用户名: 密码: 验证码:
高性能变频调速系统若干关键技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的研究工作围绕高性能变频调速系统的若干关键技术问题——无速度传感器控制及效率优化控制展开。
     阐述了交流调速技术的发展史及发展趋势,重点对其中的无速度传感器控制技术、效率优化控制技术的发展状况分别进行了回顾与展望。
     由于现有各种仿真软件提供的异步电机仿真模型均为理想模型,不能满足本论文的研究需要。因此在MATLAB环境下为以后的研究专门建立了考虑非理想因素的仿真模型,包括可以模拟电机参数变化以及考虑铁损的异步电机Simulink子系统模型、M文件S函数模型、C MEX文件S函数模型。通过这样的探讨得到了更为逼近真实电机行为特性的异步电机高效仿真模型。
     探索了能否通过降阶的方法在保证转速估计精度的前提下减小EKF的计算量这一问题,推导了异步电机的降阶EKF转速估计算法,提出了处理信号微分运算的方法。通过仿真及实验对比,得到了相关结论。
     探索了新型卡尔曼滤波器进化算法——无轨迹卡尔曼滤波器(UKF—Unscented Kalman Filter)、平方根无轨迹卡尔曼滤波器(SRUKF—Square Root Unscented Kalman Filter)在异步电机的转速估计问题上的应用。回答了引入UKF、SRUKF是否能获得明显优于EKF的估计性能这一问题。通过仿真及实验对比,分析了采样周期以及滤波器参数对UKF、SRUKF及EKF估计性能的影响,从静态误差、动态响应速度、对电机参数灵敏度、对噪声灵敏度、方法复杂度、计算量等各个方面将UKF、SRUKF与EKF进行了全面的比较,得到了相关结论。
     针对如何不增加硬件成本在VVVF通用变频器产品上实现节能控制这一问题,根据VVVF通用变频器的软、硬件资源情况选择了模糊搜索节能控制方法。在原有的通用变频器硬件平台上实现了所设计的节能控制方案。
The work in the dissertation centered on some key technologies of high performance variable frequency adjustable speed drives, i.e. sensorless control and efficiency optimization control.
    The phylogeny and the trend of ac speed adjustment technology were explained. It laid stress on the review and the prospect of the sensorless control technology and the efficiency optimization control technology.
    Because all the simulation models of induction machines available now, which are provided by the various kind of simulation softwares, are ideal models. These models can not meet the need of the study. The simulation model considering the nonideality of the motors based on MATLAB were established specially, including Simulink subsystem models, M-file S-function models and C MEX-file S-function models taking iron loss and variable parameters into account. The proposed models provided a more accurate approximation to actual induction motors for many control problems of induction motor drives.
    Whether the computational burden of the EKF can be reduced through reducing the order under the condition that the speed estimation accuracy is not decreased was explored. The algorithm of the reduced order EKF was developed and a method of processing signal differential was proposed. The conclusions were obtained via the comparison of the simulation results and the experimental results.
    Speed estimation of induction machines based on the new members of the Kalman filter family — Unscented Kalman Filter (UKF) and Square Root Unscented Kalman Filter (SRUKF) were discussed in depth. Answer the question whether the better speed estimation performance can be gotten if the UKF and the SRUKF were introduced. The effect of the sampling time and the parameters of the filter upon the speed estimation performances are analyzed, and the various aspects of the speed estimation performances of the filters, such as stationary error, dynamic response speed, parameter sensitivities and algorithm complexity are evaluated. Some conclusions were drawn.
    Aiming at how to realize energy saving control on the VVVF general inerter products without increasing any hardware cost, a fuzzy efficiency optimizing control scheme was selected according to the hardware and the software resources of the inverters. Finally, the scheme was implemented on the platform of the original general inverters.
