用户名: 密码: 验证码:
卡尔曼滤波理论及其在混沌通信中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌是一种普遍存在于非线性系统的具有确定性和类随机特性的动力学行为。也由于混沌信号具有非周期性、对初始值的高度敏感性和宽带频谱等特征,它在通信领域有潜在的应用。
     在混沌通信中,很多问题可以用自适应滤波技术解决。卡尔曼滤波器(KF)或扩展卡尔曼滤波器(EKF)是在线性或非线性高斯条件下的最优动态滤波器,它们在混沌通信中已有了一些应用。它们与无先导变换结合可以获得精度较高、计算方便的非线性滤波器——无先导卡尔曼滤波器(UKF),更能很好地应用于混沌通信中。
     本论文紧紧围绕混沌通信这一主题,以卡尔曼滤波器理论为基础,重点研究卡尔曼滤波及无先导卡尔曼滤波算法在混沌键控、混沌参数估计、盲信道均衡、混沌信号盲分离等关键问题中的应用。主要内容涉及:
     1、对混沌同步及混沌通信相关知识进行了概述,其中重点说明了几种非相干参数估计算法、相干混沌移位键控(CSK)和差分混沌移位键控(DCSK)的原理,分析了它们的优缺点。针对DCSK通信系统抗多径衰落的能力有限的问题,提出并仿真实现了一种多径衰落信道下DCSK通信系统的分集接收方案。
     2、阐述了KF算法的基本思想、具体框架,并把基于KF算法的盲多用户检测技术应用到混沌扩频通信中,通过与LMS算法的比较,显示出KF算法的优点。对于非线性滤波, EKF和UKF算法均是常用的滤波器,从它们的工作原理和仿真分析可知,UKF的性能要优于EKF。在此基础上,介绍了基于UKF的自适应解调方法,并通过仿真说明UKF能有效地估计混沌参数。针对CSK通信系统,提出了一种先用UKF算法估计参考信号,再用该信号解调发送符号的非相干检测方法,仿真结果表明其误码性能甚至优于FM-DCSK通信系统的误码性能。
     3、分析了现有盲信道均衡的原理,对比了基于EKF和UKF的盲均衡算法的性能。在此基础上,针对目前较少研究的多输入多输出(MIMO)混沌通信系统,提出了一种基于双无先导卡尔曼滤波(DUKF)的盲均衡算法。该算法为混沌信号和信道系数分别建立一个状态空间模型,然后利用两个UKF同时对混沌信号和信道系数进行估计,有效地消除信道噪声、多径衰落、多用户干扰对多用户混沌通信系统的影响。
     4、在混沌信号盲分离及其在混沌通信中的应用研究方面:
     1)仿真分析了FastICA算法在混沌信号分离中的性能。根据非线性主分量分析(NPCA)准则和已提出的LMS和RLS型的自适应算法,提出一种基于KF的盲源分离算法,它能实时分离信号;
     2)在假设被提取的混沌信号映射已知的前提下,提出一种基于UKF的卷积混沌信号的盲提取算法,该算法把提取问题转为非线性状态检测问题,然后利用UKF算法寻找提取向量,解决了信号顺序不确定性和幅度不确定性问题;
     3)结合基于UKF的盲提取算法和基于UKF的自适应解调方法,在对MIMO混沌通信系统构造两个独立的状态空间方程(提取向量的状态空间方程和混沌信号及其参数组成的扩展向量的状态空间方程)的基础上,利用DUKF实现了基于盲分离的MIMO混沌通信。
Chaos is a random yet deterministic process in nonlinear dynamical system. Because chaotic signals are sensitive to initial conditions, occupy a wide bandwidth in frequency domain and have non-periodic feature. Chaotic signals have potential application prospect in communications.
