用户名: 密码: 验证码:
南雄盆地晚白垩世—早古新世古气候变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白垩纪-古近纪是显生宙最热、最为典型的温室气候时期。南雄盆地大塘剖面记录有一套白垩系-古近系连续陆相红色岩层,对其研究可以为陆相白垩纪-古近纪气候变化提供有力证据。本文对大塘剖面上白垩统主田组-古新统上湖组的岩相进行了分析,对砂岩、泥岩及碳酸盐结核进行了沉积学和地球化学分析,利用多种气候参数和指针如碎屑比参数、粘土矿物指针、古土壤碳、氧同位素指针对南雄盆地晚白垩世晚期-古近纪早期的古气候变化进行研究,试图辨别气候事件、分析其成因机制。
     岩相分析认为,南雄大塘白垩系-古近系总体为一大套结构疏松的红色陆相碎屑岩,沉积岩石结构分类主要以泥质粉砂岩及粉砂质泥岩为主,含砂岩、砾岩,剖面表现为细-粗-细的变化格局,其中,主田组解释为洪积平原相至滨浅湖相沉积,浈水组为河控三角洲相沉积,上湖组为滨浅湖相沉积。
     通过显微镜下砂岩薄片碎屑统计分析获得的气候指数F/Q和构造指数L/Q,分析粘土矿物X衍射分析获得粘土矿物相对含量、伊利石结晶度指数和伊利石化学指数,以及通过古土壤钙质结核质谱碳、氧同位素分析获得的δ13C(VPDB)和δ18O(VPDB)值,经综合分析,将研究区晚白垩世-早古新世古气候演化划分为三个阶段:晚白垩世马斯特里赫特期干旱-半干旱气候、古新世丹尼期早期暖湿半干旱气候和丹尼期晚期半干旱气候。各阶段气候证据和特征具体表现如下。
     第一阶段,马斯特里赫特期(70.4-65.0Ma),主田组-上湖组坪岭段底部(1-41层)。粘土矿物组成总体以伊利石占优势,均值83.4%,其次为绿泥石,均值11.6%。伊利石的结晶度指数和化学指数变化较平稳,仅在第17-22层波动较大。气候指数F/Q在0.1附近波动,构造指数L/Q呈波动下降趋势,在17-22层变化较大。古土壤钙质结核碳氧同位素保持相对稳定,仅在主田组有少量波动。这些指数指示该阶段为以温凉为主的半干旱-干旱气候,总体变化较为平稳。
     第二阶段,古新世丹尼期早期(65.0-63.8Ma),上湖组坪岭段底部至下慧段底部(41-54层)。伊利石相对含量突然降低,均值为68%,蒙脱石相对含量突然增加,达到三个阶段中最大值,绿泥石和高岭石相对含量也有所增加。伊利石结晶度指数和化学指数都明显增大,均值分别为0.36和0.62。F/Q在0.1左右,构造指数L/Q均值为0.27,比第一阶段有所下降。碳氧同位素表现截然相反的变化趋势,碳同位素急剧减小后然后增大,而氧同位素急剧增大后缓慢减小。粘土矿物组成和碳氧同位素值显示该阶段气候总体是以湿热为主的半干旱气候。
     第三阶段,古新世丹尼期(63.8-62Ma),上湖组下慧段(55-70层)。粘土矿物相对含量趋于平稳,伊利石均值为76%,绿泥石为16%,高岭石7%,几乎不含蒙脱石。伊利石结晶度指数和化学指数值趋于平稳,均值分别为0.31和0.48。气候参数和构造参数均趋于平稳。碳氧同位素波动较大,呈现缓慢上升的趋势。这表明该阶段气候为半干旱气候,与孢粉所指示的上湖组气候变化较为一致。
     南雄盆地晚白垩世-早古新世古气候总体以干旱-半干旱为主,间隔短期湿热气候,显示具有热带-亚热带半干旱气候特征。晚白垩世-早古新世时期,联合大陆进一步解体,全球纬向气候分带进一步明显,根据当时古地理古气候分布,南雄盆地晚白垩世-早古新世处于热带-干旱气候带,与粘土矿物组合指示具有一致性。上述各项参数在上湖组底部均表现出强烈波动,出现的层位正好位于K/Pg界限附近,说明古新世早期上湖组的气候变化可能是白垩纪-古近纪之交全球气候变化事件在南雄盆地陆相沉积物中的响应。该气候事件的时间与古生物、古地磁和稳定同位素等方法确定的白垩纪-古近纪界线相一致。
The Cretaceous-Paleogene is the hottest, most typical greenhouse period in the Phanerozoic. Documented a series of the continuous terrestrial red succession, the Datang profile of the Nanxiong Basin provide lots of materials for researching the climate changes of the continental Cretaceous-Paleogene. This thesis focused on study of sedimentology and geochemistry of the Upper Cretaceous Zhutian Formation and of the Paleocene Shanghu Formation at the Datang profile. Study of sedimentology is involved in basic lithofacies analysis, climatic and tectonic indexes of debris ratio from clastic composition, and relative content of clay mineral component. Geochemistry study is on carbon and oxygen isotope analysis of pedogenic calcrete.
