用户名: 密码: 验证码:
多天线系统的分集复用折衷性能及天线选择技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信多天线(MIMO)技术是分别在发送端和接收端采用多天线系统的通信技术,为提高无线通信系统的容量或可靠度提供了重要的解决方案。
     多天线系统可以用作空间多路复用系统,提高系统的带宽效率,也可以用作分集系统,用来提高系统的性能,如何在分集和复用之间取得很好的折衷性能是空时编码必须处理的问题。另外,如何全面地评价基于分集或复用增益的两类空时方案系统也是一个值得研究的问题。
     无论采用哪种方式使用多天线,和单入单出系统相比,多天线系统的复杂性和成本更高。因此,在保持多天线系统的性能前提下,如何降低系统的复杂性和成本是一个重要的研究课题。目前,除高效的编码方法外,天线选择(AS)方法引起了研究者的广泛关注。天线选择技术,就是在发送端和接收端安装了比射频链路更多的天线元件,根据一定的准则从全部可用的天线中选择最佳的天线子集发送和接收信号。
     本文在研究多天线技术的基础上,针对多天线系统面临的上述问题,对多天线系统的分集复用折衷性能及天线选择技术进行了深入的研究,取得了以下几个方面的研究成果:
     1)提出了一种并行级联空时格码(PC-STTC)方案,可以在空时格码的复杂度和性能之间取得折衷,仿真验证了其性能并进行了外信息转移(EXIT)图表分析;提出并验证了空时Turbo格码(ST-Turbo-TCM)天线选择系统;基于OOC交织器的空时传输方案,给出了其迭代接收机结构,并验证分析了其性能。
     2)分析了线性弥散码(LDC)方案的分集复用折衷性能。LDC编码结构的不唯一性使得它可以在保证容量增益的同时取得很好的分集增益,为了进一步的研究和揭示LDC在多天线信道中的性能,本文着力于分析LDC在慢衰落和快衰落信道下的分集复用增益性能。分析结果表明,慢衰落信道下LDC方案对于任意的空间复用增益,都可以得到严格意义上最优的分集增益,即可以取得最优的分集复用增益折衷性能。快衰落信道下LDC可以同时取得空间和时间分集增益。
     3)分析得出了严重衰落信道环境下的分集复用折衷性能函数。分集复用增益折衷函数可以全面的评估多天线系统性能,然而大部分研究结果基于Rayleigh衰落信道。本文基于严重衰落复多变量t分布(CMT)信道模型,推导了其分集复用折衷性能函数,研究结果表明信道的最大特征值及信道模型的自由度(CMDF),即衰落的程度,与分集复用性能密切相关。如果信道模型的自由度趋于无穷大,则严重衰落信道的折衷函数与Rayleigh衰落信道的折衷函数趋于一致。
     4)在天线选择研究的基础上提出了一种新的天线选择算法。天线选择算法在天线选择系统中具有重要作用,其目标是找到信道矩阵,它比同等阵列的信道矩阵提供更好的信道容量或错误性能。本文提出了一种基于最优化信道容量的天线选择算法,该算法利用调整后的Tanimoto系数来表征信道矩阵行(列)向量的相关度。根据计算出的相关度,该算法选择出具有最小相关程度和最大向量范数的天线子集。与性能最优的选择算法相比,该算法在保证性能的前提下具有很低的复杂度;与随机选择算法相比较,该算法可以提高系统容量和平均信噪比(SNR)。
     5)研究了非理想信道估计下天线选择系统的性能。天线选择系统的性能分析对于认识和设计天线选择系统具有重要的意义,然而,大部分研究成果假设了在发送端或接收端能准确地获得信道参数。本文给出了非理想信道估计下天线选择系统的性能,分别使用两种不同的方法得出了其误符号率(SER)性能,仿真结果表明,无论在理想或有误差的信道信息下,本文所提出的理论结果都逼近于实际的系统性能。数值分析结果表明,在低SNR区域提高信道估计的准确程度比增加可供选择的天线数目更能提高系统的SER性能。在以上理论研究的基础上,提出了一种优化的功率分配方案,仿真结果显示,优化的功率分配方案比平均功率分配方案有将近3dB的性能增益,比理想信道信息时仅有1dB的性能损失,这表明在天线选择系统中采取合适的功率分配方案可以很好的改善系统性能。
The multiple antennas (MIMO: Multiple Input Multiple Output) technology of wireless communications is advanced technology applying multiple antennas on both the transmitter and the receiver. It provides an optimal key solution for improving the capacity or the reliability of the wireless communications.
     Multiple antennas can be used either for increasing the amount of diversity or the number of degrees of freedom in wireless communication system, but there is a fundamental tradeoff between how much of each scheme can get. Most space time schemes aim at maximizing either of them, and how to evaluate the diversity-based and the multiplexing-based schemes is a problem.
     Multiple antennas system typically implies the increased cost as compared with the single antenna system. So it is worth studying for how to decrease the cost with unchanged performance. Except for the high efficient space time coding techniques, the antenna selection (AS) technique is proposed. Antenna selection, as it is named, is to select some antennas out of the total antenna array according to a certain criterion. It has been shown to be a low cost and low complexity alternative to mitigate the problem of the multiple antennas system.
     This paper has made deep research in the diversity-multiplexing tradeoff performance of the multiple antennas system and the AS techniques. The main contributions are as following:
     1) A parallel concatenated space time trellis codes (PC-STTC) scheme is proposed. It can achieve the tradeoff between the performances and the complexity of space time trellis codes. Simulation is provided to verify this scheme, and the EXIT (Extrinsic Information Transfer) chart is given to analyze its performance. Meanwhile, this paper proposes and verifies the scheme combing the space time turbo trellis codes and the AS techniques. A kind of space time scheme using the only one cycle (OOC) interleaver is introduced. The iterative receiver is designed and the performance simulation under different channels is done.
     2) This paper analyzes the tradeoff performance of the linear dispersive codes (LDC) over both the block fading and the fast fading channels. LDC, as a kind of space time scheme, was proved to be able to achieve the favorable diversity properties while still guaranteeing the channel capacity. In order to provide a more complete evaluation of the achievable performance for the LDCs scheme over multiple antenna channels, this paper makes an effort to investigate on the diversity-multiplexing tradeoff performance of the LDCs scheme over both the block fading and the fast fading channels. Results indicate that the LDCs scheme can achieve the optimal diversity-multiplexing tradeoff over block fading channels. For fast fading channels the analysis shows that LDCs can achieve both the space diversity and the time diversity simultaneously.
     3) The diversity-multiplexing tradeoff performance for the complex multivariate t (CMT) channel model is provided. The diversity-multiplexing tradeoff function provides a complete view to evaluate the performance of multiple antenna schemes for a given multiple antennas channel. However, most of the previous work considers the richly scattered Rayleigh fading channel environment. Based on the severely fading CMT channel model, this paper makes efforts to derive the diversity-multiplexing tradeoff function. It is found that the CMT channel tradeoff performance is specially related to the maximum eigenvalue of the channel matrix and the channel model's degrees of freedom (CMDF), which represents the extent of the fading. For the infinite CMDF, the diversity-multiplexing tradeoff function coincides with the existing result for the richly scattered Rayleigh fading channel.
     4) A new antenna selection algorithm for MIMO wireless systems is proposed. The objective of the antenna selection is to find the optimal antenna subset which can provide better capacity or performance. In this paper, the modified Tanimoto coefficient is used to compare the similarity of the rows/columns of the channel matrix. Based on the calculated similarity, the proposed algorithm chooses the antenna subset, which has the maximum product of dissimilarity and Frobenius norm. The proposed algorithm requires low computational complexity as to the optimal selection but with comparative outage capacity and average signal to noise ratio (SNR) performance. It can improve both the outage capacity and the average SNR as compared to the random selection.