     In chaotic communication, many problems can be solved by adaptive filtering. Kalman filter (KF) and Extended Kalman filter (EKF) is the best filter in Gaussian linear and nonlinear condition. Combining the unscented transform we can get a nonlinear filter: unscented Kalman filter (UKF) which has high computation accuracy and is easily realized. They are widely used in chaotic communication.
     This thesis will focus on chaos-based communication systems, and uses KF theory as theory background. By using KF and UKF, some research on chaotic keying, chaotic parameter estimation, blind equalization and blind separation are provided.
     1、We overview the existing chaotic synchronization and chaotic communication method, in which we highlight the principle of three non-coherent parameter estimation algorithms, coherent chaos shift keying (CSK) and differential chaos shift keying (DCSK). As the performance of the DCSK in a multipath fading channel is not good, we proposed a rake reception scheme for DCSK communication systems over a multipath fading channel.
     2、We explain the basis idea and the algorithm frame of KF. By applying KF-based blind multiuser detection algorithm to the chaotic spread spectrum communication, we evaluate the performance of the KF algorithm. It is better than LMS algorithm. Extended Kalman filter (EKF) and UKF are widely used in non-linear filtering. From the simulation results and the principle of the algorithms, we know that the UKF is superior to EKF. Thus, we introduce the UKF-based adaptive demodulation method and show its efficiency in chaotic communication. In addition, we proposed an UKF based noncoherent detection method for CSK communication system, in which the reference signal is estimated from the received signal by using UKF. Simulation results indicate that the BER performance of the method is better than the FM-DCSK communication system.
     3、We analyze the existing principles of blind equalization algorithm, and compare the performance of EKF-based blind equalization algorithm and UKF-based blind equalization algorithm. After that, we proposed a blind equalization algorithm based on dual UKF (DUKF) for chaotic multiple input multiple output (MIMO) communication systems. In the algorithm, two separate state-space representation are used for the signals and the coefficients, and then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously. The simulation results show that the algorithm can effectively reduce channel noise, fading, and inter-user interference in chaotic communication systems with multiuser.
     4、In the study of the blind separation and its application in chaotic communication
     1) We report the results by using the fast independent component analysis (FastICA) algorithm to realize blind extraction of chaotic signals. According to the nonlinear principal component analysis (NPCA) criterion and the proposed LMS-type and RLS-type adaptive algorithms, we propose a blind source separation algorithm based on KF for the real-time separation.
     2) Assuming that the dynamics of the chaotic signal to be extracted is known, we proposed an algorithm for blind extraction of chaotic signal from convolutive mixture. This algorithm formulates determination of the desired extracting vector as a nonlinear state estimation, and then uses the unscented Kalman filter (UKF) to seek the extracting vectors. For utilizing the map of the chaotic signal, the algorithm can solve the indeterminacies of the scaling and order of the estimated signals.
     3) Combining the UKF-based blind extraction algorithm and the UKF-based adaptive demodulation method, we formulate two different state space models for MIMO chaotic communication systems: one for extraction vector and one for the augmented vector which contains chaotic signals and parameters. Then we use DUKF to realize multiuser communications in a multi-input multi-output channel.
引文
[1] Lorenz E N. Eterministic Non-Periodic Flow[J]. Atmospheric Sci., 1964, 20(3): 130-141.
    [2]关新平等.混沌控制及其在保密通信中的应用[M].国防工业出版社, 2002.
    [3]黄润生.混沌及其应用[M] .武汉大学出版社, 2002.
    [4]祝开艳.混沌背景下的信号检测与提取方法研究[R].研究综述报告,吉林大学信号处理实验室, 2003.
    [5]杨波,孙卫伟,冯久超.混沌调制通信系统解调技术比较研究[J].西南师范大学学报(自然科学版), 2006, 31(6): 50-58.
    [6]舒斯特H G (著),朱宏雄,林圭年(译).混沌学引论[M].四川教育出版社, 1994.
    [7] Lee C, Williams D B, Lee J. A secure communications system using chaotic switching[J]. Int. J. Bifurcation and chaos, 1997, 7(6): 1383-1394.
