用户名: 密码: 验证码:
基于抛载试验和在线时域测试的同步发电机参数辨识新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步发电机是电力系统中最关键的一类设备。在电力系统分析中,同步发电机的模型有着极其重要的地位。对于电力系统的稳定性分析和控制设备的控制策略设计,都需要合理的发电机模型和准确的模型参数。
     利用测量数据对参数进行辨识是确定同步发电机参数的主要方法。尽管已历经多年的发展,同步发电机的参数辨识仍然是一个颇具挑战性的课题。抛载试验和在线时域测试法与现有的其它方法相比有很多优点,因而近年来受到工业界和学术界较多关注。但是,在这两种基于测试的方法中,至今已有的研究还存在不足和缺点。对于抛载试验而言,在有测量噪声时,图形法难以被应用,而测量噪声是任何测试方法中都不可避免的;优化方法不仅需要提供参数初值,并且在有测量噪声时也可能导致较大的估计误差。在抛载试验下,由于计算需要,经常要在基于时间常数的运算电感模型和基于等值电路的模型之间做参数转换,虽然IEEE Std 1110-2002标准提供了在一定条件下的转换计算公式,但并没有提到转换中由于误差传递造成的参数误差问题,实际上,还没有任何文献对这个问题进行过研究。对于在线时域测试法而言,大多数现有的研究没有考虑饱和在扰动过程中的非线性影响。另外,有文献研究了发电机三阶模型的在线辨识,但已有的辨识模型还需要进一步发展,模型的非线性本质也要求引入更佳的非线性估计方法。
     本论文主要针对测量噪声对参数估计结果的影响、模型参数转换中的误差问题及其解决方案、磁路饱和在扰动过程中的非线性影响,以及三阶模型的非线性特点,基于抛载试验和在线时域测试方法,对同步发电机的辨识模型和参数估计技术进行了比较系统深入的研究和探索,以提高参数估计的精度和估计中的抗噪声能力。
     论文提出了一种在d轴抛载试验条件下估计同步发电机d轴同步电感和时间常数等参数的新方法。该方法的本质是同时辨识两个单输入单输出的传递函数的系数。从模型的层面,该方法是辨识基于时间常数的运算电感模型。首先,利用q轴电压、磁场电流以及它们的数值积分,构建线性回归方程组。其次,利用辅助变量法求解带有测量噪声的回归方程组的系数。最后,根据回归系数计算d轴参数。算例的大量测试结果表明所提方法比现有的图形法和数值优化法有更好的估计性能。
     论文直接引入上述辨识单输入单输出传递函数的方法,在q轴抛载试验条件下,对同步发电机的q轴同步电感和时间常数也进行了估计。该方法实质上是辨识q轴运算电感。仿真结果表明了引入的这种方法的有效性。论文提出了一种利用辨识得到的运算电感模型来确定同步发电机d轴等值电路参数的方法。在抛载试验下,现有的研究或以辨识运算电感模型的参数为目的,或以辨识等值电路参数为目的,但没有探讨两类参数之间的转换问题。当辨识得到的参数在类型上不同于稳定分析软件需要的参数时,必须进行参数的转换。对于d轴只有1个阻尼绕组并且运算电感模型的参数已经估计得到的情况,IEEE Std 1110-2002标准建议采用解析公式直接计算等值电路参数。但是,由于辨识得到的运算电感模型的参数通常带有误差,用这种方式求取的等值电路参数值可能远离其真值。文献检索表明:还没有文献指出和研究过这个问题。为获得较为准确的等值电路参数值,论文将解析公式计算得到的等值电路参数值作为初值,然后基于发电机的混合状态模型,用预测误差法对等值电路参数进行估计。数值仿真结果表明按解析公式直接计算的方式存在大的误差,也表明所提方法在各种噪声情况下均能得到较准确的结果。本文所提方法能够作为IEEE Std 1110-2002标准关于该解析公式方法的一个补充。
     论文考虑了当前大多数研究中所忽视的非线性饱和影响,提出了一个新的在线估计器。该估计器被用来辨识磁场绕组和d轴阻尼绕组的参数,不仅适用于凸极机,也适用于圆柱转子电机。仿真结果表明,若在参数辨识的过程中不考虑饱和作用,会造成较大的估计误差。大量噪声样本下的仿真结果表明提出的估计器既可以准确的捕获饱和在扰动过程中的非线性影响,而且具有较好的处理噪声的能力。
     论文还提出了一个运用平方根无迹卡尔曼滤波器(Square-root unscented Kalman filter, SRUKF)来估计同步发电机参数的方法。首先,从参数估计的角度,发展了一个既适用于凸极机也适用于圆柱转子电机的三阶模型。然后,利用SRUKF对该模型进行了状态变量和未知参数的联合非线性估计。估计方法的基本特点是考虑模型的非线性。在测试系统上的仿真结果表明了所提方法的有效性。在联合估计的过程中,发电机参数稳定地收敛于稳态值,而估计的状态变量也与数值仿真得到的动态响应吻合。通过与常规的扩展卡尔曼滤波(Extended Kalman filter, EKF)方法的仿真比较,表明用所提出的方法能获得更准确的估计结果。
Synchronous machine is one of the key devices in power systems and synchronous machine models play an extremely important role in power system analysis. Power system stability analysis and designs of control strategies for control equipment are fully dependent on reasonable synchronous machine modeling and accurate parameters in models.