     5) The theoretical performance for the antenna selection system with channel estimation error is derived. The error performance analysis is important for the design of the AS system. However, most of the research in the literature assumes ideal channel information at the receiver to simplify the problem. This paper quantifies the effect of imperfect channel estimation on multiple antenna selection system. And the symbol error rate (SER) performance is derived using two different methods. The simulation results show that the theoretic result matches the system performance with whether ideal or noisy channel information. Numerical results show that in the lower SNR region, the system performance depends more on the quality of channel estimation than on the number of the transmit antenna. Based on the theoretical analysis, a novel power allocation scheme is proposed. The proposed power allocation scheme can achieve about 3dB gain as to the equal power allocation scheme. And it suffers only 1dB performance loss as compared with the ideal channel information situation. This shows that adapting a reasonable power allocation scheme will improve the system performance dramatically.
引文
[1]B.G.Evans,K.Baughan.Visions of 4G.Journal of Electronics & Communication Engineering,2000,12(6):293-303.
    [2]I.E.Telatar.Capacity of multi-antenna Gaussian channels.Europ.Trans.Yelecommun.,1999,11(10):585-595.
    [3]G.J.Foschini.Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas.Bell Labs Technical Journal,1996,1 (2):41-59.
    [4]P.W.Wolniansky,G.J.Foschini,et al.VBLAST:an architecture for realizing very high date rates over rich sacttering wireless channels.ISSS-98,1998,295-300.
    [5]V.Tarokh,N.Seshadri,A.R.Calderbank.Space-time codes for high data rate wireless communications:performance criterion and code construction [J].IEEE Trans.Inform.Theory,1998,44(3):744-765.
    [6]J.P Kermoal,L.Schumacher,K.I.Pedersen,et al.A stochastic MIMO radio channel model with experimental validation.IEEE J.Select.Areas Commun.,2002,20(6):1211-1226.
    [7]J.W.Wallace,M.A.Jensen,A L Swindlehurst,et al.Experimental characterization of the MIMO wireless channel:Data acquisition and analysis.IEEE Trans.Wireless Commun.,2003,2(2):335-343.
    [8]D.Chizhik,J.Ling,P.W.Wolniansky,et al.Multiple-input-multiple-output measurement and modeling in Manhattan.IEEE J.Select.Areas Commun.,2003,21 (3):321-331.
    [9]A.Abdi,J.A.Barger,M.Kaveh.A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station [J].IEEE Trans.Veh.Tech.,2002,51 (3):425-434.
    [10]A.Abdi,M.Kaveh.A space-time correlation model for multi element antenna systems in mobile fading channels.IEEE J.Select.Areas Commun.,2002,20(3):550-560.
    [11]武刚.多入多出无线通信中的信道模型空时编码及关键技术研究.电子科技大学博士学位论文,2004.
    [12]J.K.Han,J.G.Yook,H.K.Park.A deterministic channel simulation model for spatially correlated Rayleigh fading.IEEE Commun.Lett.,2002,6(2):58-60.
    [13]A.G.Burr.Evaluation of capacity of indoor wireless MIMO channel using ray tracing.Inter. Zurich Seminar, Zurich, Switzerland, 2002:281-286.
    