    [8] Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[M]. New York: Wiley, 2001.
    [9] Komninakis C,Fragouli C,Sayed A H,Wesel R D. Multi-Input Multi-Output fading channel tracking and equalization using Kalman estimation[J]. IEEE Trans. on Signal Processing, 2002, 50(5): 1065-1076.
    [10] Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME-Journal of Basic Engineering, 1960, 82(Series D): 35-45.
    [11] Welch G., Bishop G. An introduction to the Kalman filter[R]. Chapel Hill: University of North Carolina at Chapel Hill, 2004.
    [12] Anderson B D O, Moore J B. Optimal filtering[M]. London: Prentice-Hall, INC, 1979.
    [13] Simon J J, Jeffrey K U. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
    [14]潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策, 2005, 20(5): 481-489.
    [15] Wan E A , Merwe R V D. The unscented Kalman filter, in Kalman filtering and neural networks [DB/OL]. http://www.cse.ogi.edu/PacSoft/projects/sec/wan01b.ps,2004-03-10.
    [16] Julier S, Uhlmann J, Currant-Whyte H F. A new method for the nonlinear transformation of means and covariance in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
    [17] Julier S J. The scaled unscented transformation[A]. In Proceedings of the American Control Conference[C]. 2002: 4555-4559.
    [18] Morelande M R, Ristic B. Reduced sigma point filtering for partially linear models[A]. In IEEE International Conference on Acoustics, Speech and Signal Processing[C], 2006. 2006: 37-40.
    [19]成兰,谢恺.迭代平方根UKF[J].信息与控制, 2008, 37(4): 439-444.
    [20] Pecora L M, Carroll T L. Synchronization in chaotic system[J]. Phys Rev Lett, 1990, 64: 821-824.
    [21] Cuomo K M, Oppengein A V, Strogatz S H. Synchronization of Lorenz-based chaotic circuits with applications to communications[J]. IEEE Trans. CAS Part I, 40(10): 626-632.
    [22] Batini G H, Mc Gillem C D. A chaotic direct-sequence spread-spectrum communication system[J]. IEEE Trans. COMM, 1994, 42(2,3,4): 1524-1527.
    [23] Kolumban G, Kennedy M P, Chua L O. The role of synchronization in digital communications using chaos-Part1: Fundamentals of digital communications[J]. IEEE Trans. CA S, 1997, 44(10): 927-936.
    [24] Kolumban G, Kennedy M P, Chua L O. The role of synchronization in digital communications using chaos-Part2: Chaotic modulation and chaotic synchronization[J]. IEEE Trans.CA S, 1998, 45(11): 1129-1140.
    [25] Yang T, Chua L O. Secure communication via chaotic parameter modulation[J]. IEEE Trans. CAS, Part, 1996, 43(9): 817-819.
    [26] Zhang X D, Wei W. Blind adaptive multiuser detection based on Kalman filtering[J]. IEEE Trans. on Signal Processing, 2002, 50(1): 87-95.
    [27]陈宏滨,冯久超,胡志辉.一种基于无先导卡尔曼滤波的混沌相移键控通信系统的非相干检测方法[J].电子与信息学报, 2008, 30(7): 1576-1579.
    [28] Feng J C, Xie S L. A noise reduction method for noisy contaminated chaoticsignal[A]. 2005 International Conference on Communications, Circuits and Systems[C]. Hong Kong, China, 2005, 1173-1176
    [29] Sobiski D J, Thorp J S. PDMA-2: The feedback Kalman filter and simultaneous multiple access of a single channel[J]. IEEE Trans on Circuits and Systems I, 1998, 45(2): 142-149.
    [30]王世元,冯久超.一种参数分多址的混沌通信方案[J].电子学报,2007,35(7): 35-40.
    [31] Sato Y. A method of self-recovering equalization for multilevel amplitude modulation systems[J]. IEEE Trans. Commun., 1975, 23(6): 679-682.