     Parameter identification using measured data is the most important method for determining synchronous machine parameters. It is still a challenging topic although many researches have been conducted in this area in the past decades. Considerable efforts have been paid to load rejection tests and online time-domain tests for parameter identification of synchronous machines so far because of their advantages superior to other methods. However, there are deficiencies and shortcomings in existing researches of these two measurement-based methods. As well known, noises in measurements are unavoidable in any test. Unfortunately, the response curve method which is a popular technique under load rejection test cannot handle noisy measurements properly, whereas the optimization modeling method under load rejection test not only requires selection of initial parameter values but also may result in large estimation errors caused by measurement noises. Under load rejection test, it is often needed to implement parameter conversion between a time-constant-based operational inductance model and an equivalent-circuit based model due to requirements in calculations. Although a conversion formula under some condition is provided in the IEEE std 1110-2002, it failed to address errors of parameters which will be caused by error transfer in the conversion. In fact, this problem has never been presented in all existing researches. In online time-domain test, nonlinear dynamic saturation effects in a disturbance process have been missed in majority of previous work on online estimation of generator parameters. A third-order model for synchronous machine parameter online estimation has been used in a few published papers. However, the existing identification models need to be further improved and more effective estimation methods are required to deal with the non-linear feature of the third-order model.
     In this thesis, new identification models and parameter estimation techniques are investigated systematically and deeply on the basis of load rejection test and online time-domain test. With an objective in improving accuracy of estimated parameters and increasing capacity of handling measurement-noises, the thesis focuses on effects of measurement noises on estimation results, errors in parameter conversion and solution to avoiding error transfers, nonlinear effects of magnetic saturation in a disturbance process and the nonlinear feature of third-order model.
     A novel method for estimating d-axis parameters of synchronous generators under d-axis load rejection test is presented. The essence of the method is to simultaneously identify the coefficients of two single-input single-output transfer functions. From a viewpoint of modeling, it is a time-constant-based operational inductance model. Firstly, linear regression equations are constructed using the q-axis voltage, excitation current and their numerical integrations. Secondly, the regression coefficients with measurement noises are estimated using an instrumental variable approach. Finally, the d-axis parameters are calculated from the estimated regression coefficients. Simulation results indicate that the proposed method has a better performance than the traditional response curve method or optimization modeling method.
     The method of single-input single-output transfer function is directly used to estimate q-axis synchronous inductance and time constants under load rejection test. Essentially, this method is to identify q-axis operational inductance. Simulation results demonstrate the effectiveness of the method.