    [14] A. F. Molisch. A generic model for MIMO wireless propagation channels in macro-and microcells. IEEE Trans.Signal Processing, 2004, 52(1):61-71.
    
    [15] K. Yu, M. Bengtsson, B. Ottersten, et al. A wideband statistical model for NLOS indoor MIMO channels. IEEE VTC, 2002, 1:370-374.
    
    [16] L. Zheng, D. N. C. Tse. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels. IEEE Trans. Inform.Theory, 2003,49(5): 1073-1096.
    
    [17] A. Gorokhov, D. Gore, A. Paulraj. Receive antenna selection for MIMO flat-fading channels: theory and algorithms. IEEE Trans. Inform.Theory, 2003,49(10):2687-2696.
    
    [18] D. J. Love, R. W. Heath, T. Strohmer. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans. Inform. Theory, 2003, 49(10):2735-2747.
    
    [19] D. P. Palomar, J. M. Cioffi, M. A. Lagunas. Uniform power allocation in MIMO channels: a game-theoretic approach. IEEE Trans. Inform. Theory, 2003,49(7):1707-1727.
    
    [20] S. K. Jayaweera, H. V. Poor. Capacity of multiple-antenna systems with both receiver and transmitter channel state information. IEEE Trans. Inform. Theory, 2003, 49(10):2697-2709.
    
    [21] P. F. Driessen, G. J. Foschini. On the capacity formula for multiple input-multiple output wireless channels: a geometric interpretation. IEEE Trans. Commun., 1999, 47(2): 173-176.
    
    [22] P. J. Smith, L. M. Garth, S. Loyka. Exact capacity distributions for MIMO systems with small numbers of antennas. IEEE Commun. Lett., 2003, 7(10):481-483.
    
    [23] D. Shiu, G. J. Foschini, M. Gans, et al. Fading correlation and its effect on the capacity of multi-element antenna systems. IEEE Trans. Commun., 2000, 48(3):502-513.
    
    [24] M. T. Ivrlac, W. Utschick, J. A. Nossek. Fading correlations in wireless systems. IEEE J. Select. Areas Commun., 2003, 21(5):819-828.
    
    [25] A. L. Moustakas, S. H. Simon, A. M. Sengupta. MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis. IEEE Trans. Inform. Theory, 2003, 49(10):2545-2561.
    
    [26] M. Chiani, M. Z. Win, A. Zanella. On the capacity of spatially correlated MIMO Rayleigh fading channels. IEEE Trans.lnform.Theory, 2003, 49(10):2363-2371.
    
    [27] M. Kang, M. S. Alouini. Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems. IEEE J. Select. Areas Commun., 2003, 21(3):418-426.
    
    [28] R. K. Mallik. The pseudo-Wishart distribution and its application to MIMO systems. IEEE Trans. Inform.Theory, 2003, 49(10):2761-2769.
    [29] L. Dai, S. Sfar, K. B. Letaief. Towards a better diversity multiplexing tradeoff in MIMO systems. IEEE ICC 2005, 2422-2426.
    
    [30] O. Oyman, R. U. Nabar, H. Bolcskei, et al. Characterizing the statistical properties of mutual information in MIMO channels. IEEE Trans. Signal Processing, 2003, 51(11):2784-2795.
    
    [31] S. Catreux, L. J. Greenstein, V. Erceg. Some results and insights on the performance gains of MIMO systems. IEEE J. Select. Areas Commun., 2003, 21(5):839-847.
    
    [32] A. Khoshnevis, A. Sabharwal. On diversity and multiplexing gain of multiple antenna systems with transmitter channel information. Proc. Allerton Conf. Commun., Control and Comp., Oct 2004.
    
    [33] T. T. Kim and M. Skoglund. Diversity-Multiplexing tradeoff in MIMO channels with partial CSIT. IEEE Trans. Inform. Theory, 2007, 53(8): 2743-2759.
    
    [34] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun, 1998, 16(8): 1451-1458.
    
    [35] V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theory, 1999, 45(5): 1456-1467.
    
    [36] V. Tarokh, H. Jaafrkhani. A Differential Detection Scheme of Transmit Diversity. IEEE J. Select. Areas Commun., 2000, 18(7): 1169-1174.
    
    [37] B. L. Hughes. Differential Space-Time Modulation. IEEE Trans. Inform. Theory, 2000, 46(7):2567-2578.
    
    [38] B. M. Hoehwald, T. L. Marzetta. Unitary Space-Time Modulation of Multiple Antenna Communications in Rayleigh Flat Fading channels. IEEE Trans. Inform. Theory, 2000, 46(2):543-564.
    
    [39] C. Berrou, A. Glavieux, P. Thititmajshima. Near Shannon limit error-correcting coding and decoding: turbo codes (1). IEEE ICC'93, Geneva, Switzerland, 1993, 1064-1070.
    