    [32] Godard D N. Self-recovering equalization and carrier tracking in two-dimensional data communication systems[J]. IEEE Trans. Commun., 1980, 28(11): 1867-1875.
    [33] Treichler J R, Larimore M G. New processing techniques based on the constant modulus adaptive algorithm[J]. IEEE Trans. ASSP, 1985, 33: 420-431.
    [34] Treichler J R, Agee M G. A new approach to multipath correction of constant modulus signals[J]. IEEE Trans. ASSP, 1983, 28: 349-472.
    [35] Benveniste A, Goursat M. Blind equalizer[J]. IEEE Trans. Commun., 1984, 32(8): 871-888.
    [36] Picchi G, Prati G. Blind equalization and carrier recovery using a stop-and-go decision-directed algorithm[J]. IEEE Trans. Commun., 1987, 35(9): 877-887.
    [37] Hatzinakos D, Nikias C L. Blind equalization using a tricepstrum based algorithm[J]. IEEE Trans. on Communication, 1991, 39: 669-682.
    [38] Porat B, Friedlander B. Blind equalization of digital communication channels using high-order moments[J]. IEEE Trans. on signal process, 1991, 39: 522-526.
    [39] Cadzow J. A blind deconvolution via cumulant extrema[J]. IEEE Trans. on Signal Processing. 1996, 13: 24-42.
    [40] Mo S and Shafai B. Blind equalization using higher order cumulants and neural network[J]. IEEE Traits. Signal Processing, 1994, 42: 3209-3217.
    [41] Kechriotis G, Zervas E. Using recurrent neural network for adaptive communication channel equalization[J]. IEEE Trans on Neural Network, 1994, 5(2): 267-278.
    [42]何振亚.自适应信号处理[M].北京:科学出版, 2001.
    [43] Cuomo K M, Oppenheim A V, Barron R J. Channel equalization for self-synchronizing chaotic systems[J]. Proc. IEEE ICASSP, 1996, 3: 1605-1608.
    [44] Sharma N, Ott E. Combating channel distortions in communication with chaotic systems[J]. Phys. Lett. A, 1998, 248: 347-352.
    [45] Zhu Z W, Leung H. Adaptive blind equalization for chaotic communication system using Kalman filter[J]. IEEE Trans. on Circuits and Systems I, 2001, 48(8): 979-989.
    [46]王世元,冯久超.基于混沌的通信系统的盲信道均衡[J].西南师范大学学报, 2004, 29(3): 373-378.
    [47]王世元,冯久超.多用户混沌通信系统的盲均衡算法[J].吉林大学学报, 2008, 38(6): 1469-1473.
    [48] Haykin S. Adaptive Filter Theory (4th Edition)[M]. New Jersey, Prentice Hall, 2001.
    [49] Beloouchrani A, Karim A M, Cardoso J F, Moulines E. A blind source separation technique using second-order statistics[J]. IEEE Trans. Signal Process, 1997, 45(2): 434-443.
    [50]傅予力,沈轶,谢胜利.基于规范高阶累积量的盲分离算法[J].应用数学, 2006, 19(4): 869-876.
    [51] Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[J]. IEEE Trans. Signal Processing, 2002, 50(7): 1545-1553.
    [52] Cardoso J F, Laheld H. Equivariant adaptive source separation[J]. IEEE Trans. Signal Processing, 1996, 44: 3017-3029.
    [53] Douglas S C. Self-stabilized gradient algorithms for blind source separation with orthogonality constraints[J]. IEEE Trans. Neural Networks, 2000, 11: 1490–1497.
    [54] Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient[J]. Signal Processing, 2002, 9(12): 432-435.
    [55] Cichocki A, Bogner R E, Moszczyriski L1. Modified Herault-Jutten algorithms for blind separation of sources[J]. Digital Signal Processing, 1997, 7: 80-931.