     A method to accurately determine d-axis equivalent circuit parameters from an operational inductance model is presented. In existing researches, either a time-constant based operational inductance model or an equivalent-circuit based model is obtained under load rejection test. However, the parameter conversion between the two models was not discussed. It is necessary to perform a parameter conversion when estimated parameters are different from those required by stability analysis software. In the case where the d-axis is represented by one damper winding and the parameters in operational inductance model have been estimated, the IEEE Std 1110-2002 has recommended that equivalent-circuit parameters be calculated using analytical formulas. However, the direct computation method using the analytical formulas may result in unreasonable parameter values which deviate far away from their true values because of the errors that always exist in the measurement-based operational inductance model. Literature searches indicate that this issue has not been addressed so far. To obtain accurate equivalent circuit parameters, the thesis presents a two-step method. Initial values of equivalent circuit parameters are computed first using the analytical formulas; and then a prediction error method is used to estimate the parameters using a hybrid state model of generator. Simulation results demonstrate that the direct computation method using the analytical formulas does cause large parameter errors whereas the presented method is very effective under any designated noise level. The presented method can be used as a complement to the analytical formula method given in the IEEE Std 1110-2002.
     Majority of previous work on online estimation of generator parameters ignored the nonlinear dynamic saturation effect in a disturbance process. In the thesis, a new estimator is presented to incorporate the saturation effect in a disturbance process. The estimator focuses on recognizing field winding and d-axis damper winding parameters of both salient-pole and round-rotor generators. Simulation results demonstrate that neglecting the saturation effect in an identification procedure will create a large estimation error. Simulation results from a lot of noisy samples also demonstrate that the proposed estimator not only can accurately capture the non-linear dynamic saturation effect in a disturbance process but also has a good capacity of handling measurement noises.
     A new method to estimate the parameters of a synchronous generator using the square-root unscented Kalman filter (SRUKF) is also presented in the thesis. A new third-order model for the parameter estimation of both round rotor and salient generators is developed first and then the SRUKF method is applied to the third-order model to perform the joint estimation of state variables and unknown generator parameters. The essential feature of the presented estimation method is incorporation of nonlinearity of the model. Simulation results demonstrate the effectiveness of the proposed method in parameter estimation of synchronous generator. The estimation processes of generator parameters steadily converge to the estimated values, whereas the estimation processes of state variables are consistent with the dynamic responses in the numerical simulations. Simulations indicate that the presented method can obtain more accurate results than the traditional extended Kalman filter (EKF) method.
引文
[1] Schulz R P,Jones W D,Ewart D N.Dynamic models of turbine generators derived from solid rotor equivalent circuits[J].IEEE Transactions on Power Apparatus and Systems,1973,PAS-92(3):926-933.
    [2] Dougherty J W,Minnich S M.Finite element modeling of large turbine generators:Calculations versus load test data[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(8):3921-3929.
    [3]沈善德.电力系统辨识[M].北京:清华大学出版社,1993.
    [4] Kyriakides E . Innovative concepts for on-line synchronous generator parameter estimation[D].USA:Arizona State University,2003.
    [5] International Electrotechnical Commission.IEC 60034-4. Rotating electrical machines- Part 4:methods for determining synchronous machine quantities from tests[S].1985.
    [6] The Institute of Electrical and Electronics Engineers,Inc.IEEE Std 115-2009.IEEE guide for test procedures for synchronous machines[S].New York,2010.
    [7]富立新,苟智德,朱昌谦,等.GB/T 1029-2005.三相同步电机试验方法[S].2006.
    [8] Kundur P.Power system stability and control[M].New York:McGraw-Hill,1994.
    [9] Hsia T C.刘绍球,朱可炎译.系统辨识-最小二乘法[M].北京:国防工业出版社,1984.
    [10] Abido M A,Abdel-Magid Y L.On-line identification of synchronous machines using radial basis function neural networks[J].IEEE Transactions on Power Systems,1997,12(4):1500-1506.
    [11] Dehghani M,Karrari M,Rosehart W,et al.Synchronous machine model parameters estimation by a time-domain identification method[J].International Journal of Electrical Power and Energy Systems,2010,32(5):524-529.
    [12] Sadabadi M S,Karrari M,Malik O P.Nonlinear identification of synchronous generator using Hammerstein model with piecewise linear static maps[C].Proceedings of the IEEE Power Tech 2007,2007:1067-1071.
    [13] Park R H.Two-reaction theory of synchronous machines,generalized method of analysis-part I[J].AIEE Transactions,1929,48:716-730.