     By observation of field cross-section and underscope thin-section from the Upper Cretaceous-Lower Paleogene lithologies show loose red continental clastic rocks, and mainly sedimentary rocks are argillaceous siltstones and silty mudstones intercalated with sandstones and conglomerates. The grain-size texture of the Datang profile upward changes as a pattern of fine-coarse-fine clastic. Totally, sedimental facies of the Zhutian Formation are of alluvial plain to shallow lake facies, the Zhenshui Formation are of river-dominated delta facies, and the Shanghu Formation is of lacustrine facies.
     Based on the climate index F/Q and the structure index L/Q of debris statistical analysis of sandstone thin sections under the microscope, relative content of clay minerals, illite crystallinity index and illite chemistry index by clay mineral X-ray diffraction analysis, and the value of δ13C (VPDB) and δ18O (VPDB) of pedogenic calcrete, it is proposed that three stages of climatic changes are classified: arid-semiarid during the Maastrichtian, warm and moist semiarid during the early Danian, and the semiarid during the late Danian.
     1) The first stage------the Maastrichtian (70.4-65.0Ma), the Zhutian Formation to the bottom of Pingling Member of the Shanghu Formation (beds1-41). During the stage, illite is the dominant clay mineral by a mean content of83.4%, chlorite is11.6%in average, illite crystallinity index and chemical index are relatively stable. The climate index F/Q changes near0.1, and the structure index L/Q upward decreases by a fluctuation in value. The carbon and oxygen isotopes of paleosol carbonate nodules remain relatively stable, only a small fluctuation in Zhutian Formation. These indicate that the stage is mainly warm/cool semiarid-arid climate with an overall stability
     2) The second stage------the early Danian of the Paleocene (65.0-63.8Ma), the bottom of Pingling Member-Xiahui Member of Shanghu Formation (beds41-54). In this stage, the relative content of illite suddenly drops to68%from ca.80-90%, the relative content of smectite increases to the maximum in the three stages by small rising of the relative content of chlorite and kaolinite, and the illite crystallinity index and chemical index increases significantly to the mean0.36and0.62, respectively. In another hand, the mean value0.1of F/Q index and the mean0.27of the tectonic index L/Q shows a decline to the first stage. Comparison to the first stage, the carbon and oxygen isotope values change in opposition:carbon isotope value decreases sharply and then increases slowly; oxygen isotope value slowly decreases after a sharp increase. These indicate it is in hot-humid semiarid in the stage.
     3) Third stage------the Danian of the Paleocene (63.8-62Ma), Xiahui Member of the Shanghu Formation (beds55-70). The relative content of clay minerals are few changed in average:illite76%, chlorite16%, kaolinite7%, little smectite, the illite crystallinity index and chemical index are mean value0.31and0.48respectively, showing a smooth and steady change. Both climate index and tectonic index change little. The carbon and oxygen isotope values fluctuate with a slowly rising. It implies that this stage is in semiarid, approximately consistent with the climate change indicated by spore-pollen.
     In summary, the Nanxiong Basin is in arid-semi-arid climate interening some hot-humid climate during the Late Cretaceous-Early Paleocene. According to global palaeogeographic and palaeoclimatic distribution of the Late Cretaceous-Early Paleocene period, the Nanxiong Basin is in tropical arid climatic zones, being consistent with the clay mineral implications in this study. Three kinds of indexes above at the bottom of the Shanghu Formation show sudden climate change near the K/Pg boundary, implying a correspondence South China to the global climate change event of the Cretaceous-Paleogene, which are determined by paleontological, paleomagnetic and stable isotope method.