    [56] Amari S I, Cichocki A. Adaptive Blind Signal Processing—Neural Network Approaches[J]. Proceeding of the IEEE, 1998, 86(10): 2026-2048。
    [57] Hyvarinen A, Oja E. A Fast fixed-point algorithm for independent componentanalysis[J]. Neural Computation, 1997, 9(7): 1483-1492.
    [58] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
    [59] Pham D T. Mutual Information Approach to Blind Separation of Stationary Sources[J]. IEEE Trans., 2002, 48(7): 1935-1946.
    [60] Salah H B, Belouchrani A, Abed-Meraim K. Jacobi-like algorithm for blind signal separation of convolutive mixtures[J]. Electronics Letters, 2001, 37(16): 1049-1050.
    [61] Buchner H, Aichner R, Kellermann W. A Generalization of Blind Source Separation Algorithms for Convolutive Mixtures Based on Second-Order Statistics[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13: 120-134.
    [62] Araki S, Mukai R, Makino S, Nishikawa T, Saruwatari H. The Fundamental Limitation of Frequency Domain Blind Source Separation for Convolutive Mixtures of Speech[J]. IEEE Trans., 2003, 11(2): 109-118.
    [63] Rahbar K, Reilly J P. A Frequency Domain Method for Blind Source Separation of Convolutive Audio Mixtures[J]. IEEE Trans., 2005, 13(5): 832-844.
    [64]方勇,王超.单频点频域卷积混合盲分离技术[J].上海大学学报, 2007, 13(4): 357-362.
    [65] Lo T, Leung H, Litva J. Separation of a mixture of chaotic signals[J]. Proc. ICASSP, 1996, 3: 1798-1801.
    [66] Wang B Y, Zheng W X. Blind extraction of chaotic signal from an instantaneous linear mixture[J]. IEEE Trans. Circ. Syst.-II , 2006, 53: 143-147.
    [67]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(一)[J].物理学进展, 1996, 16(1): 1-74.
    [68] Kocarev L, et al. General approach for chaotic synchronization with applications to communication[J]. Phys. Rev. Lett., 1995, 74(25): 5028-5031.
    [69] Roy R, Scott K. Thornburg, experimental synchronization of chaos[J]. Phys. Rev. Lett, 1994, 72(13): 2009-2012.
    [70]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展, 1996, 16(2): 137-202.
    [71] Kapitaniak T, et al. Experimental synchronization of chaos using continuouscontrol[J]. Int. J. Bifurcation and Chaos, 1999, 4(2): 483-488.
    [72] John K, et al. Synchronization of unstable orbits using adaptive control[J]. Phys. Rev. E, 1994, 49(6): 4843-4848.
    [73] Yin Y Z. Experimental demonstration of chaotic synchronization in the modified CHUA'S oscillators[J]. International Journal of Bifurcation and Chaos, 1997, 7(6): 1401-1410.
    [74] Kay S, Nagesha V. Methods for chaotic signal estimation[J]. IEEE Trans. Signal Processing, 1995, 43(8): 2013–2016.
    [75] Ling C, Wu X F, Sun S G. A General Efficient Method for Chaotic Signal Estimation[J]. IEEE Trans. on Signal Processing, 1999, 47(5): 1424-1428.
    [76] Petersen K. Ergodic Theory. Cambridge[M]. U.K.: Cambridge Univ. Press, 1983.
    [77] Hsu C S, Kim M C. Construction of maps with generating partitions for entropy evaluation[J]. Phys. Rev. A, 1985, 31(5): 3253–3265.
    [78] Papadopoulos H C, Wornell G W. Maximum-likelihood estimation of a class of chaotic signals[J]. IEEE Trans. Inform. Theory, 1995, 41: 312-317.
    [79]刘雄英,丘水生,刘重明.混沌信号非相干的一种检测技术[J].桂林电子工业学院学报, 2003, 23(3): 1-4.