    [14] Part R H.Two-reaction theory of synchronous machines,generalized method of analysis-part II[J].AIEE Transactions,1933,52:352-355.
    [15] The Institute of Electrical and Electronics Engineers,Inc.IEEE Std 1110-2002 IEEE Guide for synchronous generator modeling practices and applications in power system stabilityanalysis[S].New York,2003.
    [16] Canay I M.Causes of discrepancies on calculation of rotor quantities and exact equivalent diagrams of the synchronous machine[J].IEEE Transactions on Power Apparatus and Systems,1969,PAS-88(7):1114-1120.
    [17] Adkins B,Harley R G.唐任远,朱维衡译.交流电机统一理论—在实际问题上的应用[M].北京:机械工业出版社,1980.
    [18]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [19] Krause P C.Analysis of electric machinery[M].New York:McGraw-Hill,1986.
    [20]夏道止.电力系统分析(下册)[M].北京:中国电力出版社,1995.
    [21] Canay I M.Physical significance of sub-subtransient quantities in dynamic behaviour of synchronous machines[J].IEE Proceedings,1988,135(6):334-340.
    [22] Martinez J A,Johnson B,Grande-Moran C.Parameter determination for modeling system transients-Part IV:rotating machines[J].IEEE Transactions on Power Delivery,2005,20(3):2063-2072.
    [23] Kamwa I,Viarouge P,Mpanda-Mabwe B,et al.Experience with computer-aided graphical analysis of sudden-short-circuit oscillograms of large synchronous machines[J].IEEE Transactions on Energy Conversion,1995,10(3):407-414.
    [24] Kamwa I,Viarouge P,Mahfoudi R.Phenomelogical models of large synchronous machines from short-circuit tests during commissioning-a classical/modern approach[J] . IEEE Transactiions on Energy Conversion,1994,9(1):85-97.
    [25]吴旭升,马伟明,王公宝,等.基于小波变换和Prony算法的同步电机参数辨识[J].电力系统自动化,2003,27(19):38-42.
    [26]王亮,王公宝,马伟明,等.基于小波变换和神经网络的同步电机参数辨识新方法[J].中国电机工程学报,2007,27(3):1-6.
    [27]李天云,高磊,陈晓东,等.基于HHT的同步电机参数辨识[J].中国电机工程学报,2006,26(8):153-158.
    [28]李天云,祝磊,宋莉,等.基于TLS-ESPRIT的同步电机参数辨识[J].电工技术学报,2009,24(12): 38-42,49.
    [29] IEEE Committee Report.Supplementary definitions and associated test methods for obtaining parameters for synchronous machine stability study simulations[J].IEEE Transactions on Power Apparatus and Systems,1980,PAS-99(4):1625-1633.
    [30] Dandeno P L,Poray A T.Development of detailed turbogenerator equivalent circuits from standardstill frequency response measurements[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(4):1646-1655.
    [31] Coultes M E,Watson W.Synchronous machine models by standstill frequency response tests[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(4):1480-1489.
    [32] IEEE PES WG 12 Resport.Experience with standstill frequency response (SSFR) testing and analysis of salient pole synchronous machines[J].IEEE Transactions on Energy Conversion,1999,14(4):1209-1217.
    [33] Bortoni E C,Jardini J A.Experience with standstill frequency response (SSFR) testing and analysis of salient pole synchronous machines[J].IEEE Transactions on Energy Conversion,2004,19(4):687-691.
    [34] Diggle R , Dineley J L . Generator works testing : sudden-short-circuit or standstill variable-frequency-response method[J].IEE Proceedings C,1981,128(4):177-182.
    [35] Dandeno P L,Kundur P,Poray A T,et al.Validation of turbogenerator stability models by comparison with power systems tests[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(4):1637-1645.
    [36] Dandeno P L,Kundur P,Poray A T,et al.Adaptation and validation of turbogenerator model parameters through on-line frequency response measurements[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(4):1656-1664.
    [37] Ghomi M,Sarem Y N.Review of synchronous generator parameters estimation and model identification[C].42nd International Universities Power Engineering Conference,2007:228-235.
    [38] Verbeeck J,Pintelon R,Lataire P.Identification of synchronous machine parameters using a multiple input multiple output approach[J].IEEE Transactions on Energy Conversion,1999,14(4):909-917.