引文
[1] 陈伯时,陈敏逊.交流调速系统[M].北京,机械工业出版社,1998
    [2] 余功军.感应电动机的无速度传感器矢量控制若干问题研究:[博士学位论文][D].西安:西安理工大学,1999
    [3] Thomas M Jahns, Vladimir Blasko. Recent advances in power electronics technology for industria and traction machine drives. Proceedings of the IEEE[J], 2001, 89(6): 963~975
    [4] Robert D Lorenz. Key techonoiogies for future motor drives. ICEMS2005 [C], 2005(1): 1~6
    [5] Joachim Holtz. Sensorless control of induction motor drives. Proc. oflEEE[J], Vol. 90, No. 8, 2002 p1359-1394
    [6] Andrzej M Trzynadlowski.异步电机控制[M].北京,机械工业出版社,2003
    [7] 杨耕,陈伯时.交流感应电动机无速度传感器的高动态性能控制方法综述.电气传动[J],2001,(3):3~8
    [8] B.K.Bose.Modern Power Electronics and AC Drives现代电力电子与电力传动(英文版)[M].北京,机械工业出版社,2003
    [9] 喻辉洁,东伟,李永东,黄立培.无速度传感器交流调速系统速度估计策略分析.电工电能新技术[J],1997,(2):23~27
    [10] 曾岳南,陈伯时.异步电动机无速度传感器的矢量控制.电气传动自动化[J],2000,22(4):3~6
    [11] 邹旭东,康勇,陈坚.感应电机矢量控制系统无速度传感器控制方案研究.电气传动[J],2004,(4):3~7
    [12] 李永东,李明才.感应电机高性能无速度传感器控制系统—回顾、现状与展望.电气传动[J],2004,(1):4~10
    [13] Tajima H et al. Speed Sensorless Vector Control Method for an Industrial Drive System. Conf. Rec. IEEE PCC [C], Yokohama, 1995: 1034~1039
    [14] 夏超英.交直流传动系统的自适应控制.北京,机械工业出版社[M],2001
    [15] Schauder C. Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers. Conf. Rec. IEEE IAS'89[C], 1989: 493~499
    [16] G Yang, T Chin. Adaptive-speed identification scheme for a vector controlled speed sensorless inverter-induction motor drive. IEEE Trans. Ind Appli. [J], 1993, 29(?): 820~825
    [17] Fang-Zheng Peng, Fukao T. Robust speed identification for speed-sensorless vector control of induction motors. IEEE Trans. Ind Appli. [J], 1994, 30(5): 1234~1240
    [18] Maurizio Cirrincione et al. A new TLS-based MRAS speed estimation with adaptive integration for high-performance induction machine drives. IEEE Trans. Ind Appli. [J], 2004, 40(4): 1116~1136
    [19] H Kubota, K Matsuse, T Nakano. DSP-based speed adaptive flux observer of induction motor. IEEE Trans. IndAppli. [J], 1993, 29(2): 344~348
    [20] Marko Hinkkanen. Analysis and Design of Full-Order Flux Observers for Sensorless Induction Motors. IEEE Trans. Ind. Electron. [J], 2004, 51(5): 1033~1040
    [21] R E Kalman. A new approach to linear filtering and prediction problems. Transaction of the ASME—Journal of Basic Engineering[J], 1960: 35~45
    [22] Texas Instruments Europe. Sensorless Field Oriented Speed Control of Three Phase AC Induction Motor using TMS320F240 (TI文献号: SPRA458) /http://www.ti.com
    [23] 葛琼璇,冯之铖.异步电机矢量控制系统速度辨识研究.电工电能新技术[J],1996,(2):5~8
    [24] 李剑飞 等.基于扩展卡尔曼滤波器的异步电机转速辨识.电工技术学报[J],2002,(5):40~44
    [25] 苏位峰,刘丛伟,孙旭东,李发海.一种基于Kalman滤波的异步电机转速控制器.清华大学学报(自然科学版)[J],2003,43(9):1202~1205
    [26] 张寅孩,严利平,张仲超.基于遗传算法辨识噪声模型的异步电机闭环卡尔曼速度估计.电机与控制学报[J],2005,9(2):161~165
    [27] Yang Wenqiang, Jia Zhengchun, Xu Qiang. Speed sensorless vector control of induction motor based on reduced order extended Kalman filter. Journal of Southeast University (English Edition) [J], 2001, 17(1): 41~45
    [28] 潘志扬,潘俊民.基于Kalman滤波的无位置传感器感应电机伺服系统的研究.电气传动[J],2002.(4):13~16
    [29] David J Atkinson, Paul P Acarnley, John W Finch. Observers for induction motor state and parameter estimation. IEEE Trans. Ind Appli. [J], 1991, 27(6): 1119~1127