    [40] W. Firmanto, Z. Chen, J. Yuan, and B. Vucetic. Design of space-time turbo trellis coded modulation for fading channels. IEEE GLOBECOM, San Antonio, TX, 2001, 1093-1097.
    
    [41] Y. Hong, J. Yuan, Z. Chen, et al. Space-Time Turbo Trellis Codes for Two, Three and Four Transmit Antennas. IEEE Trans. Veh. Tech., 2004, 53(2): 318-328.
    
    [42] I. Bahei, T. M. Duman. Combined Turbo Coding and Unitary Space-Time Modulation. IEEE Trans. Commun., 2002, 50(8):1244-1249.
    
    [43] H. Gamal, M. Damen. Universal Space-Time Coding. IEEE Trans. Inform. Theory. 2003,49(5):1097-1119.
    
    [44] S. Haykin, M. Sellathurai, Y. Dejong, T. Willink. Turbo-MIMO for Wireless Communications. IEEE Commun.Mag.,2004,42(10):48-53.
    [45]M.Sellathurai,Haykin.Turbo-BLAST:Perofrmance Evaluation in Correlated Rayleigh-Fading Environment.1EEE J.Select.Areas Commun.,2003,21(3):340-349.
    [46]M.Sellathurai,Haykin.Turbo-BLAST for Wireless Communications:Theory and Experiments.IEEE Trans.Signal Proeessing,2002,50(10):2538-2546.
    [47]A.F.Molisch,M.Z.Win,J.H.Winters.Capacity of MIMO systems with antenna selection.IEEE ICC,2001:570-574.
    [48]A.F.Molisch,M.Z.Win,J.H.Winters.Reduced-complexity transmit/receive diversity systems.IEEE VTC,2001 :1996-2000.
    [49]D.A.Gore,R.U.Nabar,A.Paulraj.Selecting an optimal set of transmit antennas for a low rank matrix channel.IEEE Conf.Acoustics,Speech,and Signal Processing,2000,5:2785-2788.
    [50]苏彦兵,谈振辉.基于天线选择的低秩信道MIMO系统容量研究,电子学报,2004,32(3):395-398.
    [51]王君,朱世华,王磊.多输入多输出系统发射天线选择对系统信道容量的影响,西安交通大学学报,2005,39(2):245-248.
    [52]黎海涛,张靖,陆建华.天线选择对MIMO信道容量的影响,电子与信息学报,2003,25(7):1000-1005.
    [53]Y.S.Choi,A.F.Molisch,M.Z.Win,J.H.Winter.Fast algorithms for antenna selection in MIMO systems.IEEE VTC,2003,3:1733-1737.
    [54]J.S.Park,D.J.Park.A new antenna selection algorithm with low complexity for MIMO wireless systems.IEEE ICC,2005,2308-2312.
    [55]H.Yang,G.Li.Novel Antenna Selection Algorithm Based on Tanimoto Similarity.Journal of System Engineering and Electronics.2008,19(3):624-627.
    [56]禹化龙,秦卫平.MIMO系统中一种新的接收天线选择算法,南京邮电大学学报(自然科学版),2006,26(1):57-61.
    [57]盛延敏,奚宏生,王子磊,赵宇.一种用于MIMO系统的快速天线选择算法,电子与信息学报,2006,28(9):1703-1705
    [58]D.A.Gore,A.J.Paulraj.MIMO antenna subset selection with space time coding,IEEE Trans.Signal Processing,2002,50(10):2580-2588.
    [59]Z.Chen,J.B.Vucetic,J.Yuan.Performance analysis of the Alamouti scheme with antenna selection in Rayleigh fading channels.IEEE Globecom,San Francisco,2003,259-261.
    [60]Z.Chen,J.B.Vucetic,J.Yuan.Performance of the Alamouti scheme with antenna selection. Electronics Letters,2003,39(23):1666-1668.
    [61]Z.Chen.Asymptotic Performance of Transmit Antenna Selection With Maximal-Ratio Combining for Generalized Selection Criterion.IEEE Commun.Letters,2004,8(4):247-249.
    [62]吴惠兰,朱明华,王文博,刘元安.最优天线选择空时分组码的性能分析,电讯技术,2003,43(2):30-32,37.
    [63]庄铭杰,郭东辉.多发射天线选择的无线信道序统计特性研究,电波科学学报,2005,20(6):789-794.
    [64]H.Yang,G.Li,Y.Xiong,et al.Combining Space Time Turbo Trellis Codes with Transmit Antenna Selection.IEEE ICCCAS,2005,257-261.
    [65]I.Bahceci,Y.Altunbasak,T.M.Duman.Space-Time Coding over Correlated Fading Channels with Antenna Selection.IEEE ICC,2004,254-257.
    [66]杨亮,秦家银.Nakagami-m Keyhole衰落信道下MIMO系统容量及天线选择,电子学报,2006,34(1):107-109.
    [67]Z.Chen,J.B.Vucetic,J.Yuan.Space time trellis codes with transmit antenna selection.Electronics Letters,2003,39(11):657-659.