    [39] Turner P J,Reece A B J.The D.C. decay test for determining synchronous machine parameters:measurements and simulation[J].IEEE Transactions on Energy Conversion,1989,4(4):616-623.
    [40] Keyhani A,Moon S I.Maximum likelihood estimation of synchronous machine parameters and study of noise effect from DC flux decay data[J].IEE Proceedings-C,1992,139(1):76-80.
    [41] Sellschopp F S,Arjona M A.DC decay test for estimating d-axis synchronous machine parameters : a two-transfer-function approach[J] . IEE Proceedings-Electric Power Applications,2006,153(1):123-128.
    [42] Boje E S,Balda J C,Harley R G,et al.Time-domain identification of synchronous machine parameters from simple standstill tests[J].IEEE Transactions on Energy Conversion,1990,5(1):164-175.
    [43] Keyhani A,Tsai H,Leksan T.Maximum likelihood estimation of synchronous machine parameters from standstill time response data[J].IEEE Transactions on Energy Conversion,1994,9(1):98-114.
    [44] Sellschopp F S,Arjona M A.Semi-analytical method for determining d-axis synchronous generator parameters using the DC step voltage test[J].IET Electric Power Applications,2007,1(3):348-354.
    [45] Kamwa I,Viarouge P,Dickinson E J.Identification of generalised models of synchronous machines from time-domain tests[J].IEE Proceedings-C,1991,138(6):485-497.
    [46] De Mello F P, Ribeiro J R . Derivation of synchronous machine parameters from tests[J].IEEE Transactions Power Apparatus and Systems,1977,PAS-96(4):1211-1218.
    [47] Bortoni E d C,Jardini J A.Identification of synchronous machine parameters using load rejection test data[J].IEEE Transactions on Energy Conversion,2002,17(2):242-247.
    [48]张爱玲.同步发电机突然从电网切除后端电压分析及参数求取[J].中国电机工程学报,2000,20(12):28-32,37.
    [49] De Mello F P,Hannett L H.Validation of synchronous machine models and derivation of model parameters from tests[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(2):662-672.
    [50] Sugiyama T,Nishiwaki T,Takeda S,et al.Measurements of synchronous machine parameters under operating condition[J].IEEE Transactions on Power Apparatus and Systems,1982,PAS-101(4):895-904.
    [51]成中昀.采用d、q轴抛载法测量同步电机参数[J].大电机技术,1994,1:32-36,63.
    [52]李晓霞,章岩,郭磊.采用抛载法测量水轮机发电机参数[J].陕西电力,2007,35(8):42-44.
    [53]黄健,肖力春,王炜,等.采用抛载法测丹江口电厂5号水轮发电机电磁参数[J].南水北调与水利科技,2009,7(6):399-401.
    [54]岳陈熙,甄威,刘柏私,等.同步发电机参数的一次性任意抛载测试方法[J].高电压技术,2008,34(2):319-323.
    [55] Wamkeue R,Kamwa I,Baetscher,et al.A new and efficient approach for analysis of a saturated synchronous generator under the load rejection test[J].Electric Power Components and Systems,2006,34(5):539-563.
    [56] Wamkeue R,Jolette C,Kamwa I.Alternative approaches for linear analysis and prediction ofa synchronous generator under partial- and full-load rejection tests[J].IET Electric Power Application,2007,1(4):581-590.
    [57] Wamkeue R,Jolette C,Kairous D.Estimation of synchronous generator parameters from load rejection analytical responses [C].2010 9th International Conference on Environment and Electrical Engineering,Prague,Czech Republic,IEEE,2010:392-395.
    [58] Wamkeue R,Baetscher F,Kamwa I.Hybrid- state-model-based time-domain identification of synchronous machine parameters from saturated load rejection test records[J].IEEE Transactions on Energy Conversion,2008,23(1):68-77.
    [59] Kamwa I,Tahan SA.A two-factor saturation model for synchronous machines with multiple rotor circuits[J].IEEE Transactions on Energy Conversion,1995,10(4):609-616.