    [30] Che-Ming Lee, Chern-Lin Chen. Speed sensorless vector control of induction motor using Kalman-filter-assisted adaptive observer. IEEE Trans. Ind Electr. [J], 1998, 45(2): 359~361
    [31] Stephan Beineke, Harald Wertz. Design of extended Kalman filters for high performance position control of electrical drives. Proceedings of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics[C], 1999: 209~214
    [32] V Comnac, M Cernat, M Cotorogea, I Draghici. Sensorless direct torque and stator flux control of induction machines using an extended Kalman filter. Proceedings of the IEEE Int. Conf. on Control Applications [J], 2001: 674~679
    [33] C Caruana, G M Asher, K J Bradley, M Woolfson. Flux position estimation in cage induction machines using synchronous HF injection and Kalman filtering. IEEE Trans. Irid, Appli. [J], 2003, 39(5): 1372~1378
    [34] Américo Vicente Leite, Rui Esteves Araújo, Diamantino Freitas. Full and Reduced Order Extended Kalman Filter for Speed Estimation in Induction Motor Drives: A Comparative Study. The 35th Annual IEEE Power Electronics Specialists Conference [C], 2004: 2293~2299
    [35] Young-Real Kim et al. Speed Sensorless Vector Control of Induction Motor Using Extended Kalman Filter. IEEE Trans. Ind. Appli. [J], 1994, 30(5): 1225~1233
    [36] K L Shi, T F Chan, Y K Wong, S L Ho. Speed Estimation of an induction motor drive using an optimized Kalman filter. IEEE Trans. Ind Electr. [J], 2002, 49(1): 124~133
    [37] Barut M, Gokasan M, Bogosyan O S. An extended Kalman filter based sensorless direct vector control of induction motors. The 29th Annual Conference of the IEEE--IECON '03[C], 2003(1): 318~322
    [38] Hirokazu Tajima, Y Hori. Speed sensorless field - orientation control of the induction machine. IEEE Trans. Ind. Appli. [J], 1993, 29(1): 175~180
    [39] M. Godoy Simoes, Bimal K. Bose. Neural network based estimation of feedback signals for a vector controlled induction motor drive. IEEE Trans. Ind Appli. [J], 1995, 31(3): 620~629
    [40] Lazhar Ben-Brahim, Susumu Tadakuma, Alper Akdag. Speed Control of Induction Motor Without Rotational Transducers. IEEE Trans. Ind Appli. [J], 1999, 35(4): 844~850
    [41] Seong-Hwan Kim, Tae-Sik Park, Ji-Yoon Yoo, Gwi-Tae Park. Speed-sensorless vector control of an induction motor using neural network speed estimation. IEEE Trans. Ind Electr. [J], 2001, 48(3): 609~614
    [42] Chengzhi Cao, Mu-ping Lu, Xin Wang. Speed estimation and simulation of DTC system based on wavelet neural network. Proceedings of the Second International Conference on Machine Leaning and Cybernetics [C], 2003: 756~759
    [43] Raj M Bharadwaja et al. Neural speed filtering for sensorless induction motor drives. Control Engineering Practice[J], 2004, 12: 687~706
    [44] Kevin D Hurst, Thomas G Habetler. A Comparison of Spectrum Estimation Techniques for Sensorless Speed Detection in Induction Machines. IEEE Trans. Ind Appli. [J], 1997, 33(4): 898~905
    [45] Azzeddine Ferrah et al. A Speed Identifier for Induction Motor Drives Using Real-Time Adaptive Digital Filtering. IEEE Trans. Ind Appli. [J], 1998, 34(1): 156~162