引文
[1]Adatte T, Keller G, Stinnesbeck W.2002. Late Cretaceous to early Paleocene climate and sea-level fluctuations:the Tunisian record. Palaeogeography, Palaeoclimatology, Palaeoecology,178 (3):165-196.
    [2]Adatte T, Keller G.1998. Increased volcanism, sea-leveland climatic fluctuations through the K/T boundary: mineralogical and geochemical evidences. Abstract, International Seminar on Recent Advances in the Study of Cretaceous Sections, Oil and Natural Gas Corporation Limited, Regional Geoscience Laboratory, Chennai, India,2.
    [3]Amundson R G, Chadwick O A, Sowers J M, et al.1988. Relationship between climate and vegetation and the stable carbon isotope chemistry of soils in the eastern Mojave Desert, Nevada. Quaternary Research,29 (3):245-254.
    [4]Amundson R, Chadwick O, Kendall C, et al.1996. Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid-North America. Geology,24 (1):23-26.
    [5]Arduino E.1992. Influence of climate on the iron oxide mineralogy of terra rossa. Clays and Clay Minerals, 40(1):8-13.
    [6]Birkeland P W.1999. Soils and Geomorphology. Oxford:Oxford Univ Press,430.
    [7]Bocherens H, Friis E, Mariotti A, et al.1993. Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants:Palaeoecological implications. Lethaia,26(4):347-358.
    [8]Boucot A J, Gray J.2001. A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Earth-Science Reviews,56 (1-4):1-159.
    [9]Boucot A J, 陈旭, Scotese C R, et al.2009显生宙全球古气候重建.北京:科学出版社.
    [10]Cerling T E, Quade J, Wang Y, et al.1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature,341 (6238):138-139.
    [11]Cerling T E, Wang Y, Quade J.1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature,361 (6410):344-345.
    [12]Cerling T E.1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters,71 (2):229-240.
    [13]Cerling T E.1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology,97(3):241-247.
    [14]Cerling T E, Quade J.1991. Stable carbon and oxygen isotopes in soil carbonates. Geological consequences of superplumes, Geology,19:963-966.
    [15]Cerling, T E, Hay R L.1986. An Isotopic Study of Paleosol Carbonate from Olduvai Gorge. Quaternary Research,25:63-78.
    [16]Chamley H.1989. Clay sedimentology. Berlin:Springer-Verlag.
    [17]Chamley H.1975. Se'dimentation argileuse en Mer Tyrrhe'ne'enne au Plio-Ple'istoce'ne d'apre's l'e'tude du forage JOIDES 132. Bull. Groupe Fr. Argiles 27, Strasbourg,97-137.
    [18]Cleveland D M, Nordt L C, Dworkin S I, et al.2008. Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic-Jurassic boundary:Implications for the biotic crisis? Geological Society of America Bulletin,120(11-12):1408-1415.
    [19]Clyde W C, Ting S, Snell K E, et al.2010. New Paleomagnetic and Stable-Isotope Results from the Nanxiong Basin, China:Implications for the K/T Boundary and the Timing of Paleocene Mammalian Turnover. The Journal of Geology,118:131-143.
    [20]Cohen A S, Coe A L, Kemp D B.2007. The Late Palaeocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions:a comparison of their time scale, associated environmental changes, causes and consequences. Journal of the Geological Society,164(6):1093-1108.
    [21]Cole D R, Monger H C.1994. Influence of Atmospheric CO2 on the Decline of C4 Plants during the Last Deglaciation, Nature,368:533-536.
    [22]Connin S L, Virginia R A, Chamberlain C P.1997. Isotopic study of environment al change from disseminated carbonate in polygenetic soils. Soil Science Society of America Journal,61:1710-1722.
    [23]Cruz M D, Duro F I.1999. New data on the kaolinite-potassium acetate complex. Clay Minerals,34: 565-577.
    [24]Deconinck J F, Amedro F, Baudin F, et al.2005. Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomaniane Campanian chalks from the east of the Paris Basin. Cretaceous Research,26: 171-179.
    [25]Devleeschouwer X, Herbosch A, Preat A.2002. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany). Palaeo-geography, climatology, ecology,181:171-193.