    [60] Mohamed A , Hussain A . A systematic approach in estimating the generator parameters[J].Electric Power Components and Systems,2002,30(3):301-313.
    [61]岳陈熙.基于GPS-PMU的同步发电机参数辨识研究[硕士学位论文][D].河海大学,2005.
    [62] Melgoza J J R,Heydt G T,Keyhani A,et al.An algebraic approach for identifying operating point dependent parameters of synchronous machines using orthogonal series expansions[J].IEEE Transactions on Energy Conversion,2001,16(1):92-98.
    [63] Wang J C,Chiang H D,Huang C T,et al.On-line measurement-based model parameter estimation for synchronous generators:solution algorithm and numerical studies[J].IEEE Transactions on Energy Conversion,1994,9(2):337-343.
    [64] Wang J C,Chiang H D,Huang C T,et al.Identification of synchronous generator saturation models based on on-line digital measurements[J].IEE Proceedings Generation,Transmission & Distribution,1995,142(3):225-232.
    [65] Huang J,Corzine K A,Belkhayat M.Online synchronous machine parameter extraction from small-signal injection techniques[J].IEEE Transactions on Energy Conversion,2009,24(1):43-51.
    [66] Karayaka H B,Keyhani A,Agrawal B,et al.Methodology development for estimation of armature circuit and field winding parameters of large utility generators[J].IEEE Transactions on Energy Conversion,1999,14(4):901-907.
    [67] Despalatovi? M,Jadri? M,Terzi? B.Influence of saturation on on-line estimation of synchronous generator parameters[J].Automatika,2009,50(3-4):152-166.
    [68] Le L X,Wilson W J.Synchronous machine parameter identification:a time domain approach[J].IEEE Transactions on Energy Conversion,1988,3(2):241-248.
    [69] Wamkeue R,Kamwa I,Da?-Do X,et al.Iteratively reweighted least squares for maximum likelihood identification of synchronous machine parameters from on-line tests[J].IEEETransactions on Energy Conversion,1999,14(2):159-166.
    [70] Vermeulen H J,Strauss J M,Shikoana V.Online estimation of synchronous generator parameters using PRBS perturbations[J].IEEE Transactions on Power Systems,2002,17(3):694-700.
    [71] Tsai H,Keyhani A,Demcko J,et al.On-line synchronous machine parameter estimation from small disturbance operating data[J].IEEE Transactions on Energy Conversion,1995,10(1):25-36.
    [72] Pillutla S,Keyhani A.Development and implementation of neural network observers to estimate the state vector of a synchronous generator from on-line operating data[J].IEEE Transactions on Energey Conversion,1999,14(4):1081-1087.
    [73] Pillutla S,Keyhani A.Neural network based saturation model for round rotor synchronous generator[J].IEEE Transactions on Energy Conversion,1999,14(4):1019-1025.
    [74] Pillutla S,Keyhani A.Neural network observers for on-line tracking of synchronous generator parameters[J].IEEE Transactions on Energy Conversion,1999,14(1):23-30.
    [75] Karayaka H B,Keyhani A,Agrawal B L,et al.Identification of armature,field,and saturated parameters of a large steam turbine-generator from operating data[J].IEEE Transactions on Energy Conversion,2000,15 (2):181-187.
    [76] Karayaka H B,Keyhani A,Heydt G T,et al.Synchronous generator model identification and parameter estimation from operating data[J].IEEE Transactions on Energy Conversion,2003,18(1):121-126.
    [77] Huang C T,Chen Y T,Chiang H D,et al.On-line measurement-based model parameter estimation for synchronous generators:model development & identification schemes[J].IEEE Transactions on Energy Conversion,1994,9(2):330-336.
    [78] Kyriakides E,Heydt G T,Vittal V.Online parameter estimation of round-rotor synchronous generators including magnetic saturation[J].IEEE Transactions on Energy Conversion,2005,20(3):529-537.
    [79] Kyriakides E,Heydt G T,Vittal V.On-line estimation of synchronous generator parameters using a damper current observer and a graphic user interface[J].IEEE Transactions on Energy Conversion,2004,19(3):499-507.
    [80] Fairbairn R E , Harley R G . On-line measurement of synchronous machine parameters[J].IEEE Transactions on Industry Applications,1992,28(3):639-645.
