用户名: 密码: 验证码:
查干湖湿地水环境演变及生态风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地水环境是湿地生态系统的重要组成部分,也是导致湿地形成、发展、演替、消亡与再生的关键因素。全球气候变化与高强度人类活动导致湿地水位、水流和水质等水环境恶化,给湿地生态系统结构稳定和功能发挥带来潜在风险。本文以吉林西部重要的生态屏障——查干湖湿地为研究对象,重点研究了查干湖湿地水位、水质演变特征及规律,运用多元统计分析方法分析浮游生物与环境因子的关系,在此基础上,建立了查干湖湿地生态风险评价指标体系,定量评估其生态风险并进行了等级分区,提出相应的水环境保护管理对策,对维系查干湖湿地生态系统的稳定与健康具有重要的理论意义和现实意义。通过研究取得以下几个方面主要成果:
     (1)查干湖湿地水环境演变特征及规律
     利用1982~2011年的水位资料和1985~2011年的水质资料分析查干湖湿地水环境演变特征,采用卡尔森指数法和模糊综合评价法对查干湖湿地进行综合营养状态和水质状况评价。结果表明引松工程通水后查干湖湿地水位得以恢复并稳定在129.8~130.3m;20世纪80年代末湿地水环境大幅改善,水体盐碱化、富营养化、有机污染得以缓解,但2006年以来水质碱化和有机质污染加剧,水质由Ⅲ类演变为IV类。现阶段农田退水缓解了主湖区的碱化且暂未加剧其富营养化水平。查干湖湿地水质受流域陆源排放、湖泊内源释放及水文情势等多重因素的交互作用,表现为以年为周期的季节变化,呈以磷素为限制的中营养状态。
     (2)查干湖湿地水环境变化的生态效应
     调查期间共鉴定出浮游植物5门53属127种,主要由硅藻和绿藻组成;浮游动物4门26属46种,轮虫的种类、丰度均处绝对优势地位。结合聚类(Cluster)、多维排序尺度(MDS)、冗余度分析(RDA)、典范对应关系分析(CCA)以及多样性指数等手段,研究了查干湖湿地2012年平水期(5月)和丰水期(9月)浮游动植物的种群结构特征、丰度、多样性及其与环境因子的关系。研究表明:浮游生物丰度及生物量受盐度、营养盐、流速等的影响,时空差异显著:平水期高于丰水期,新庙泡低于主湖区。浮游植物群落主要受pH值、盐度、PO43-、TN和BOD5影响,浮游动物种群差异来自于pH值、水温、CODMn和BOD5四个环境因子影响。浮游生物多样性结果显示查干湖湿地处于β-中度污染水平。
     (3)查干湖湿地生态风险评估
     选取物理化学指标、营养状态指标、有机污染指标及生态指标构成生态风险评价指标体系,基于熵权法研究查干湖湿地2006~2011年生态风险演变特征,并对2012年5月、9月和2013年9月生态风险水平进行空间分级。结果显示:查干湖湿地2006~2011年水环境质量恶化严重,其所面临生态风险日趋严峻,处于中度生态风险;2012年平水期生态风险较丰水期严重,查干湖主湖区南岸、西部及新庙泡生态风险等级高;2013年丰水期生态系统状况较2012年丰水期稳定,但剔除对水环境生态效应的考虑后,导致单个指标熵权过大,使生态风险评价结果产生两级分化现象。
     以查干湖湿地生态风险等级划分为依据,提出保护、维持其水环境安全的管理措施。通过保证水源补给、控制面源污染、构建人工湿地及水生态系统工程建设可从控制污染物源头排放,并增加运移过程的吸附、湖体内部生物治理三个方面减轻其生态威胁,降低生态风险。
Water environment is an important component of the wetlandecosystem, is also the key factor for wetland formation, development,succession, death and regeneration. Global climate change andhigh-intensitive human activities deteriorate the water environmentthrough changing the water level, water flow and water qualities ofwetlands, bring potential risks to the structure and function of ecosystem.Chagan Lake wetland, the important ecological barrier in west Jilin, wastaken as the research object. Through analyzing of the evolutionalcharacteristics and laws of the water level and qualities in Chagan Lakewetland, combined with the multivariate analysis of the relationshipsbetween the changing environment and the structure, abundance andbiomass of plankton, a reasonable comprehensive index system wasestablished to assess and classify the ecological risk of Chagan Lakewetland. We proposed corresponding protection and managementstrategies of water environment, which has great theoretic and realisticsignificance to maintain the stability and healthy of the ecosystem.Through the above research, we mainly obtained the followingconclusions:
     (1) Analysis of evolutional characteristics of water environment ofChagan Lake wetland
     Analyzing the evolutional characteristics of the water environmentwill provide a scientific basis for the protection of the water environmentsecurity. The evolvement of water environment was comprehensivelystudied through analyzing the water level data from1982to2011and the water quality data in1985to2011. Carlson trophic state index (TSI) andthe fuzzy comprehensive evaluation method were used to assess theeutrophication level and the water quality. The results showed the waterlevel was recovered and stabilized at129.8-130.3m after the operation ofthe channel transferring water from Songhua river to Chagan Lake. Watersalinization, eutrophication, organic pollution were mitigated and thewater environment improved considerably in the late1980s, but the trendof alkalization and organic pollution has became serious since2006andthe water quality evolved from Ⅲ category to IV category. The trend ofeutrophication has been relieved since2006. Agriculture drainage hasrelieved the water salinization and hasn‘t aggravated the level ofeutrophication in Chagan Lake temporarily. The water quality of ChaganLake is interactive affected by terrestrial emissions in the catchment,endogenous releases and hydrological regimes and exhibits a remarkablephosphorus limited middle nutrition. Sewage and surface runoff pollutionshould be controlled to protect the water environment health.