    [46] José M Aller, Thomas G Habetler, Ronald G Harley, Rangarajan M Tallam, Sang Bin Lee. Sensorless Speed Measurement of AC Machines Using Analytic Wavelet Transform. IEEE Trans. Ind. Appli. [J], 2002, 38(5): 1344~1350
    [47] Roberto Cardennas et al. Sensorless vector control of induction machines for variable-speed wind energy applications. IEEE Trans. Ener Cony. [J], 2004, 19(1): 196~205
    [48] P L Jansen, R D Lorenz. Transducerless Position and Velocity Estimation in Induction and Salient AC Machines. 1EEE Trans. On Ind Appl. [J], March 1995, pp. 240~247
    [49] P L Jansen, R D Lorenz. Transducerless Field Orientation Concepts Employing Saturation-Induced Saliencies in Induction Machines. IEEE Trans. on lnd Appl. [J], Vol. 32, No. 6, Nov. 1996, pp. 1380~1393
    [50] J Ha, S K Sul. Sensorless Field Orientation Control of an Induction Machine by High Frequency Signal Injection. Proc. IEEE 1AS Annual Meeting[C], 1997: 426~432
    [51] M L Aline, M W Degner, R D Lorenz. Saturation Measurements in AC Machines Using Carrier Signal Injection. Proc. IEEE-IAS Annual Meeting[C], 1998
    [52] Emil Levi et al. A Speed Estimator for High Performance Sensorless Control of Induction Motors in the Field Weakening Region. IEEE Trans. Power Electron. [J], 2002, 17(3): 365~378
    [53] Adnan Derdiyok et al. Design and Implementation of a New Sliding-Mode Observer for Speed-Sensorless Control of Induction Machine. IEEE Trans. Irid. Electr. [J], 2002, 49(5): 1177~1182
    [54] Adnan Derdiyok. A novel speed estimation algorithm for induction machines. Electric Power Systems Research[J], 2003, 64: 73~80
    [55] Cristian Lascu, Ion Boldea, Frede Blaabjerg. Direct Torque Control of Sensorless Induction Motor Drives: A Sliding-Mode Approach. IEEE Trans. Ind. Appli. [J], 2004, 40(2): 582~590
    [56] Giorgio Bartolini, Alfonso Damiano, Gianluca Gatto, Ignazio Marongiu, Alessandro Pisano, Elio Usai. Robust Speed and Torque Estimation in Electrical Drives by Second-Order Sliding Modes. IEEE Trans. Cont. Sys. Tech. [J], 2003, 11(1): 84~90
    [57] Amuliu Bogdan et al. Sensorless sliding-mode control of induction motors using operating condition dependent models. IEEE Trans. Ener. Conv. [J], 2003, 18(2): 205~212
    [58] Adnan Derdiyok et al. A sliding mode speed and rotor time constant observer for induction machines. IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society[C], 2001: 1400~1405
    [59] Adnan Derdiyok. Simple method for speed and rotor resistance estimation of induction machines. IEE Proc. Electr. PowerAppl. [C], 2003, 150(3): 289~294
    [60] 冬雷,李永东.无速度传感器异步电动机极低转速下的矢量控制.清华大学学报(自然科学版)[J],2003,43(9):1169~1172
    [61] 冬雷,李永东,柴建云,吴继雄,王文森.无速度传感器异步电动机极低转速下的磁通位置观测.电工技术学报[J],2001,16(5):20~23
    [62] Kan Akatsu, Atsuo Kawamura. Sensorless Very Low-Speed and Zero-Speed Estimations with Online Rotor Resistance Estimation of Induction Motor Without Signal Injection. IEEE Trans. Ind. Appli. [J], 2000, 36(3): 764~771
    [63] Joachim Holtz, Juntao Quan. Sensorless vector control of induction motor at very low speed using a nonlinear inverter model and parameter indetification. IEEE Trans. Ind Appli. [J], 2002, 38(4): 1087~1095