    [26]Diester-Haassa L, Robert B C, Chamley C H.1993. Paleoceanographic and paleoclimatic evolution in the Weddell Sea (Antarctica) during the middle Eocene-late Oligocene, from a coarse sediment fraction and clay mineral data (ODP Site 689). Marine Geology,114:233-250.
    [27]Doner H E, Sowers J M, Amundson R G, et al.1989. The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Science Society of America Journal,53(1):201-210.
    [28]Dorr.1990.222Rn flux and soil air concentration profiles in west-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone. Tellusv,20-28.
    [29]Ducloux J, Meunier A, Velde B.1976. Smectite, chlorite and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body, Massif Central, France. Clay Miner,11:121-135.
    [30]Dworkin S I, Nordt L, Atchley S.2005. Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate, Earth and Planetary Science Letters,237:56-68.
    [31]Erben H K, Ashraf A R, Bohm H.1995. Die Kreide/Tertiar-Grenze in Nanxiong-Becken:Kontinentalfazies, Sudostchina. Mainz, Steiner,32:1-245.
    [32]Esquevin J.1969. Influence de la composition chimique des illites sur leur cristallinite. Bull Cent Rech Pau S NPA,3:147-153.
    [33]Essenhigh R H.2001. Does CO2 really drive global warming? Chemical Innovation, American Chemical Society,31(5):44-46.
    [34]Folk R L.1968. Petrology of Sedimentary Rocks, Hemphill's, Austin, Texas.
    [35]Frakes L A, Francis J E, Syktus J I.1992. Climate Modes of the Phanerozoic:The History of the Earth's Climate over the Past 600 Million Years. Cambridge Univ, Press, Cambridge,277.
    [36]Frakes L A, Alley N F, Deynoux M.1995. Early Cretaceous ice rafting and climate zonation in Australia. International Geology Review,37:567-583.
    [37]Frakes L A, Francis J E.1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature,333:547-549.
    [38]Frakes L A.1999. Estimating the global thermal state from Cretaceous seas surface and continental temperature data, evolution of the Cretaceous Ocean-Climate System, Special Paper. Geological Society of America, Boulder, Colorado,332:49-58.
    [39]Friedli H, Lotscher H, Oeschger H, et al.1986. Icecore record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature,324:237-238.
    [40]Gingele F X, Deckker P D, Hillenbr C D.2001. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses:clay mineral evidence. Australian Journal of Earth Sciences, 48(6):867-874.
    [41]Han J, Keppens E, Liu T, et al.1997. Stable isotope composition of the carbonate concretions in loess and climate change. Quaternary International,37:37-43.
    [42]Hansen H J, Rasmussen K L, Liu Q S, Benjamini C W et al.1993. Correlation of marine and terrestrial Upper Cretaceous sediments by their magnetic susceptibility. Bull. Geo 1. Soc. Demmark,40:175-184.
    [43]Harland W B, Armstrong R L, Cox A V, et al.1990. A Geologic Time Scale 1989. Cambridge:Cambridge Univ Press,1-263
    [44]Hay W W, Deconto R M, Wold C N, et al.1999. Alternative global Cretaceous paleogeography. Evolution oft he Cretaceous Ocean Climate System. Geological Society of America, Special Paper,332:1-47.
    [45]Holtzapffel T.1985. Les Mineraux Argileux:Preparation, Analyse Diffractometrique et Determination. Soc Geol Nord Publ,12:1-136.
    [46]Huber B T, Norris R D, Macleod K G.2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology,30(2):123-126.
    [47]Humphrey D, Ferring C R.1994. Stable Isotopic Evidence for Latest Pleistocene and Holocene Climatic Change in North-Central Texas. Quaternary Research,41:200-213.
    [48]Stanley S, Josefino C.1997. Climate Variability in the Amundsen and Bellingshausen Seas. J. Climate,10: 697-709.
    [49]Jenkyns H C.2010. Geochemistry of oceanic anoxic events. Geochem, Geophys, Geosyst,10:1029-2009.
    [50]Jenkyns H C, Lawton J H, Marotzke J, et al.2003. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Abrupt climate change; evidence, mechanisms and implications: papers of a discussion meeting. Philosophical Transactions-Royal Society. Mathematical, Physical and Engineering Sciences,361:1885-1916.