     (2) Ecological effects of the changing water environment in ChaganLake wetland
     The study identified a total of127phytoplankton species (belongingto53genera and5phyla, mainly were Bacillariophyta and Chlorophyta)and46zooplankton species (belonging to26genera and4phyla, Rotiferawere in absolute advantage). This study investigated the biodiversity,abundance and community structures of plankton and their relations withenvironmental factors combining field investigations with cluster analysis,multi-dimensional scaling (MDS), redundancy analysis (RDA), canonicalcorrespondence analysis (CCA), and applying diversity indices in ChaganLake during the intermediate (May) and rainy season (September) in2012. Consisting of two connected parts (the main lake body and Xinmiao wetland), Chagan Lake was found to sustain significanttemporal-spatial variations of plankton populations. The abundance ofplankton in the intermediate season was considerably higher than that inthe rainy season. Because plankton abundance and biomass were affectedby salinity, nutrient, flow rate et al., abundance and biomass in Xinmiaowetland was lower than that in the main lake. the Results showedphytoplankton abundance was influenced by pH, water salinity,phosphate (PO3-4), total nitrogen (TN) and5-day biological oxygendemand (BOD5), while pH, water temperature (T), phosphate (PO3-4),whereas salinity, CODMnand BOD5were the key factors influencedzooplankton abundance. When plankton was used as a bio–indicator inwater quality evaluation, the results revealed that water quality in ChaganLake was in β-moderately-polluted category.
     (3) Ecological risk assessment of Chagan Lake wetland
     Physical and chemical indexes, nutrient state indicators, organicpollution indexes and ecological factors were selected to evaluate theecological risk in Chagan Lake wetland based on entropy weight.Ecological risk evolution characteristics from2006to2011and spatialclassification of ecological risk were analyzed in May and September,2012and in September,2013. The result showed: Chagan Lake wetlandwere facing an increasingly serious ecological risk during2006to2011,belonged to a moderate level risk; the status in intermediate season wasserious than in rainy season,2012. The major risk area distributed in thesouth and west of Chagan Lake besided Xinmiao wetland; the ecologicalcondition in September,2013was much more stable than in September,2012. Altogether ecosystem status in2013from2012, altogether stable,but out of respect for the ecological effect of water environment, leadingto a single index of entropy is too large, leading to the ecological riskassessment results polarized phenomenon. But without any consideration of ecological index, the entropy of a single index was enlarged, which ledto a polarized phenomenon of the ecological risk assessment results.
     Protection and management strategies of water environment wereproposed according to the ecological risk classification for Chagan Lakewetland, they are the guarantee of the water supply, control of agriculturalnon-point source pollution, construction of artificial wetland and waterecological system. The serious situation of eco-environment will beeffectively improved through controlling pollutant sources, increasing theadsorption during pollutant transport, combining with biologicaltreatment as well.
引文
Arhonditsis G B, Winder M, Brett M T, et al. Patterns and mechanisms of phytoplanktonvariability in Lake Washington (USA)[J]. Water Research,2004,38:4013-4027.
    Arhonditsis G, Brett M T, Frodge J. Environmental control and limnological impacts of a largerecurrent spring bloom in Lake Washington, USA [J]. Environmental Management,2003,31:603-618.
    Arora J, Mehra N K. Seasonal dynamics of zooplankton in a shallow eutrophic, man-madehyposaline lake in Delhi (India): role of environmental factors [J]. Hydrobiologia,2009,626:27-40.
    Astles K L, Holloway M G, Steffe A, et al. An ecological method for qualitative riskassessment and itsuse in the management of fisheries in New SouthWales, Australia [J]. Fish Resources,2006,82:290-303.
    Atkinson D. Effects of temperature on the size of aquatic ectotherms: exceptions to the generalrule [J]. Journal of Thermal Biology,1995,20:61-74.
    Attayde J L, Bozelli R L. Assessing the indicator properties of zooplankton assemblages todisturbance gradients by canonical correspondence analysis [J]. Canadian Journal of Fisheriesand Aquatic Sciences,1998,55:1789-1797.
    Beaver J R, Jensen D E, Casamatta D A, et al. Response of phytoplankton and zooplanktoncommunities in six reservoirs of the middle Missouri River (USA) to drought conditions anda major flood event [J]. Hydrobiologia,2013,705:173-189.
    Beisner B E, Longhi M L. Spatial overlap in lake phytoplankton: Relations with environmentalfactors and consequences for diversity [J]. Limnology and Oceanography,2013,58(4):1419-1430.
    Berg J M, Tymoczko J L, Stryer L. Biochemistry,5edn [M]. New York: W. H. Freeman,2002:973.
    Bērzin B, Pejler B. Rotifer occurrence and trophic degree [J]. Hydrobiologia,1989,182:171-180.
    Blankenship, B K. Ammonia deposition raising concerns in bay watershed [J]. Chesapeake BayJournal,1998,7:10.
    Bray R, Curtis T. An ordination of the upland forest communities of southen Wiseonsin [J].Ecological Monographs,1957,27:325-349.
    Brooks L. Eutrophication and changes in the composition of the zooplankton in eutrophication,causes, consequences, correctives [J]. Washington DC: National Academy of Science,1971,236-255.
    Cai Q M, Gao X Y. Dynamic variations of water quality in Taihu Lake and multivariate analysis ofits influential factors [J]. Chinese Geographical Science,1997,7:72-82.
    Calabrese E J, Baldwin L A. Performing Ecological Risk Assessment [M]. CRC press, Lewis:Publisher,1993.
    Casanova M T, Brock M A. How do depth, duration and frequency of flooding influence theestablishment of wetland plant communities?[J]. Plant Ecology,2000,147:237-250.
    Chapman P M, McDonald B G, Lawrence G S. Weight-of-evidence issues and frameworks forsediment quality (and other) assessments[J]. Human and Ecological Risk Assessment,2002,8(7):1489-1515.
    Chapman P M, McDonald B G, Lawrence G S. Weight-of-evidence issues and frameworks forsediment quality (and other) assessments[J]. Human and Ecological Risk Assessment,2002,8(7):1489-1515.
    Chen G Q, Zeng L, Wu Z. An ecological risk assessment model for a pulsed contaminant emissioninto a wetland channel flow [J]. Ecological Modelling,2010,221:2927-2937.
    Cherbi M, Lek-Ang S, Lek S, et al. Distribution of zooplankton community inMediterranean-climate lakes [J]. Comptes Rendus Biologies,2008,331:692-702.
    Chinese Society of Environmental Sciences: The13th World lake Conference [M]. Beijing: ChinaAgricultural University Press,2010:1-860.
    CJF T B. Canonical correspondence analysis: A new eigenvector technique for multivariate directgradient analysis [J]. Ecology,1986,67:1167-1179.
    Clarke K R, Gorley R N. PRIMER v6: User Manual/tutorial. Plymouth: PRIMER-E Ltd,2006:91.
    Clarke K R, Green R H. Statistical design and analysis for a biological effects‘study [J]. MarineEcology Progress Series,1988,92:205-219.
    Clarke K R, Warwick R M. Changes in marine communities: an approach to statistical analysisand interpretation [M]. UK: PRIMER-E Ltd,1994:144.