    [81] Gasca J J S,Bridenbaugh C J,Bowler C E J,et al.Trajectory sensitivity based identification of synchronous generator and excitation system parameters[J].IEEE Transactions on Power Systems,1988,3(4):1814-1822.
    [82]孙黎霞,鞠平,高运华,等.基于Park模型的同步发电机参数辨识[J].中国电机工程学报,2009,29(19):50-56.
    [83] Firouzi B B,Jamshidpour E,Niknam T.A new method for estimation of large synchronous generator parameters by genetic algorithm[J].World Applied Sciences Journal,2008,4(3):326-331.
    [84]鞠平,倪腊琴,韩敬东,等.同步发电机参数辨识的模拟进化方法[J].电工技术学报,1999,14(5):1-4,13.
    [85] Cari E P T,Alberto L F C,Bretas N G.A methodology for parameter estimation of synchronous generators based on trajectory sensitivity and synchronization technique[C].IEEE Power Engineering Society General Meeting,2006.
    [86] Lee C C,Tan O T.A weighted-least-squares parameter estimator for synchronous machines[J].IEEE Transactions on Power Apparatus and Systems,1977,PAS-96(1):97-101.
    [87]张凤营,朱守真,郑竞宏,等.非线性最小二乘法辨识同步发电机参数[C].第四届输配电技术国际会议,2003.
    [88] Vélez-Reyes M,Jáuregui L.Conditioning analysis of parameter estimation in a synchronous generator[C].IEEE International Electric Machines and Drives Conference,2001:285-291.
    [89] Ni?o C E,Vélez-Reyes M.Dealing with ill conditioning in recursive parameter estimation for a synchronous generato[C].IECON 2006-32nd Annual Conference on IEEE Industrial Electronics,2006:1089-1094.
    [90] Talebi M A,Rahimpour M,Gholami A,et al.A genetic algorithm approach for identifying synchronous generator parameters from excitation disturbance test[C] . IEEE Power Engineering Society General Meeting,2007:1-8.
    [91] Zhao Z,Zheng F,Gao J,et al.A dynamic on-line parameter identification and full-scale system experimental verification for large synchronous machines[J].IEEE Transactions on Energy Conversion,1995,10(3):392-398.
    [92] Lai L L,Ma J.Application of evolutionary programming to transient and subtransient parameter estimation[J].IEEE Transactions on Energy Conversion,1996,11(3):523-530.
    [93] Ma J,Hogg B W,Nan Z,et al.On-line decoupled identification of transient and subtransient parameter estimation[J].IEEE Transactions on Power Systems,1994:9(4):1908-1914.
    [94]胡家生,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[J].电力系统自动化,2004,28(6):35-40.
    [95]米增强,陈志忠,南志远,等.同步发电机动态参数辨识[J].中国电机工程学报,1998,18(2):100-105.
    [96] Dehghani M,Nikravesh S K Y.Nonlinear state space model identification of synchronousgenerators[J].Electric Power Systems Research,2008,78:926-940.
    [97] Arjona M A,Escarela-Perez R,Espinosa-Perez G,et al.Validity testing of third-order nonlinear models for synchronous generators[J].Electric Power Systems Research,2009,79:953-958.
    [98] Soliman M,Westwick D,Malik O P.Identification of Heffron-Phillips model parameters for synchronous generators operating in closed loop[J].IET Generation Transmission and Distribution,2008,2(4):530-541.
    [99] Namba M,Nishiwaki T,Yokokawa S,et al.Identification of parameters for power system stability analysis using kalman filter[J].IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(7):3304-3311.
    [100] Ghahremani E,Karrari M,Malik O P.Synchronous generator third-order model parameter estimation using online experimental data[J].IET Generation Transmission and Distribution:2008,2(5):708-719.
    [101] Karrari M,Malik O P.Identification of physical parameters of a synchronous generator from online measurements[J].IEEE Transactions on Energy Conversions,2004,19(2):407-415.
    [102] Karrari M,Malik O P.Identification of Heffron-Phillips model parameters for synchronous generators using online measurements[J].IEE Proceedings Generation,Transmission & Distribution,2004,151(3):313-320.