    [51]Keeling C D, Whorf T P.2004. Atmospheric CO2 records from sites in the SIO air sampling network, in CDIAC. Oak Ridge:Carb on Dioxide Informat ion Analysis Center, Oak Ridge National Laboratory, 1957-2002.
    [52]Keller G.2001. The end Cretaceous mass extinction in the marine realm:year 2000 assessment. Planetary and Space Science,49:817-830.
    [53]Kelly E F, Amundson R G, Marino B D, et al.1991. Stable Carbon Isotopic Composition of Carbonate in Holocene Grassland Soils. Soil Science Society of America Journal,55:1651-1658.
    [54]Khademi H, Mermut A R.1999. Submicroscopy and stable isotope geochemistry of carbonate and associated palygorskite in Iranian Aridisols. European Journal of Soil Science,50:207-216.
    [55]Krumm S, Buggisch W.1991. Sample preparation effects on illites crystallinity measurements:grain size gradation and particle orientation. Metam Geol,9:671-677.
    [56]Kubler B.1964. Les argiles, indicateurs de metamorphisme. Rev. Inst. Franc. Petrol,19:1093-1112.
    [57]Kump L R, Arthur M A.1999. Interpreting carbon isotope excursions, carbonates and organic matter. Chemical Geology,181-198.
    [58]Lamy F, Klump J, Hebbeln D, et al.2000. Late Quaternary rapid climate change in northern Chile. Terra Nova,12(1):8-13.
    [59]Liu B, Philips F M, Campbell A R.1996. Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo mountains, southern Arizona:Implicate ion for paleoenvironmental change. Palaeogeography Palaeoclimat ology Palaeoecology,124(3-4):233-246.
    [60]Liu Q S, Hansen H J, Rasmussen K L, et al.1992. Magneto stratigraphy of the Cretaceous Tertiary Boundary of Datang Section at Nanxiong Basin, Guangdong Province. Special issue on Geophysical exploration, W uhan:China University of Geosciences Press,121-125.
    [61]Liu Z, Colin C, Huang W, et al.2007. Climatic and tectonic controls on weathering in South China and the Indochina Peninsula:Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry Geophysics Geosystems,8:1029-2006.
    [62]Liu Z, Zhao Y, Colin C, et al.2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Appl Geochem,24:2195-2205.
    [63]Madhavaraju J, Ramasamy S, Alastair R, et al.2002. Clay mineralogy of the Late Cretaceous and early Tertiary successions of the Cauvery Basin (southeastern India):implications for sediment source and palaeoclimates at the K/T boundary. Cretaceous Research,23:153-163.
    [64]Marion G M, Introne D S, Van C K.1991. The Stable Isotope Geochemistry of CaCO3 on the Tanana River Floodplain of Interior Alaska, U S A. Composition and Mechanisms of Formation, Chemical Geology,86: 97-110.
    [65]Mees F, Segers S, Ranst E V.2007. Paleoenvironmental significance of the clay mineral composition of Olduvai basin deposits, northern Tanzania. Journal of African Earth Sciences,47:39-48.
    [66]Meunier A.1980. Les mecanismes de l'alteration des graniteset le roledes microsystemes. Etude des arenas du massif granitique de Parthenay(Deux-Sevres). Mem. Soc. Geol. Fr.
    [67]Miller K G, Barrera E, Olsson R K, et al.1999. Does ice drive early Maastrichtian eustasy? Global 818O and New Jersey sequences. Geology,27:783-786.
    [68]Miller K G, Wright J D, Browning J V.2005. Visions of ice sheets in a greenhouse world. Marine Geology, 217:215-231.
    [69]Monger H C, Cole D R, Gish J W, et al.1998. Stablecarbon and oxygenisotopes in Quaternary soil carbonates as indicators of ecogeomorphic changes in the northern Chihuahuan Desert USA. Geoderma,82: 137-172.
    [70]Murru M, Ferrera C, Da Pelo S, et al.2003. The Palaeocene-Middle Eocene deposits of Sardinia (Italy) and their palaeoclimatic significance. Comptes Rendus-Academie des Sciences Geoscience,335(2):227-238.
    [71]Nesbitt H W, Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299:715-717.
    [72]Nord L C.2001. Stable Carbon and Oxygen Isotopes in Soils. Earth Sciences and Archaeology, edited by Paul Goldberg, Vance T. Holliday, and C. Reid Ferring. New York, Kluwer Academic/Plenum Publishers, 419-448.