    Clarke R. Non-parametrie multivariate analyses of changes in community structure [J]. AustralianJoumal of Ecology,1993,18:117-143.
    Coman E, Connolly R M, Preston N P. Effects of water exchange and abiotic factors onzooplankton and epibenthic fauna in shrimp ponds [J]. Aquaculture Research,2006,37,1387-1399.
    Conley D J, Bonsdorff E, Carstensen J, et al. Tackling hypoxia in the Baltic Sea: is engineering asolution?[J]. Environmental Science&Technology,2009,43:3407-3411
    Cossu R, Marino R. Bio-indicators for the pollution valuation in the renicelagoon in order tofacilitate environmental protection operations [J]. Ingambient,1985,17(10):10-15.
    Crawford C. Qualitative risk assessment of the effects of shellfish farming on the environment inTasmania, Australia [J]. Ocean Coast Management,2003,46:47-58.
    Croft M, Chow-Fraser P. Development of a Wetland Macrophyte Index (WMI) for Great Lakescoastal marshes [J]. IAGLR Conference Program and Abstracts,2006,49:38.
    Dejen E, Vijverberg J, Nagelkerke L A J, et al. Temporal and spatial distribution ofmicrocrustacean zooplankton in relation to turbidity and other environmental factors in alarge tropical lake (L. Tana, Ethiopia)[J]. Hydrobiologia,2004,513:39-49.
    Diodato N, Ceccarelli M. Environinformatics in ecological risk assessment of agroecosystemspollutant leaching [J]. Stochastic Environmental Research and Risk Assessment,2005,19:292-300.
    Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton [J]. MarineEcology Progress Series,1990,61:183-201.
    Duan H, Zhang Y, Zhang B, et al. Assessment of chlorophyll-a concentration and trophic state forLake Chagan using Landsat TM and field spectral data [J]. Environmental Monitoring andAssessment,2007,129(1-3):295-308.
    Dube T, Chitiga M. Human impacts on macrophyte diversity, water quality and some soilproperties in the madikane and dufuya wetlands of Lower Gweru, Zimbabwe [J]. AppliedEcology and Environmental Research,2011,9(1):85-99.
    Dzialowski A R, Bonneau J L, Gemeinhardt T R. Comparisons of zooplankton and phytoplanktonin created shallow water habitats of the lower Missouri River: implications for native fish [J].Aquatic Ecology,2013,47:13-24.
    Edsall T A, Gorman OT, Evrard L M. Burrowling mayflies as indicators ofecosystem health: Status of populations in two western Lake Superiorembayments [J]. Aquatic Ecosystem Health and Management,2004,7(4):507-513.
    Einsle U. Crustacea, Copepoda, Calanoida and Cyclopoida. Süβw sser Fauna von Mitteleuropa8[M]. Gustay Fischer Verlag, Jena, Germany,1993.
    Feng X Q, Zhang G X, Yin X R. Hydrological responses to climate change in Nenjiang RiverBasin, Northeastern China [J]. Water Resources Management,2011,25:677-689.
    Gal G, Anderson W. A novel approach to detecting a regime shift in a lake ecosystem [J]. Methodsin Ecology and Evolution,2010,1:45-52.
    Gerten D, Adrian R. Species-specific changes in the phenology and peak abundance of freshwatercopepods in response to warm summers [J]. Freshwater Biology,2002,47:2163-2173.
    Giddings J M. Atrazine in North American surface waters: a probabilistic aquatic ecological riskassessment [M]. SETAC,2005.
    Gleason R A, Euliss N H Jr, Tangen B A, et al. USDA conservation program and practice effectson wetland ecosystem services in the Prairie Pothole Region [J]. Ecological Applications,2011,21(3):65-81.
    Grabas G P, Blukacz-Richards E A, Pernanen S. Development of a submerged aquatic vegetationcommunity index of biotic integrity for use in Lake Ontario coastal wetlands [J]. Journal ofGreat Lakes Research,2012,38(2):243-250.
    Harris R, Wiebe P, Lenz J, et al. ICES Zooplankton Methodology Manual [M]. California:Academic Press,2000:87-94.
    Hasle G, Sournia A. Phytoplankton Manual, Monographs on Oceanographic Methodology [M].Paris: UNESCO,1978.
    Hayes E H, Landis W G. Regional risk assessment of a near shore marine environment: CherryPoint, WA [J]. Human and Ecological Risk Assessment,2004,10:299-325
    He G, Fang H, Bai S, et al. Application of a three-dimensional eutrophication model for theBeijing Guanting Reservoir, China [J]. Ecological Modelling,2011,222(8):1491-1501.
    Hecky, R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marineenvironments: a review of recent evidence on the effects of enrichment [J]. Limnology andOceanography,1988,33:796-822.
    Hela D G, Lambropoulou D A, Konstantinou I K, et al. Environmental monitoring and ecologicalrisk assessment for pesticide contamination and effects in Lake Pamvotis, northwesternGreece [J]. Environmental toxicology and chemistry,2005,24(6):1548-1556.
    Hong S S, Bang S W, Kim Y O, et al. Effects of rainfall on the hydrological conditions andphytoplankton community structure in the riverine zone of the Pal‘tang reservoir, Korea [J].Journal of Freshwater Ecology,2002,17:507-520.
    Ji G, Wang X, Wang L. Planktonic rotifers in a subtropical shallow lake: succession, relationshipto environmental factors, and use as bioindicators [J]. Scientific World Journal,2013:1-14.
    Karabin A, Ejsmont-Karabin J, Kornatowska R. Eutrophication processes in a shallow,macrophyte dominated lake–factors influencing zooplankton structure and density in Lakeuknajno (Poland)[J]. Hydrobiologia,1997,342:401-409.
    Karr J R, Chu E W. Sustaining living rivers [J]. Hydrobiologia,2000,422:1-14.
    Kasprzak P, Padisák J, Koschel R, et al. Chlorophyll a concentration across a trophic gradient oflakes: an estimator of phytoplankton biomass?[J]. Limnologica,2008,38:327–338.
    Khalaf A, KOehzius M. Changes on trophic community stoeture of shore fishes at an imdustrialsite in the Gulf of Aqaba, Red Sea [J]. Marine Ecology Progress Series,2002,239:287-299.
    Kim Y, Kim B. Application of a2-dimensional water quality model (CE-QUAL-W2) to theturbidity interflow in a deep reservoir (Lake Soyang, Korea)[J]. Lake and ReservoirManagement,2006,22(3):213-222.