    [80] Kennedy M P, Kolumban G. Digital communications using chaos[M]. CRC PRESS, 1999.
    [81] Parlitz U, Chua L O, Kocarev L, et al. Transmission of digital signals by chaotic synchronization[J]. Int. J. Bifurc. Chaos, 1992, 2(4): 973-977.
    [82] Dedieu H, Kennedy M P, Hasler M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chuas circuits[J]. IEEE Trans. Circuits Syst. II, 1993, 40(10): 634-643.
    [83] Lau F C M, Tse C K. Chaos-based digital communication systems[M], Heidelberg: Springer Verlag, 2003.
    [84]王玫.混沌通信中的关键技术研究[D].西安电子科杖大学, 2003.
    [85] Feng J C, Tse C K. Reconstruction of Chaotic Signals with Applications to Chaos-based Communications[M]. Beijing: Tsinghua University Press, 2007.
    [86] Kolumbán G, Kis G, JákóZ, et al. FM-DCSK: A robust modulation scheme forchaotic communications[J]. IEICE, 1998, E81-A(9): 1798-1802.
    [87] Xia Y X, Tse C K, Lau F C M. Performance of differential chaos-shift-keying digital communication systems over a multipath fading channel with delay spread[J]. IEEE Trans. on Circuits and Systems-II, 2004, 51(12): 680-684.
    [88] Bottomley G E, Ottosson T. A generalized RAKE receiver for interference suppression[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(8): 1536-1545.
    [89] Van Trees H L. Detection, Estimation, and Modulation Theory[M]. New York: Wiley, 1968.
    [90] Steven M K著,罗鹏飞等译.统计信写处理基础——估计与检测即沦[M].北京:电子工业出版社, 2003.
    [91] Rudolph V M. Sigma-Point Kalman filters for probabilistic inference in dynamic state-space models[D]. Oregon Health&Science University, 2004.
    [92] Kapoor S, Gollamudi S, Nagaraj S, Huang Y F. Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio systems[J]. IEEE Trans. Veh. Technol., 1999, 48(5): 1341-1355.
    [93] Honig M L, Madhow U, Verdu S. Blind adaptive multiuser detection[J]. IEEE Trans. Inform. Theory, 1995, 41(4): 944-960.
    [94]雷利华,施浒立,马冠一.基于混沌序列的CAPS卫星扩频通信盲多用户检测系统[J].中国科学G辑, 2008, 38(12): 1766-1774.
    [95] Julier S J, Uhlmann J K. A consistent, debiased method for converting between polar and Cartesian coordinate systems[A]. The Proc of Aero Sense: The 11th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls[C], Orlando, 1997: 110-121.
    [96]冯久超.混沌信号与信息处理[M].北京:清华大学出版社, 2010.
    [97] Henon M. A two dimensional mapping with a strange attractor[J]. Commun. Math Phys., 1976, 50(1): 69-77.
    [98] Wang S Y, Feng J C, Xie S L. A multiuser chaotic communication scheme by parameter division multiple access[J]. Circuits Syst. Signal Process, 2007, 26: 839–852.
    [99] Sobiski D J, Thorp J S. PDMA-1: Chaotic communication via the extended Kalman filter[J]. IEEE Trans on Circuits and Syst.-I, 1998, 45(2): 194-197.
    [100] Lau F C M, Tse C K. Chaos-based digital communication systems[M], Heidelberg: Springer Verlag, 2003.
    [101] Kolumbán G, Kis G, Lau F C M, et al. Optimal noncoherent FM-DCSK detector: application of chaotic GML decision rule[A]. IEEE Int. Symp. Circuits and Systems[C], 2004, IV: 597-600.
    [102] Feng J C, Tse C K. On-line adaptive chaotic demodulator based on radial-basis-function neural networks[J]. Phys. Rev. E, 2001, 63(026202): 1-10.
