A., Woodhouse, J. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion. J. Geophys. Res.,1997,102(B6):doi:10.1029/96JB03182.
    [197]Rodgers, A.J., Schwartz, S.Y. Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau from complete regional waveform modelling:Evidence for partial melt. J. Geophys. Res.,1998,103:7137-7152.
    [198]Owens, T.J., Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature,1997,387:37-43.
    [199]徐果明,姚华建,朱良保,等.中国西部及其邻域地壳上地幔横波速度结构.地球物理学报,2007,50(1):193-208.
    [200]Wei, W., Unsworth, M., Jones, A., et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science,2001,292:716-719.
    [201]Bai, D.H., Unsworth, M.J., Meju, M.A., et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci.2010,11:1-5.
    [202]Rippe, D., Unsworth, M. Quantifying crustal flow in Tibet with magnetotelluric data. Phys. Earth Planet. In.,2010,179:107-121.
    [203]Zhang, P.Z., Shen, Z., Wang, M., et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,2004,32:809-812.
    [204]Li, C., van der Hilst, R.D., Toksoz, M.N. Constraining P wave velocity variations in the upper mantle beneath Southeast Asia. Phys. Earth Planet. Inter.,2006,154:180-195.
    [205]Li, C., van der Hilst, R.D., Meltzer, A.S., et al. The subduction of Indian lithosphere beneath the Tibetan plateau and Burma. Earth Planet. Sci. Lett.,2008,274:157-168.
    [206]Rosenberg, C.L., Handy, M.R. Experimental deformation of partially melted granite revisited; implications for the continental crust. J. Metamorph. Geol.2005,23(1):19-28.
    [207]Tesauro, M., Burov, E., Kaban, M.K., et al. Ductile crustal flow in Europe's lithosphere. Earth and Plan. Sci. Let.,2011,312(1-2):254-265.
    [208]Xu, L., Rondenay, S., Van der Hilst, R.D. Structure of the crust beneath the Southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Int.,2007,165: 176-193.
    [209]Yao, H., Beghein, C., van der Hilst, R.D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys. J. Int.,2008,173:205-219.
    [210]陈虹,胡健民,渠洪杰,等.川滇南北向构造带早中生代构造变形研究.中国科学:地球科学,2011,41(9):1281-1294.
    [211]Flesch, L.M., Holt, W.E., Silver, P.G., et al. Constraining the extent of crust-mantle coupling in Central Asia using GPS, geologic, and shear-wave splitting data. Earth and Plan. Sci. Let.,2005,238:248-268.
    [212]Sol, S., Meltzer, A., Burgmann, R., et al. Geodynamics of the southeastern Tibetan plateau from seismic anisotropy and geodesy. Geology,2007,35:563-566.
    [213]李曰俊,杨海军,张光亚,等.重新划分塔里木盆地塔北隆起的次级构造单元.岩石学报,2012,28(8):2466-2478.
    [214]Wittlinger, G., Farra, V., Vergne, J. Lithospheric and upper mantle stratifications beneath Tibet:New insights from Sp conversions. Geophys. Res. Lett.,2004,31, L19615, doi:10.1029/2004GL020955.
    [215]贾承造,2009.环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律.大地构造与成矿学,33(1):1-9.
    [216]王良书,李成,杨春.塔里木盆地岩石层热结构特征.地球物理学报,1996,39(6):794--803.
    [217]Wang, Q., Zhang, P.Z., Freymueller, J.T., et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science,2001,294:574-577.
    [218]Oreshin, S., Vinnik, L., Peregoudov, D., et al. Lithosphere and asthenosphere of the Tien shan imaged by S receiver functions. Geoph. Res. Lett.,2002,29,10.1029/2001GL014441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700