    Koste W. Rotatoria Die Radertiere Mitteleuropas Ein Best Immungswerk, Begrundet von MaxVoight Uberordnung Monogononta [M]. Berlin: Gebruder Borntraeger,1978
    Kostuk K A, Chow-Fraser P. Development of the wetland zoobenthos index (WZBI) to evaluatedegree of human disturbance in great lakes coastal wetlands [J]. IAGLR Conference Programand Abstracts,2006,49:100-101.
    Kozuharov D, Evtimova V, Zaharieva D. Long-term changes of zooplankton and dynamics ofeutrophication in the polluted system of the Struma river-Pchelina reservoir (South-WestBulgaria)[J]. Acta zoologica bulgarica,2007,59:191-202.
    Kruskal J B, Wish M. Multidimensional Scaling., California: Sage Publications, Beverley Hills,1978:93.
    Kuhn N J, Baumhauer R, Schuett B. Managing the impact of climate change on the hydrology ofthe Gallocanta Basin, NE-Spain [J]. Journal of Environmental Management,2011,92(2):275-283.
    Laabir M, Jauzein C, Genovesi B, et al. Influence of temperature, salinity and irradiance on thegrowth and cell yield of the harmful red tide dinoflagellate Alexandrium catenella colonizingMediterranean waters [J]. Journal of Plankton Research,2011,33:1550-1563.
    Landis W G, Wiegers J A. Design considerations and a suggested approach for regional andcomparative ecological risk assessment [J]. Human and Ecological Risk Assessment,1997,3:287-297
    Landis W G. The frontiers in ecological risk assessment at expanding spatial and temporal scales[J]. Human and Ecological Risk Assessment: An International Journal,2003,9(6):1415-1424.
    Laprise R, Dodson J J. Environmental variability as a factor controlling spatial patterns indistribution and species-diversity of zooplankton in the St-Lawrence-Estuary [J]. MarineEcology Progress Series,1994,107:67-81.
    Lathrop R C, Carpenter S R, Robertson D M. Summer water clarity responses to phosphorus,Daphnia grazing, and internal mixing in Lake Mendota [J]. Limnology and Oceanography,1999,44:137-146.
    Lehman W. The influence of climate on phytoplankton community biomass in San Francisco BayEstuary [J]. Limnology and Oceanography,2000,45(3):580-590.
    Lepisto L, Holopainen A L, Vuoristo H. Type-specific and indicator taxa of phytoplankton as aquality criterion for assessing the ecological status of Finnish boreal lakes [J]. Limnologica,2004,34(3):236-248.
    Li Y, Wang L, Zheng H, et al. Evolution Characteristics for Water Eco-Environment ofBaiyangdian Lake with3S Technologies in the Past60Years [M]//Computer and ComputingTechnologies in Agriculture V. Springer Berlin Heidelberg,2012:434-460.
    Liu W C, Chen W B, Kimura N. Impact of phosphorus load reduction on water quality in astratified reservoir-eutrophication modeling study [J]. Environmental monitoring andassessment,2009,159(1-4):393-406.
    Longhi M L, Beisner B E. Environmental factors controlling the vertical distribution ofphytoplankton in lakes [J]. Journal of Plankton Research,2009,31(10):1195-1207.
    Lopes M R M, Bicudo C E M, Ferragut M C. Short term spatial and temporal variation ofphytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil [J].Hydrobiologia,2005,542:235-247.
    Loucks O L. Looking for surprise in manahing stressed ecosystems [J]. Bioscience,1985,35(7):428-432.
    Lougheed V L, Chow-Fraser P. Development and use of a zooplankton index of wetland quality inthe Laurentian Great Lakes Basin [J]. Ecological Applications,2002,12(2):474-486.
    Luoto T, Nevalainen L, Sarmaja-Korjonen K. Zooplankton (Cladocera) in assessments of biologicintegrity and reference conditions: application of sedimentary assemblages from shallowboreal lakes [J]. Hydrobiologia,2013,707:173-185.
    Margalef R. Perspectives in Ecological Theory [M]. Chicago: University of Chicago Press,1968:111-119.
    Marques S C, Azeiteiro U M, Leandro S M, et al. Predicting zooplankton response toenvironmental changes in a temperate estuarine ecosystem [J]. Marine Biology,2008,155:531-541.
    McCune B, Grace J B, Urban D L. Analysis of Ecological Communities [M]. Oregon: MjMSoftware Design,2002.
    Medley K A, Havel J E. Hydrology and local environmental factors influencing zooplanktoncommunities in floodplain ponds [J]. Wetlands,2007,27:864-872.
    Mengesha S, Dehairs F, Elskens M, et al. Phytoplankton nitrogen nutrition in the western IndianOcean: ecophysiological adaptations of neritic and oceanic assemblages to ammonium supply.Estuarine, Coastal and Shelf Science,1999,48:589–598.
    Mitsch W J, Gosselink J G. Wetlands [M]. Van Nostrand Reinhold Company Inc,2000:2-5.
    Mitsch W J, Wang N M. Large-scale coastal wetland restoration on the Laurentian Great Lakes:Determining the potential for water quality improvement [J]. Ecological Engineering,2000,15(3-4):267-282.
    Molinari J. A calibrated index for the measurement of evenness [J]. Oikos,1989,56:319-323.
    Moore M V, Folt C L, Stemberger R S. Consequences of elevated temperatures for zooplanktonassemblages in temperate lakes [J]. Archiv Für Hydrobiologie,1996,135:289-319.
    Muylaert K, Sabbe K, Vyverman W. Spatial and temporal dynamics of phytoplanktoncommunities in a freshwater tidal estuary (Schelde, Belgium)[J]. Estuarine, Coastal andShelf Science,2000,50(5):673-687.
    Nasell-iFlores L, Barone R. Phytoplankton dynamics in two reservoir with different trophicstate(Lake Rosamarina and Lake Arancio, Sicily, Italy)[J]. Hydrobiologia,1998,369:163-178.
    Obery A M, Landis W G. A regional multiple stressor risk assessment of the Codorus Creekwatershed applying the relative risk model[J]. Human and Ecological Risk Assessment,2002,8(2):405-428.
    Pashkova, O V. Zooplankton as indicator of organic and toxic pollution and ecological state ofaquatic ecosystems (a review). Hydrobiological Journal,2013,49:3-20.
    Pauer J J, Anstead A. The lake michig an eut ro phication model, LM3-Eutro: model developmentand calibration [J]. Water Environment Research,2008,80(9):853-861.