    [73]Nordt L C, Hallmark T C, Wilding L P, et al.1998. Quantifying Pedogenic Carbonate Accumulations Using Stable Carbon Isotopes. Geoderma,82:115-136.
    [74]Nordt L C, Wilding L P, Hallmark C T, et al.1996. Stable Carbon Isotope Composition of Pedogenic Carbonate and their Use in Studying Pedogenesis. In Mass Spectrometry of Soils,133-154.
    [75]Nordt L, Atchley S, Dworkin S.2003. Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous. GSA Today.
    [76]Oerlemans J.2004. Correcting the Cenozoic δ18O deep-sea temperature record for Antarctic ice volume, Paleogeor, Paleoclimatol, Paleoecol,208:195-205.
    [77]Pandarinath K, Prasad S, Gupta S K.1999. A 75 ka record of palaeoclimatic changes inferred from crystallinity of illite from Nal Sarovar, western India. Journal of the Geological Society of India,54(5): 515-522.
    [78]Pardo A, Adatte T, Keller G, et al.1999. Paleoenvironmental changes across the Cretaceous Tertiary boundary at Koshak, Kazakhstan, based on planktic foraminifera and clay mineralogy. Palaeogeography, Palaeoclimatology, Palaeoecology,154:247-273.
    [79]Parrish J T.1998. Interpreting Pre-Quaternary Climate from the Geologic Record. Columbia University Press, 121-124.
    [80]Pendall E, Amundson R.1990. The Stable Isotope Chemistry of Pedogenic Carbonate in an Alluvial Soil from the Punjab, Pakistan. Soil Science,149:199-211.
    [81]Pendell E G, Harden J W, Trumbore S E, et al.1994. Isotopic approach to soil carbonate dynamics and implications for paleoclimatic interpret at ions. Quaternary Research,42:60-71.
    [82]Petschick R, Kuhn G, Gingele F.1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol,130:203-229.
    [83]Petschick R. Mac D.2000.4.2.2. http://servermac.geologie.un-frankfurt.de/Rainer.html.
    [84]Quade J, Cerling T E, Bowman J R.1989a. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature,342:163-166.
    [85]Quade J, Cerling T E, Bowman J R.1989b. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin,101(4):464-475.
    [86]Quade J, Cerling T E.1990. Stable isotopic evidence for a pedogenic origin of carbonates in Trench 14 near Yucca mountain, Nevada. Science,250:1549-1552.
    [87]Quigley R M, Martin R T.1963. Chloritized weathering products of a New England glacial till. Clays Clay Miner,10:107-116.
    [88]Robert C, Kennett J P.1997. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion:Clay mineral and oxygen isotope evidence. Geology,25(7):587-590.
    [89]Sian D V K.1997. Early Palaeocene palaeoclimatic inferences from fossil floras of the western interior, USA. Palaeogeography, Palaeoclimat ology, Palaeoecology,136:145-164.
    [90]Stern L A, Chamberlain C P, Reynolds R C, et al.1997. Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse. Geochimica et Cosmochimica Acta,61(4):731-744.
    [91]Stoll H M, Schrag D P.2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain:Glacial episodes in a greenhouse planet? GSA Bulletin,112:308-319.
    [92]Temgoua E, Pfeifer H R, Bitom D.2003. Trace element differentiation in ferruginous accumulation soil patterns under tropical rainforest of southern Cameroon, the role of climatic change. Science of the Total Environment,303(3):203-214.
    [93]Thirry M.2000. Palaeoclimatic interpretation of clay minerals in marine deposits:an outlook from the continental origin. Earth Science Review,49(124):201-221.
    [94]Vanderaveroet P.2000. Miocene to Pleistocene clay mineral sedimentation on the New Jersey shelf. Oceanol, acta,23(1):25-36.
    [95]Wahlen M, Allen D, Deck B, et al.1991. Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP ice core from central Greenland. Geophysical Research Letters,18:1457-1460.
    [96]Wang Y, Amundson R, Trumbore S.1994. A model for soil 14CO2 and it simplications for using 14C to date pedogenic carbonate. Geochimica et Cosmochimica Acta,58:393-399.