    [103] Feng J C, Tse C K, Lau F C M. A Neural-network-based channel-equalization strategy for chaos-based communication systems[J]. IEEE Trans. on Circuits and Systems-part I, 2003, 50: 954-957.
    [104]肖瑛.基于水声信道盲均衡算法研究[D].哈尔滨工程大学, 2006.
    [105] Macchi O, Eweda E. Convergence analysis of self-adaptive equalizers[J]. IEEE Trans. on Information Theory, 1984, 30(2): 161-176.
    [106]张立毅.数字通信系统中盲均衡技术的研究[D].北京理工大学, 2003.
    [107] Zheng F C, et al. Cumulant based deconvolution and identification: several new families of linear equations[J]. Signal Processing, 1993,30(2): 199-219.
    [108] Hatzinakos D, Nikias C L. Blind equalization using a triceptrum based Algorithm[J]. IEEE Trans. on communication, 1991, 39: 669-681.
    [109] Pan R, Nikias C L. The complex cepstrum of higher order cumulants and non-minimum phase system identification[J]. IEEE Trans. on Signal Process, 1988, 36(2): 186-205.
    [110] Shalvi O, Weinstein E. New criteria for blind deconvolution of nonminimum phase system(channels)[J]. IEEE Trans. on Inform, Theory, 1990, 42: 1145-1156.
    [111] Brillinger D B, Rosenblatt M. Compute and interpretation of k-th order spectra. In: Harries. ed Spectral Analysis of Time Series. New York: Wiley, 1967: 189-232.
    [112]梁启联,周正,刘泽民.基于递归神经网络的盲均衡算法的改进[J].北京邮电大学学报, 1997, 20(4): 6-11.
    [113]刘建成,张清泰,蔡湛宇.用于多信道盲反卷积的级联神经网络[J].计算机与网络, 1999(14): 20-24.
    [114]赵建业,余道衡.用细胞神经网络实现盲均衡的一种方法[J].电子科学学刊, 2000, 22(3): 423-428.
    [115]王世元,冯久超.应用粒子滤波器实现混沌通信系统的盲信道均衡[J].电路与系统学报, 2005, 10(1): 98-102.
    [116]虞晓,胡光锐.基于高斯混合密度函数估计的语音分离[J].上海交通大学学报, 2000, 34(2): 177-180.
    [117] Eriksson J, Koivunen V. Identifiability, separability, and uniqueness of linear ICA models[J]. IEEE Signal Processing Letters, 2004, 11(7): 601-604.
    [118]李雪霞.混沌信号的分离及其应用研究[D].西南大学, 2007.
    [119] Chen H B, Feng J C, Fang Y. Blind extraction of chaotic signals by using the fast independent component analysis algorithm[J]. Chinese Physics Letters, 2008, 25(2): 405-408.
    [120] Li Y Q, Wang J. Sequential blind extraction of instantaneously mixed sources[J]. IEEE Trans. on Signal Process, 2002, 50(5): 997-1006.
    [121] DelfosseN, LoubatonP. Adaptive blind separation of independent sources: A deflation approach. Signal Processing, 1995, 45: 59-83.
    [122] Oja E. The nonlinear PCA learning rule and signal separation: Mathematical analysis[J]. Neurocomputing, 1997, 17(1) :25-46.
    [123] Zhu X L, Zhang X D. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening[J]. IEEE Trans. on Circuits and Systems-I, 2006, 53(3): 745-753.
    [124] Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning[J]. Neural Networks, 1994, 7(1): 113-127.
    [125] Pajunen P, Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA[J]. Neural Systems, 1998, 8: 601-612.
    [126]梁廷页,谢胜利.短波通信中的自适应信道均衡技术[J].通信技术, 2003, (6): 35-38.
    [127] He Z, Xie S, Ding S, Cichocki A. Convolutive blind source separation in the frequency domain based on sparse representation[J]. IEEE Trans. Audio, Speech, andLanguage Process., 2007, 15(5): 1551-1563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700