    Pennock J R. Temporal and spatial variability in phytoplankton ammonium and nitrate uptake inthe Delaware Estuary [J]. Estuarine, Coastal and Shelf Science,1987,24,841-857.
    Perdrozo F L, Temporetti P F, Beamud G, et al. Volcanic nutrient inputs and trophic state of LakeCaviahue, Patagonia, Argentina [J]. Journal of Volcanology and Geothermal Research,2008,178:205-212.
    Perhar G, Arhonditsis G B, Brett M T. Modeling zooplankton growth in Lake Washington: Amechanistic approach to physiology in a eutrophication model [J]. Ecological Modelling,2013,258:101-121.
    Pinto-Coelho R M, Bezerra-Neto J F, Morais C A, et al. Effects of eutrophication on size andbiomass of crustacean zooplankton in a tropical reservoir [J]. Brazilian Journal of Biology,2005,65:325-338.
    Qin B. Eutrophication of shallow lakes with special reference to Lake Taihu, China [M].Dordrecht: Springer,2007.
    Qu C S, Chen W, Bi J, et al. Ecological risk assessment of pesticide residues in Taihu Lakewetland, China [J]. Ecological Modelling,2011,222(2):287-292.
    Qu C S, Chen W, Bi J, et al. Ecological risk assessment of pesticide residues in Taihu Lakewetland, China [J]. Ecological Modelling,2011,222(2):287-292.
    Quiblier C, Leboulanger C, Sane S, et al. Phytoplankton growth control and risk of cyanobacterialblooms in the lower Senegal River delta region [J]. Water Research,2008,42:1023-1034.
    Raburu P O, Masese F O. Development of a fish‐based index of biotic integrity (FIBI) formonitoring riverine ecosystems in the Lake Victoria drainage Basin, Kenya [J]. RiverResearch and Applications,2012,28(1):23-38.
    Redfiled AC. The biological control of chemical factors in the environment [J]. American Scientist,1958,46(3):205-222.
    Robson B J, Hamilton D P. Summer flow event induces a cyanobacterial bloom in a seasonalWestern Australian estuary [J]. Marine and Freshwater Research,2003,54:139-151.
    Roelke D L, Zohary T, Hambright K D, et al. Alternative states in the phytoplankton of LakeKinneret, Israel (Sea of Galilee)[J]. Freshwater Biology,2007,52:399-411.
    Sandgren C D. Growth and reproductivestrategies of freshwater phytoplankton. Cambridge:Cambridge University Press,1992.
    Schallenberg M, Burns C W. A temperate, tidal lake-wetland complex-2. Water quality andimplications for zooplankton community structure [J]. New Zealand Journal of Marine andFreshwater Research,2003,37:429-447.
    Schindler D W. Recent advances in the understanding and management of eutrophication [J].Limnology and Oceanography,2006,51:356-363.
    Schipper C A, Smit M G D, Kaag N H B M, et al. A weight-of-evidence approach to assessing theecological impact of organotin pollution in Dutch marine and brackish waters; combiningrisk prognosis and field monitoring using common periwinkles [J]. Marine environmentalresearch,2008,66(2):231-239.
    Seilheimer T S, Chow-Fraser P. Application of the Wetland Fish Index to northern Great Lakesmarshes with emphasis on Georgian Bay coastal wetlands [J]. Journal of Great LakesResearch,2007,33(3):154-171.
    Seilheimer T S, Chow-Fraser P. Development and use of the Wetland Fish Index to assess thequality of coastal wetlands in the Laurentian Great Lakes [J]. Canadian Journal of Fisheriesand Aquatic Sciences,2006,63(2):354-366.
    Sellami I, Elloumi J, Hamza A, et al. Local and regional factors influencing zooplanktoncommunities in the connected Kasseb Reservoir, Tunisia [J]. Water Sa,2011,37:201-212.
    Shannon C E, Weaver W. The Mathematical Theory of Communication [M]. Urbana: Universityof Illinois Press,1963.
    Shao Z, Xie P, Zhuang Y. Long-term changes of planktonic rotifers in a subtropical Chinese lakedominated by filter-feeding fishes [J]. Freshwater Biology,2001,46:973-986.
    Smirnov N N, Timms B V. A revision of the Australian Cladocera (Crustacean)[J]. Records of theAustralian Museum,1983,1:1-132.
    Smith D G. Pennak's Freshwater Invertebrates of the United States: Porifera to Crustacea,4thEdition [M]. New Jersey: Hoboken, John Wiley&Sons,2001.
    Solomon K, Thompson D. Ecological risk assessment for aquatic organisms from over-water usesof glyphosate [J]. Journal of Toxicology and Environmental Health Part B: Critical Reviews,2003,6(3):289-324.
    Sousa W, Attayde J L, Rocha E D S, et al. The response of zooplankton assemblages to variationsin the water quality of four man-made lakes in semi-arid northeastern Brazil [J]. Journal ofPlankton Research,2008,30:699-708.
    Straile D, Adrian R. The North Atlantic Oscillation and plankton dynamics in two European lakes-two variations on a general theme [J]. Global Change Biology,2000,6:663-670.
    Su S, Xiao R, Mi X, et al. Spatial determinants of hazardous chemicals in surface water ofQiantang River, China [J]. Ecoligical Indicators,2013,24:375-381.
    Tang T, Cai Q, Liu J. Using epilithic diatom communities to assess ecological condition ofXiangxi River system [J]. Environmental Monitoring and Assessment,2006,112:347-361.
    ter Braak C J F, Verdonschot P F M. Canonical correspondence analysis and related multivariatemethods in aquatic ecology [J]. Aquatic Science,1995,57:255-289.
    Ter Braak C J, Prentice, I C. A theory of gradient analysis [J]. Advances in Ecological Research,1988,18:277-315.
    ter Braak C J. CANNOCO ver.4.5-A FORTAN Program for Canonical Community Ordination[M]. New York: Ithaca, Microcomputer Power,2002.
    Therriault T W, Herborg L M. A qualitative biological risk assessment for vase tunicate Cionaintestinalis in Canadian waters: using expert knowledge[J]. ICES Journal of Marine Science:Journal du Conseil,2008,65(5):781-787.
    Thomasen S, Gilbert J, Chow-Fraser P. Wave exposure and hydrologic connectivity creatediversity in habitat and zooplankton assemblages at nearshore Long Point Bay, Lake Erie [J].Journal of Great Lakes Research,2013,39,56-65.