    [97]Wang Y, Zheng S.1989. Paleosols nodules as Pleist ocene paleoclimatic indicators, Luochuan, P. R. China. Palaeogeography, Palaeoclimatology, Palaeoecology,76:39-44.
    [98]Weaver C E.1960. Possible Uses of Clay Minerals in Search for Oil. AAPG Bulletin Volume,44:214-227.
    [99]Weeks L G.1953. Environment and mode of origin and facies relationships of carbonate concretions in shales. Journal of Sedimentary Research September.23:162-173.
    [100]Wilson P A, Norris R D.2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature,412:425-429.
    [101]Winkler A, Wolf-Welling T C W, Stattegger K, et al.2002. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene. International Journal of Earth Sciences,91(1):133-148.
    [102]Zachos J C, Lohmann K C, Walker J C G, et al.1993. Abrupt climate change and transient climates during the Paleogene:a marine perspective. J Geol,101:191-213.
    [103]Zachos J C, Quinn T M, Salamy K A.1996. High resolution deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography,11:251-266.
    [104]Zhao Z K, Mao X Y, Chai Z F, et al.2002. A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China:evidence from dinosaur eggshells. Palaeogeography, Palaeoclimatology, Palaeoecology,178:1-17.
    [105]曹珂,李祥辉,王成善.2006.白垩纪特殊沉积的古气候指示及红层定量古温度测量研究.四川地质学报,(4):199-203.
    [106]曹珂,李祥辉,王成善.2008.四川盆地白垩系粘土矿物特征及古气候探讨.地质学报,(1):115-123.
    [107]曾德敏,胡济民.1991.南雄盆地晚白垩世腹足类口盖化石.古生物学报,(3):406-412.
    [108]曾允孚,夏文杰.1986.沉积岩石学.北京:地质出版社,
    [109]陈丕基.1986.广东南雄上湖组叶肢介化石的发现—并论中国古新世陆相地层.古生物学报,(4):380-393.
    [110]陈涛,王欢,张祖青,等.2003.粘土矿物对古气候指示作用浅析.岩石矿物学杂志,(4):416-420.
    [111]陈跃辉.1994.南雄断裂构造剥离作用及其与铀成矿的关系.铀矿地质,(3):168-174.
    [112]程守田,刘星,郭秀蓉,等.2000.古沙漠沉积及其层序单元—以鄂尔多斯白垩纪内陆古沙漠盆地为例.地球科学,(6):587-591.
    [113]储澄.1986.湖南晚白垩世晚期红层.地层学杂志,(1):54-59.
    [114]关士聪,江圣邦,袁凤钿,等.1983.中国南方几个红盆对比与生油层—从南雄标准剖面谈起.湖南地质,(2):1-8.
    [115]洪汉烈.2010.黏土矿物古气候意义研究的现状与展望.地质科技情报,(1):1-8.
    [116]黄成敏,Retallack Gregory John,王成善.2010.白垩纪钙质古土壤的发生学特征及古环境意义.土壤学报,(6):1029-1038.
    [117]黄仁金.1988.广东南雄盆地白垩系与第三系界线及轮藻化石.古生物学报,(4):457-468.
    [118]江新胜,潘忠习,付清平.2000.鄂尔多斯盆地早白垩世沙漠古风向变化规律及其气候意义.中国科学(D辑:地球科学),(2):195-201.
    [119]拉塞尔D.A.,拉塞尔D.E.,斯威特A.R.,等.1993.关于南雄盆地K/T界线地层序列的几个问题.古脊椎动物学报,(2):139-145.
    [120]蓝先洪.2001.海洋沉积物中粘土矿物组合特征的古环境意义.海洋地质动态,(1):5-7.
    [121]李出安,邹和平.2011.广东南雄断裂带Ar-Ar年龄及其地质意义.中山大学学报(自然科学版),(1):129-132.
    [122]李曼英.2005.安徽宣州晚白垩世和古近纪孢粉组合.微体古生物学报,(1):59-77.
    [123]李佩贤,程政武,张志军,等.2007.广东南雄盆地的“南雄层”和“丹霞层”.地球学报,(2):181-189.
    [124]李思田.1997.中国东部及邻区中、新生代盆地演化及地球化学动力学背景.武汉:中国地质大学出版社,
    [125]李相博,陈践发.1998.植物碳同位素分馏作用与环境变化研究进展.地球科学进展,(3):70-75.