    [64] Alfio Consoli, Giuseppe Scarcella, Antonio Testa. Speed- and current-sensorless field-oriented induction motor drive operating at low stator frequencies. IEEE Trans. Ind. Appli. [J], 2004, 40(1): 186~193
    [65] Hamid A Toliyat, Emil Levi, Mona Raina. A review of RFO induction motor parameter estimation techniques. IEEE Trans. Ener. Conv. [J], 2003, 18(2): 271~283
    [66] Jennifer Stephan, Marc Bodson, John Chiasson. Real-time estimation of the parameters and fluxes of induction motors. IEEE Trans. Ind. Appli. [J], 1994, 30(3): 746~759
    [67] Dell-Aquila A, Giliberti V, Lovecchio F S, Salvatore L. Real-time estimation of induction motor parameters by LSE. IECON'94[C], 1994(3): 2127~2131
    [68] F Alonge, F D Ippolito, S La Barbera, F M Raimondi. Parameter identification of a mathematical model of induction motors via least square technics. Proceedings of the 1998 IEEE International Conference on Control Applications[C], 1998 (1): 491~496
    [69] Cirrincione M, Pucci M, Vitale G. A least-squares based methodology for estimating the electrical parameters of induction machine at standstill. Proceedings of the 2002 IEEE International Symposium onlndustrial Electronics[C], 2002(2): 541~547
    [70] Cirrincione M, Pucci M. Experimental verification of a technique for the real-time identification of induction motors based on the recursive least-squares.The7th International Workshop on Advanced Motion Control[C], 2002: 326~334
    [71 ] Kaiyu Wang, John Chiasson, Marc Bodson, Leon M Tolbert. A nonlinear least-squares approach for identification of the induction motor parameters. IEEE Trans. Auto. Cont. [J], 2005. 50(10):1622~1628
    [72] T Matsuo, T A Lipo. A rotor parameter identification scheme for vector controlled induction motor drives.IEEE Trans. Ind. Appli. [J], 1985, 21: 624~632
    [73] H A Toliyat, A A GH Hosseiny. Parameter estimation algorithm using spectral analysis for vector controlled induction motor drives. Proc. IEEE Int. Symp. Ind. Electron. [C], 1993: 90—95
    [74] R Gabriel, W Leonhard. Microprocessor control of induction motor. Proc. Int. Semiconductor Power Conversion Conf. [C], 1982: 385~396
    [75] H Sugimoto, S Tamai. Secondary resistance identification of an induction motor—Applied model reference adaptive system and its characteristics.IEEE Trans. Ind. Appli. [J], 1987, 23(2): 296—303
    [76] J Cilia, G M Asher, J Shuli, M Sumner, K J Bradley, A Ferrah. The recursive maximum likelihood algorithm for tuning the rotor time constant in high-performance sensorless induction motor drives.Proc. Int. Conf. Elect. Mach. [C], 1998: 926~930
    [77] R Beguenane, G A Capolino. Induction motor rotor time constant measurement for vector control drives without rotary transducer. Proc. IEEE Int. Symp. Power Eng. Power Technol. [C], 1995,3(1): 13~17
    [78] R Beguenane, C Ghyselen, H Schoorens. A proposed induction motor speed sensor without contact from slot harmonics. Application to rotoric time constant identification. Proc. Inst. Elect. Eng. Conf. Power Electron. Variable-Speed Drives[C], 1994: 90~95
    [79] L Loron, G Laliberte. Application of the extended Kalman filter to parameters estimation of induction motors. Proc. Europe. Conf. Power Electron. Applicat. [C], 1993, 5: 85~90