    Tian C, Lu X, Pei H, et al. Seasonal dynamics of phytoplankton and its relationship with theenvironmental factors in Dongping Lake, China. Environmental Monitoring Assessment,2013(a),185:2627-2645.
    Tian C, Pei H, Hu W, et al. Phytoplankton variation and its relationship with the environmentalfactors in Nansi Lake, China. Environmental Monitoring Assessment,2013(b),185:295-310.
    Tsuchida A, Hara Y, Seki H. Spring bloom in a hypereutrophic lake, Lake Kasumigaura, Japan-V:factors controlling natural population of phytoplankters [J]. Water Research,1984,18:877-883.
    UNEP (United National Environment Programme). Planning and Management of Lakes andReservoirs: An International Approach to Eutrophication [M]. Osaka: IETC TechnicalPublication Series11,1999.
    van Geest G J, Cppos H, Roijackers R M M, et al. Succession of aquatic vegetation driven byreduced water-level fluctuations in floodplain lakes [J]. Journal of Applied Ecology,2005,42:251-260.
    Visconti A, Manca M, De Bernardi R. Eutrophication-like response to climate warming: ananalysis of Lago Maggiore (N. Italy) zooplankton in contrasting years [J]. Journal ofLimnology,2008,67:87-92.
    V r smarty C J, Green P, Salisbury J, et al. Global water resources: vulnerability from climatechange and population growth [J]. Science,2000,289:284-288.
    Wang S, Xie P, Geng H. The relative importance of physicochemical factors and crustaceanzooplankton as determinants of rotifer density and species distribution in lakes adjacent to theYangtze River, China [J]. Limnologica,2010,40:1-7.
    Wantzen K M, Machado F A, Voss H B M, et al. Floodpulse-induced isotopic changes in fish ofthe Pantanal wetland, Brazil [J]. Aquatic Sciences,2002,64:239–251.
    Wantzen K, Rothhaupt K O, M rtl M, et al. Ecological effects of waterlevel fluctuations in lakes:an urgent issue [J]. Hydrobiologia,2008,613:1-4.
    White S, Rakhesh M, Sarma V S., et al. Discriminating zooplankton assemblages throughmultivariate methods: A case for a tropical polluted harbour and Bar-built estuary [J].Chemistry and Ecology,2006,22:225-237.
    Whitton B A. Changing approaches to monitoring during the period of the 'Use of Algae forMonitoring Rivers' symposia [J]. Hydrobiologia2012,695(1):7-16.
    Whitton B A. Use of Algae for monitoring rivers [J]. Journal of Applied Phycology,1991,3(3):287-287.
    Wilcox D A, Meeker J E, Hudson P L, et al. Hydrological variability and the application of indexof biotic integrity metrics to wetlands: A Great Lakes evaluation [J]. Wetlands,2002,22(3):588-615.
    Wolfinbarger W C. Influences of biotic and abiotic factors on seasonal succession of zooplanktonin Hugo Reservoir, Oklahoma, USA [J]. Hydrobiologia,1999,400:13-31.
    Wong X L, Zhang J. A nonlinear model for assessing multiple probabilistic risks: A case study insouth five-island of Chang dao National Nature Reserve in China [J]. Journal ofEnvironmental Management,2007,85:1101-1108.
    Woodrey M S, Rush S A, Cherry J A, et al. Understanding the Potential Impacts of Global ClimateChange on Marsh Birds in the Gulf of Mexico Region [J]. Wetlands,2012,32(1):35-49.
    Xiao R, Su S, Ghadouani A, et al. Spatial analysis of phytoplankton patterns in relation toenvironmental factors across the southern Taihu basin, China [J]. Stochastic EnvironmentalResearch and Risk Assessment,2013,27:1347-1357.
    Xu F L, Tao S, Dawson R W, et al. Lake ecosystem health assessment: indicators and methods [J].Water Research,2001,35(13):3157-3167.
    Xu F L, Zhao Z Y, Zhan W, et al. An ecosystem health index methodology (EHIM) for lakescosytem health assessment [J]. Ecological Modeling,2005,188(2-4):327-339.
    Xu F L. Ecosystem health assessment for Lake Chao, a shallow eutrophic Chinese lake [J]. Lakesand Reservoris: Research and Management,1996,2(1/2):101-109.
    Yan M, Kahawita R. Simulating the evolution of non-point source pollutants in a shallow waterenvironment [J]. Chemosphere,2007,67(5):879-885.
    Yang G, Qin B, Tang X, et al. Contrasting zooplankton communities of two bays of the large,shallow, eutrophic Lake Taihu, China: Their relationship to environmental factors [J]. Journalof Great Lakes Research,2012,38:299-308.
    Yousuf A R, Qadri M Y. Ecology of Diaphanosoma brachyurum lieven (Cladocera-Crustacea) inLake Manasbal, Kashmir [J]. Journal of the Indian Institute of Science Section C-BiologicalSciences,1981,63:35-42.
    Zandbergen P A. Urban watershed ecological risk assessment using GIS: A casestudy of the Brunette River watershed in British Columbia, Canada.Journal of Hazard Mater,1998,61:163-73
    Zhang Y, Feng L, Li J, et al. Seasonal spatial variation and remote sensing of phytoplanktonabsorption in Lake Taihu, a large eutrophic and shallow lake in China [J]. Journal of PlanktonResearch,2010(b),32:1023-1037
    Zhao Z, Jiang Y, Xia L, et al. Application of canonical correspondence analysis to determine theecological contribution of phytoplankton to PCBs bioaccumulation in Qinhuai River, Nanjing,China [J]. Environmental science and pollution research international,2014,21:3091-3103.
    Zhao Z, Mi T, Xia L, et al. Understanding the patterns and mechanisms of urban water ecosystemdegradation: phytoplankton community structure and water quality in the Qinhuai River,Nanjing City, China [J]. Environmental science and pollution research international,2013,20:5003-5012.
    Zhu L, Yan B, Wang L, et al. Mercury concentration in the muscle of seven fish species fromChagan Lake, Northeast China [J]. Environmental Monitoring and Assessment,2012,184(3):1299-1310.
    Zohary T. Changes to the phytoplankton assemblage of Lake Kinneret after decades of apredictable, repetitive pattern [J]. Freshwater Biology,2004,49:1355-1371.
    阿思米鼎沙依多夫.咸海的地理问题[M].塔什干:乌兹别克斯坦科学出版社,1973.