    [68]A.Ghrayeb,A.Sanei,Y.Shayan.Space-time trellis codes with receive antenna selection in fast fading.Electronics Letters,2004,40(10):256-258.
    [69]A.Ghrayeb.A Survey on Antenna Selection for MIMO Communication Systems.IEEE ICTTA,2006,4(2):2104-2109.
    [70]L.Xiao,X.Dong.Error Performance of Selection Combining and Switched Combining Systems in Rayleigh Fading Channels With Imperfect Channel Estimation.IEEE Trans.Veh.Tech.,2005,54(6):2054-2065.
    [71]M.Zhuang,B.Lin.Performance analysis of Alamouti Scheme with Imperfect Multiple Transmit Antennas Selection in Rayleigh fading channel.IEEE ISAPE,Guilin,2006:1-4.
    [72]Q.Ma,C.Tepedelenlioglu.Antenna Selection for Space-time Coded Systems with Imperfect Channel Estimation.IEEE Trans.Wireless Commun.,2007,6(2):710-719.
    [73]李小玮.MIMO系统空时编码的Turbo迭代检测方法研究.华南理工大学博士论文,2006.
    [74]许宏吉.发射分集和波束形成优化设计及其盲接收技术研究.山东大学博士论文,2005.
    [75]H.Yang,Y.Xiong,W.Bai,et al.Iterative Pilot Symbol Assisted Channel Estimation in Turbo OFDM system.IEEE VTC,2004,1:465-468.
    [76]H.Yang,Y.Xiong,W.Bai,et al.Joint Dynamic Detection and Pilot Symbol Aided Channel Estimation for MIMO OFDM Systems.IEEE ICCCAS,2004,1:304-307.
    [77]Y.Xiong,H.Yang,W.Bai,et al.Dynamic detector with block interleaver in MIMO OFDM systems.IEEE VTC,2004,4726-4729.
    [78]Y.Xiong,H.Yang,W.Bai,et al.Dynamic Detection for Uplink of MIMO OFDM System in Wireless Communication.IEEE ICSP,2004,575-578.
    [79]H.Yang,Y.Xiong,W.Bai,et al.Joint Iterative Pilot Assisted Channel Estimation and Detection in Turbo OFDM System.2004全国博士生学术论坛,成都,2004.
    [80]J.Rinne,M.Renfors.Pilot spacing in orthogonal frequency division multiplexing systems on practical channels.IEEE Trans.Consum.Electron.,1996,42(11):959-962.
    [81]Y.Li,S.Nambirajan,S.Ariyavisitakul.Channel estimation for OFDM systems with transmitter diversity in mobile Wireless channels.IEEE J.Select.Areas Commun.,1999,17(3):343-347.
    [82]Y.Li,L.J.Cimini,N.R.Sollenberger.Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels.IEEE Trans.Commun.,1998,46(7):1019-1027.
    [83]C802.20-03/42.Channel Modeling for MBWA.IEEE 802.20 Session#2.
    [84]Y.Dai,Z.Lei,S.Sun.Iterative Interference Cancellation and Ordered Array Processing for Groupwise Space Time Trellis Coded (GSTTC) Systems.IEEE WCNC,2004,2323-2328.
    [85]Z.Chen,B.Vucetic.Space-time trellis codes with two,three and four transmit antennas in quasi-static flat fading channels.Electronics Letters,2002,38(10):462-464.
    [86]杨海芬,卜志勇,张小东,王海峰.空时格码发射、接收装置及其对应的信息发射接收方法.中国发明专利,申请号:200510025727.6
    [87]H.Yang,G.Li,Z.Guo,Y.Xiong.Performance and EXIT Analysis of Parallel Concatenated Space Time Trellis Codes.Accepted by Journal of System Engineering and Electronics.
    [88]S.T.Brink.Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes.IEEE Trans.Commun.,2001,49(10):1727-1737.
    [89]H.Yao,G.W.Wornell.Achieving the full MIMO diversity-multiplexing frontier with rotation-based space-time codes.Proc.41st Annu.Allerton Conf.Communication,Control,Computing,Monticello,IL,Oct.2003.
    [90]J.C.Belfiore,G.Rekaya,E.Viterbo.The Golden code:A 2*2 full-rate space-time code with nonvanishing determinants.IEEE Trans.Inform.Theory,2005,51 (4):1432-1436.
    [91]P.Elia,K.R.Kumar,S.A.Pawar,P.V.Kumar and H.F.Lu.Explicit space-time codes achieving the diversity-multiplexing gain tradeoff.IEEE Trans.Inform.Theory,2006,52(9):3869-3884.
    [92]E.H.Gamal,G.Caire,M.O.Damen.Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels. IEEE Trans. Inform. Theory, 2004,50(6):968-985.
    