    [80] Li-Cheng Zai, C L DeMarco, T A Lipo. An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives. IEEE Trans. Ind. Appli. [J], 1992, 28(1): 96~104
    [81] T Kataoka, S Toda, Y Sato. On-line estimation of induction motor parameters by extended Kalman filter. Proc. Europe. Conf. Power Electron. Applicat. [C], 1993(4): 325~329
    [82] Menaa M, Touhami O, Ibtiouen R. Estimation of rotor resistance of an induction motor using extended Kalman filter and spiral vector theory. Proceedings of 2003 IEEE Conference on Control Applications [C], 2003(2): 1262~1266
    [83] S Wade, M W Dunnigan, B W Williams. Improvements for induction machine vector control. Proc.Europe. Conf Power Electron. Applicat. [C], 1995(1):542~546
    [84] R S Pena, G M Asher. Parameter sensitivity studies for induction motor parameter identification using extended Kalman filter.Proc. Europe. Conf. Power Electron. Applicat. [C], 1993(4): 306~311
    [85] D J Atkinson, P P Acarnley, J W Finch. Parameter identification techniques for induction motor drives. Proc. Europe. Conf. Power Electron. Applicat. [C], 1989: 307~312
    [86] T Du, M A Brdys. Algorithms for joint state and parameter estimation in induction motor drives systems. Proc. Inst. Elect. Eng. Conf. Contr. [C], 1991:915~920
    [87] T Du, P Vas, F Stronach. Design and application of extended observers for joint state and parameter estimation in high-performance AC drives. Proc. Inst. Elect. Eng. —Elect. Power Applicat. [C], 1995, 142(2): 71~78
    [88] T Du, M A Brdys. Implementation of extended Luenberger observers for joint state and parameter estimation of PWMinduction motor drive. Proc. Europe. Conf Power Electron. Applicat. [C], 1993(4): 439~444
    [89] Veran Vasic, Slobodan N. Vukosavic, Emil Levi. A Stator Resistance Estimation Scheme for Speed Sensorless Rotor Flux Oriented Induction Motor Drives. IEEE Trans. Ener Conv. [J], 2003, 18(4): 476~483
    [90] Giorgio Bartolini, Alessandro Pisano, Pierluigi Pisu. Simplified Exponentially Convergent Rotor Resistance Estimation for Induction Motors. IEEE Trans. Auto. Cont. [J], 2003, 48(2): 325~330
    [91] Seok Ho Jeon, Kwang Kyo Oh, Jin Young Choi. Flux Observer With Online Tuning of Stator and Rotor Resistances for Induction Motors. IEEE Trans. Ind. Electron. [J], 2002, 49(3): 653~664
    [92] Xing Yu, Matthew W Dunnigan,, Barry W Williams. A Novel Rotor Resistance Identification Method for an Indirect Rotor Flux-Orientated Controlled Induction Machine System. IEEE Trans. Power Electron. [J], 2002, 17(3): 353~364
    [93] Riccardo Marino, Sergei Peresada, Patrizio Tomei. On-Line Stator and Rotor Resistance Estimation for Induction Motors. IEEE Trans. Contr. Sys. Tech. [J], 2000, 8(3): 570~579
    [94] M Koyama, M Yano, I Kamiyama, S Yano. Microprocessor-based vector control system for induction motor drives with rotor time constant identification function. Proc. IEEE Ind. Applicat. Soc. Annu. Meeting[C], 1985: 564~569
    [95] L J Garces. Parameter adaption for the speed-controlled static ac drive with a squirrel-cage induction motor. IEEE Trans. Ind. Applicat. [J], 1980, 16(2): 173~178