    陈菊芳,王朝晖,江天久,等.广东肇庆星湖浮游生物及其与水质的关系[J].中国环境科学,2000,20(3):258-262.
    陈亚瞿,徐兆礼,杨元利.黄海南部及东海中小型浮游桡足类生态学研究Ⅱ.种类组成及群落特征[J].水产学报,2003,27:9-15.
    崔保山,杨志峰.湿地学[M].北京:北京师范大学出版社,2006:39-40.
    代雪静,田卫.查干湖水质污染分析及控制途径[J].干旱区资源与环境,2011,25(8):179-184.
    邓春暖,章光新,李红艳,等.莫莫格湿地芦苇对水盐变化的生理生态响应[J].生态学报,32(13):4146-4153.
    邓春暖,章光新,潘响亮.莫莫格湿地芦苇生理生态特征对水深梯度的响应[J].生态科学,2012,31(4):352-356.
    丁艳青,朱广伟,秦伯强,等.波浪扰动对太湖底泥磷释放影响模拟[J].水科学进展,2011,22(2):273-278.
    董建伟,包文军.查干湖水量平衡差异及不明水量的探究[J].吉林水利,2009,(1):25-27,32.
    董建伟,张晓辉.查干湖水质与富营养化的特征和趋势[J].吉林水利,2007,(10):3-7.
    段洪涛,张柏,刘殿伟,等.查干湖水体光谱荧光峰特征与叶绿素a响应关系研究[J].红外与毫米波学报,2006,(05):355-359.
    段洪涛,于磊,张柏,等.查干湖富营养化状况高光谱遥感评价研究[J].环境科学学报,2006,26(7):1219-1226.
    方芳.查干湖水质评价[D].长春:吉林大学博士论文,2007,.
    付在毅,许学工,林辉平,等.辽河三角洲湿地区域生态风险评价[J].生态学报,2001,21(3):365-373.
    付在毅,许学工.区域生态风险评价[J].地球科学进展,2001,16(2):267-271.
    郭斌.松原灌区稻田农药对查干湖环境影响研究[D].长春:中国科院东北地理与农业生态研究所硕士论文,2012.
    郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展,2002,21(5):500-506.
    郭雪莲,吕宪国,戴国华.三江平原不同水位梯度湿地地上生物量动态特征[J].生态环境,2008,17(5):1739-1742.
    国家林业局.中国湿地保护行动计划[M].北京:中国林业出版社,2000.
    韩英,杨雨虹,陈松波,等.太平湖浮游生物群落与鲢、鳙鱼产力[J].水产学杂志,2002,15(2):26-31.
    贺伟,布仁仓,熊在平,等.1961-2005年东北地区气温和降水变化趋势[J].生态学报,2013,33(02):519-531.
    胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态[M].北京:科学出版社,2006.
    胡韧,林秋奇,王朝晖,等.广东省典型水库浮游植物组成与分布特征[J].生态学报,2002,22(11):1939-1944.
    黄祥飞.湖泊生态调查观测与分析[M].北京:中国标准出版社,2000.
    吉林省增产百亿斤商品粮能力建设总体规划.2008.
    贾艳红,赵军,南忠仁,等.熵权法在草原生态安全评价研究中的应用——以甘肃牧区为例[J].干旱区资源与环境,2007,21(1):17-21.
    姜爱兰,王信海,丁辰龙,等.连环湖他拉红泡浮游生物组成及渔产潜力评估[J].青岛农业大学学报(自然科学版),2009,26(1):19-23,28.
    焦洪学.查干湖志[M].长春:吉林大学出版社,2009.
    焦伟,卢少勇,李光德,等.滇池内湖滨带重金属污染及其生态风险评[J].农业环境科学学报,2010,29(4):740-745.
    金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    黎聪,李晓文.衡水湖湿地恢复预案空间模拟及生态风险评价[J].环境科学学报,2010,30(6):1312-1321.
    李春华,叶春,赵晓峰,等.太湖湖滨带生态系统健康评价[J].生态学报,2012,32(12):3806-3815.
    李景保,秦建新,王克林,等.洞庭湖环境系统变化对水文情势的响应[J].地理学报,2004,59(2):239-248.
    李荣昉,张颖.鄱阳湖水质时空变化及其影响因素分析[J].水资源保护,2012,27(6):9-13.
    李爽,张祖陆,孙媛媛.南四湖沉积物对上覆水氮磷负荷的时空响应[J].环境科学学报,2013,23(1):133-138.
    李艳,邓云,梁瑞峰,等. CE-QUAL-W2在紫坪铺水库的应用及其参数敏感性分析[J].长江流域资源与环境,2011,20(10):1274-1278.
    刘昌明,夏军,于静洁.东北地区水与生态-环境问题及保护对策研究[J].北京:科学出版社,2007.
    刘吉峰,李世杰,丁裕国.基于气候模式统计降尺度技术的未来青海湖水位变化预估[J].水科学进展,2008,19(02):184-191.
    刘聚涛,杨永生,姜加虎,等.太湖蓝藻水华灾害风险分区评估方法研究[J].中国环境科学,2011,31(3):498-503.
    刘文盈,高润宏,张秋良,等.鄂尔多斯高原盐沼湿地浮游植物的多样性与评价[J].干旱区资源与环境,2009,27(5):143-148.
    刘永泉,王晓峰,吴颜.艾比湖水位变化对湖滨湿地盐渍化的影响研究[J].干旱区资源与环境,2010,24(6):108-111.
    马广庆.吉林省西部松原灌区水田开发对地表水质和土壤环境的影响[D].长春:吉林大学博士论文,2010.
    马如夫加力力.远离岸边的海,咸海等待抢救[M].塔什干:塔什干劳动出版社,1987.
    马喜君,陆兆华,林涛.盐城海滨湿地生态风险评价[J].海洋环境科学,2010,29(4):599-602.
    钱奎梅,陈宇炜,宋晓兰.太湖浮游植物优势种长期演化与富营养化进程的关系[J].生态科学,2008,27(2):65-70.
    邱东.多指标综合评价方法的系统分析[M].北京:中国统计出版社,2003.
    邱苑华.管理决策与应用熵学[M].北京:机械工业出版社,2001,32-86.
    日本生态学会环境问题专门委员会.环境和指示生物(水域分册)[M].北京:中国环境科学出版社,1987
    宋辞,于洪贤.镜泊湖浮游植物多样性分析及水质评价[J].东北林业大学学报,2009,37(4):39-42.