    [126]李祥辉,陈斯盾,曹珂,等.2009.浙闽地区白垩纪中期古土壤类型与古气候.地学前缘,(5):63-70.
    [127]李祥辉,王成善,崔杰.2005.西藏岗巴地区海相上白垩统碳、氧同位素对比实验结果偏差分析.矿物岩石地球化学通报,(3):190-194.
    [128]李祥辉,徐宝亮,陈云华,等.2008.华北—东北南部地区中生代中晚期粘土矿物与古气候.地质学报,(5):683-691.
    [129]廖瑞君,衷存堤,肖晓林.2003.江西白垩纪—新近纪陆相红色盆地的盆缘类型划分与盆地充填样式.地质通报,(9):680-685.
    [130]刘玲,李祥辉,王尹,等.2012.浙闽地区白垩纪早中期黏土矿物组成特征及其古气候显示.沉积学报,(1):120-127.
    [131]刘云,王宗哲.1986.广东南雄盆地白垩-第三系界线地层岩性特征及环境分析.地层学杂志,(3):190-203.
    [132]隆浩,王晨华,刘勇平,等.2007.粘土矿物在过去环境变化研究中的应用.盐湖研究,(2):21-25.
    [133]路凤香,桑隆康.2002.岩石学.北京:地质出版社,
    [134]舒良树,邓平,王彬,等.2004.南雄诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约.中国科学D辑地球科学,1(34):1-13.
    [135]汤艳杰,贾建业,谢先德.2002.粘土矿物的环境意义.地学前缘,(2):337-344.
    [136]田晓雪,雒昆利,谭见安,等.2005.黑龙江嘉荫地区白垩系与古近系界线附近的古气候分析.古地理学报,(3):425-432.
    [137]汪品先.2002.气候演变中的冰和碳.地学前缘,(1):85-93.
    [138]王成善,李祥辉.2003.沉积盆地分析原理与方法.北京:高等教育出版社,
    [139]王东坡,张立平,刘立,等.1996.松辽盆地白垩纪冰筏沉积的发现及其地质意义.长春地质学院学报,(4):23-28.
    [140]谢振东,杨永革.2001.江西南雄盆地晚白垩世主田组中孢粉组合新发现.中国区域地质,(3):331-332.
    [141]续晓璟,咎立宏,程捷.2006.新疆吐鲁番盆地陆相白垩纪与古近纪界线的环境指标.现代地质,(3):423-428.
    [142]于开平,韩广民,杨风丽,等.2005.浙江长兴煤山剖面P/T界线附近粘土矿物研究.沉积学报,(1):108-112.
    [143]张乃娴,万国江,马玉光.2000.威宁草海沉积物中的粘土矿物及其环境记录.地质科学,(2):206-211.
    [144]张清如.1980.广东南雄盆地古新世孢粉组合.106-164.
    [145]张显球,李罡.2008.广东南雄盆地岁佛寨群的介形类动物群.微体古生物学报,(1):44-77.
    [146]张显球,林建南,李罡,等.2006.南雄盆地大塘白垩系-古近系界线剖面研究.地层学杂志,(4):327-340.
    [147]张显球,凌秋贤.2004.南雄盆地白垩—古近系(E/K)界线研究现状.见:董为主编,第九届中国古脊椎动物学学术年会论文集.北京:海洋出版社.
    [148]张显球.1984.南雄盆地坪岭剖面罗佛寨群的划分及其生物群.地层学杂志,(4):239-254.
    [149]张显球.1992.丹霞盆地白垩系的划分与对比.地层学杂志,(2):81-95.
    [150]张显球.1992.广东南雄盆地上湖组介形类动物群及白垩-第三系界线.古生物学报,(6):678-702.
    [151]赵资奎,毛雪瑛,柴之芳,等.1998.广东南雄盆地白垩系第三系(K/T)交界恐龙蛋壳的铱丰度异常.中国科学(D辑:地球科学),(5):425-430.
    [152]赵资奎,严正.2000.广东南雄盆地白垩系-第三系界线剖面恐龙蛋壳稳定同位素记录:地层及古环境意义.中国科学(D辑:地球科学),(2):135-141.
    [153]赵资奎,叶捷,李华梅,等.1991.广东省南雄盆地白垩系—第三系交界恐龙绝灭问题.古脊椎动物学报,(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700