    [103] Miskovic M,Mirosevic M.Making the model of synchronous generator using the date from monitoring system[C] . Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference,2004:1129-1132.
    [104] Agahi H,Karrari M,Rosehart W,et al.Application of active identification method to synchronous generator parameter estimation[C].IEEE Power Engineering Society General Meeting,2006:1-7.
    [105] Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[C].The 11th International Symposium of Aerospace/Defense Sensing,Simulation and Controls,1997:182-193.
    [106] Julier S J,Uhlmann J K,Durrant-Whyte H F,et al.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
    [107] Van der Merwe R.Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D].Portland: Oregon Health Sciences University,2004.
    [108] Umans S D,Mallick J A,Wilson G L.Modeling of solid rotor turbogenerators-Part I & II.IEEE Transactions on Power Apparatus and Systems [J].1978,97(1):269-291.
    [109] Dommel H W.李永庄,林集明,曾昭华,译.电力系统电磁暂态计算理论[M].北京:水利电力出版社,1991.
    [110] Anderson P M,Fouad A A.《电力系统的控制与稳定》翻译组译.电力系统的控制与稳定[M].北京:水利电力出版社,1979.
    [111] The Mathworks Inc.SimPowerSystems user's guide[EB/01].http://www.mathworks.com/ access/helpdesk/help/toolbox/physmod/powersys/.
    [112] Ong C M.Dynamic simulation of electric machinery[M].New Jersey:Prentice Hall PTR, 1998.
    [113] Levenberg K.A method for the solution of certain problems in least-squares[J].Quarterly Applied Math,1944,2(2):164-168.
    [114] Marquardt D.An algorithm for least-squares estimation of nonlinear parameters[J].SIAM Journal Applied Math,1963,11(2):431-441.
    [115] Wang Q,Guo X,Zhang Y.Direct identification of continuous time delay systems from step responses[J].Journal of Process Control,2001,11(5):531-542.
    [116] Wang Q,Z Y.Robust identification of continuous systems with dead-time from step responses[J].Automatica,2001,37(3):377-390.
    [117] Ahmed S,Huang B,Shah S L.Identification from step responses with transient initial conditions[J].Journal of Process Control,2008,18(2):121-130.
    [118]电力系统分析综合程序用户手册[Z].北京:中国电力科学研究院,2001.
    [119] Powertech Labs Inc.DSA ToolsTM overview[EB/01].http://www.powertechlabs.com/ services-products/dsatools/.
    [120] CEATI International Inc.EMTP-RV:Electromagnetic transients program[EB/01]. http://www.emtp.com.
    [121] Ljung L.System identification: theory for the user[M].New Jersey:Prentice Hall PTR.1999.
    [122] The Mathworks Inc.Wavelet toolbox user's guide[EB/01].http://www.mathworks.com/access/ helpdesk/help/toolbox/wavelet/wden.html.
    [123] Luo J.Smooth differentiation[EB/01].http://www.mathworks.com/matlabcentral/ fileexchange/6170-smooth- differentiation.
    [124] Hart D,Novosel D,Hu Y,et al.A new frequency tracking and phasor estimation algorithm for generator protection[J].IEEE Transactions on Power Delivery,1997,12(3):1064-1073.
    [125] Ljung L.SID:System identification toolbox for MATLAB[EB/01]. http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ident.shtml.
    [126] The Mathworks Inc.Simulink user’s guide[EB/01].http://www.mathworks.com/help/toolbox/ simulink/simulink_product_page.html.
    [127] Canay I M.Determination of the model parameters of machines from the reactance operators xd(p),xq(p)[J].IEEE Transactions on Energy Conversion,1993,8(2):272-279.
    [128] Holmes S A,Klein G,Murray D W.An O(N2) square root unscented Kalman filter for visual simultaneous localization and mapping[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(7):1251-1263.
    [129] Hovland G E,von Hoff T P,Gallestey E A,et al.Nonlinear estimation methods for parameter tracking in power plants[J],Control Engineering Practice,2005,13(11):1341-1355.
    [130]胡炯,吴雅璐,李建,等.同步发电机绝对转子角测量方法研究[J].电网技术,2006,30(S):354-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700