    苏保健,董建伟.查干湖引松渠道补给水量对年内水质参数的影响[J].吉林水利,2009,4:7-10,19
    隋雪萍,卢振兰,李业东,等.灌溉回归水对水体环境质量影响及对策研究[J].长春理工大学学报(自然科学版),2011,34(2):157-160.
    孙军,刘东艳.浮游植物生物量研究: I.浮游植物生物量细胞体积转化法[J].海洋学报,1999,21(2):75-85.
    孙儒咏,李博.普通生态学[M].北京:高等教育出版社,1993.
    孙爽,章光新,黄志刚,等.吉林省西部查干湖水文情势分析[J].湿地科学,12(1):43-48.
    孙晓静,王志春,赵长巍,等.盐碱地农田排水对查干湖承泄区的水质影响评价[J].农业工程学报,2011,27(9):214-219.
    万洪秀,孙占东,王润.博斯腾湖水位变动对湿地生态环境的影响[J].自然资源学报,2006,21(2):260-266.
    王丽,宋长春,胡金明,等.不同生长阶段毛苔草(Carex lasiocarpa)克隆繁殖对水文情势的响应[J].生态学报,2009,29(5):2231-2238.
    吴乃成,唐涛,周淑婵,等.香溪河小水电的梯级开发对浮游藻类的影响[J].应用生态学报,2007,18(5):1093-1098.
    吴卫菊,杨凯,汪志聪,等.云贵高原渔洞水库浮游植物群落结构及季节演替[J].水生态学杂志2012,33(2):69-75.
    肖海丰,薛滨,姚书春,等.松嫩平原湖泊水质演化研究[J].湿地科学,2011,9(2):120-124.
    谢冬明,郑鹏,邓红兵,等.鄱阳湖湿地水位变化的景观响应[J].生态学报,2011,31(5):1269-1276.
    谢钦铭,李长春,彭赐莲.鄱阳湖浮游藻类群落生态的初步研究[J].江西科学,2000,18(3):162-166.
    徐卫华,欧阳志云, Duren I,等.白洋淀地区近16年芦苇湿地面积变化与水位的关系[J].水土保持学报,2005,8(04):181-184,189.
    徐晓群,曾江宁,陈全震,等.浙江三门湾浮游动物优势种空间生态位[J].应用生态学报,2013,24(3):818-824.
    徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系[J].生态学杂志,1989,8(4):13-15,19.
    许文杰,许士国.湖泊生态系统健康评价的熵权综合健康指数法[J].水土保持研究,2008,15(1):125-127.
    许学工,林辉平,付在毅,等.黄河三角洲湿地区域生态风险评价[J].北京大学学报(自然科学版),2001,37(1):111-120.
    许妍,高俊峰,张宁红.太湖流域景观生态风险评估[J].环境监控和预警,2010,2(6):1-4.
    闫来锁.查干湖渔场志[M].长春:吉林大学出版社,2010:60-61.
    闫文周,顾连胜.熵权决策法在工程评标中的应用[J].西安建筑科技大学学报(自然科学版),2004,36(1):98-100.
    燕姝雯,余辉,张璐璐,等.2009年环太湖入出湖河流水量及污染负荷通量[J].湖泊科学,2011,23(06):855-862.
    阳文锐,王如松,黄锦楼.生态风险评价及研究进展[J].应用生态学报,2007,18(8):1869-1876.
    杨波.我国湿地评价研究综述[J].生态学杂志,2004,23(4):146-149.
    杨富亿.查干湖的综合开发与利用[J].资源开发与市场,1998,14(6):247-249,254.
    杨桂山,马荣华,张路等.中国湖泊现状及面临的重大问题与保护策略[J].湖泊科学,2010,22(6):799-810.
    杨丽桃,李喜仓,侯琼.1961-2005年嫩江流域右岸气候变化及对水资源的影响[J].气象与环境学报2008,24(05):16-19.
    殷浩文.水环境生态风险评价程序[J].上海环境科学,1995,(11):11-14.
    余波,黄成敏,陈林,等.基于熵权的巢湖水生态健康模糊综合评价[J].四川环境,2010,29(6):85-91.
    玉艳,闫启仑,王真良,等.基于熵权的浮游动物群落生态健康模糊综合评价[J].海洋环境科学,2008,29(6):28-34.
    袁宇翔,于洪贤,姜明.小兴凯湖浮游植物群落结构及多样性[J].湿地科学,2013,11(2):151-157.
    张丽丽,殷峻暹,蒋云钟,等.鄱阳湖自然保护区湿地植被群落与水文情势关系[J].水科学进展,2012,23(6):768-775.
    张怡,胡韧,肖利娟,等.南亚热带两座不同水文动态的水库浮游植物的功能类群演替比较[J].生态环境学报,2012,21(1):107-117.
    章光新.水文情势与盐分变化对湿地植被的影响研究综述[J].生态学报,2012,32(13):4254-4260.
    章光新,尹雄锐,冯夏清.湿地水文研究的若干热点问题[J].湿地科学,2008,8(2):105-115.
    章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    赵菲,于洪贤,马成学,等.应用浮游动物群落结构评价扎龙自然保护区的水质现状[J].水产学杂志,26(1):41-45.
    赵帅营,林秋奇,刘正文,等.南亚热带湖泊—星湖后生浮游动物群落特征研究[J].水生生物学报,2007,31(3):405-413.
    郑冬梅,洪荣标.滨海湿地互花米草的生态经济影响分析与风险评估探讨[J].台湾海峡,2006,25(4):579-586.
    中国国家标准化管理委员会. GB3838-2002,中华人民共和国国家标准:地表水环境质量标准.北京:中国标准出版社,2002.
    中国环境科学研究院.2007年巢湖生态安全评估报告[R].北京:2008.
    中国科学院生态环境研究中心.哈达山水利枢纽主要配套工程松原灌区环境影响评价专题报告[R].北京:2009.
    周文华,王如松.基于熵权的北京城市生态系统健康模糊综合评价[J].生态学报,2005,25(12):324-3251.
    周晓铁,韩宁宁,孙世群,等.安徽省河流和湖库型饮用水水源地水质评价[J].湖泊科学,2010,22(2):176-180.
    周孝德冯成洪张仙娥.博斯腾湖富营养化综合加权指数评价[C]//中国水利学会2003学术年会论文集,深圳,2003.
    诸葛燕,黄祥飞.武汉东湖轮虫种类组成及其分类讨论[J].水生生物学报,1993,17(4):347-356.
    左涛.东、黄海浮游动物群落结构研究[D].北京:中科院研究生院博士论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700