    [93] H. Yang, G. Li, T. Lin. On the Diversity and Multiplexing Tradeoff Performance of Linear Dispersive Codes. Accepted by IET Trans. Commun.
    
    [94] B. Hassibi, B. M. Hochwald. High-rate codes that is linear in space and time. IEEE Trans. Inform. Theory, 2002, 48(7): 1804-1824.
    
    [95] R. W. Health, A. J. Paulraj. Linear dispersion codes for MIMO systems based on frame theory. IEEE Trans. Signal Processing, 2002, 50(10): 2429-2441.
    
    [96] G. Alfano, A. M. Tuline. Eigenvalue statistics of finite-dimensional random matrices for MIMO wireless communication. IEEE ICC, 2006, 4125-4129.
    
    [97] S. H. Choi, P. Smith, B. Allen, et al. Severely Fading MIMO Channels: Models and Mutual Information. IEEE ICC, 2007, 4628-4633.
    
    [98] R. J. Muirhead. Aspects of Multivariate Statistical Theory. John Wiley and Sons, 2003.
    
    [99] A. Gorokhov, D. A. Gore, A. Paulraj. Receive antenna selection for MIMO spatial multiplexing. IEEE Trans. Signal Processing, 2003, 11(51):2796-2807.
    
    [100] J. Park and D. Park. A new antenna selection algorithm with low complexing for MIMO wireless systems. IEEE ICC, 2005, 2308-2312.
    
    [101] Y. S. Choi, A. F. Molisch, M. Z. Win, et al. Fast algorithms for antenna selection in MIMO systems. IEEE VTC, 2003, 3:1733-1737.
    
    [102] R. You, H. Li, and Y. B. Ness. Diversity Combining With Imperfect Channel Estimation. IEEE Trans. Commun., 2005, 53(10):1655-1662.
    
    [103] J. G. Proakis. Digital Communications, 3rd Edition, New York: McGraw-Hill, 1995.
    
    [104] H. A. David and H. N. Nagaraja. Order Statistics, 3rd Edition, John Wiley & Sons, Inc.,2003.
    
    [105] Z. Wang, G. B. Giannakis. A simple and general parameterization guantifying performance in fading channels. IEEE Trans. Commun., 2003, 51(8): 1389-1398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700