    [96] T M Rowan, R J Kerkman, D Leggate. A simple on-line adaption for indirect field orientation of an induction machine. IEEE Trans. Ind. Applicat. [J], 1991, 27(4): 720~727
    [97] S N Vukosavic, M R Stojic. On-line tuning of the rotor time constant for vector-controlled induction motor in position control applications. IEEE Trans. Ind. Electron. [J], 1993, 40(2): 130~138
    [98] D Dalai, R Krishnan. Parameter compensation of indirect vector controlled induction motor drive using estimated airgap power. Proc. IEEE Ind. Applicat. Soc. Annu. Meeting[C], 1987: 170~176
    [99] R D Lorenz, D B Lawson. A simplified approach to continuous, on-line tuning of field-oriented induction machine drives. IEEE Trans. Ind Applicat. [J], 1990, 26(3): 420~424
    [100] G Kang, J Jung, K Nam. A new rotor time constant update rule using stator flux estimates for an induction motor. Proc. IEEE Ind. Applicat. Soc. Annu. Meeting, 1999: 1278~1283
    [101] A Ba-Razzouk, A Cheriti, G Olivier. Artificial neural networks rotor time constant adaptation in indirect field oriented control drives. Proc. IEEE Power Electron. Specialists Conf [C], 1996: 701~707
    [102] D Fodor, G Griva, F Profumo. Compensation of parameters variations in induction motor drives using a neural network. Proc. IEEE Power Elect. Specialists Conf [C], 1995: 1307~1311
    [103] Kan Akatsu, Atsuo Kawamura. Online Rotor Resistance Estimation Using the Transient State Under the Speed Sensorless Control of Induction Motor. IEEE Trans. Power Electron. [J], 2000, 15(3): 553~560
    [104] Jung-Soo Choi, Yoon-Seok Han, Young-Seok Kim. A New Speed Estimation Scheme of the Induction Motor Considering the Flux Saturation. IEEE Trans. Magnet. [J], 2000, 36(5): 3595~3598
    [105] 崔纳新,张承慧,杜春水.变频调速异步电动机效率优化控制的研究进展.电工技术学报[J],2004,19(5):36~42
    [106] 中国电工技术学会,电控系统与装置专业委员会.风机水泵交流调速节能技术[M].北京:机械工业出版社,1990:1~3
    [107] 谭惊涛等.交流电机变频装置效率优化的策略.电气传动[J],1999,(4):11~13
    [108] Flemming Abrahamsen, Frede Blaabjerg, John K Pedersen et al. On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications. IEEE Trans. Ind. Appli, [J], 1998, 34(4): 822~831
    [109] Mitsubishi electric's technical reports, energy-saving induction motors. 2000
    [110] ABB bulletin, energy efficient motors. 2002
    [111] 常进,张曾科.感应电机恒功率因数控制的研究.中国电机工程学报[J],2002,22(11):70~74
    [112] 阿莱克斯电子工业株式会社.发明专利申请公开说明书[P].中国专利,CN1107624A.1995-8-30
    [113] 阿莱克斯电子工业株式会社.发明专利申请公开说明书[P].中国专利,CN1108444A.1995-9-13
    [114] S K Sul, M H Park. A novel technique for optimal efficiency control of a variable frequency induction motor. IEEE Trans. Power Electron. [J], 1988, 3: 192~199
    [115] 崔纳新,张承慧,孙丰涛.异步电动机的效率优化快速响应控制研究.中国电机工程学报[J],2005,25(11):118~123
    [116] 张承慧,谭震宇.变频调速驱动系统效率最优控制方程研究.计算物理[J],1998,15(3):377~384
    [117] 杨耕,耿华,王焕钢.一种考虑感应电机动态效率的转矩控制策略.电工技术学报[J].2005,20(7):93~99
    [118] 郭鹏义.杨耕,孙梅生等.电动汽车驱动用感应电机在线效率最优控制的算法研究.电机与控制学报[J],2001,(3):3~8
    [119] 徐璟,孙旭东,翁海清,许德伟.用于风机的变频调速异步电动机高效运行方法.清华大学学报(自然科学版)[J],2002,42(3):309~311
    [120] G O Garcia, J C Mendes Luis, R M Stephan, E H Watanabe. An efficient controller for an adjustable speed induction motor drive. 1EEE Trans. Ind. Electron. [J], 1994, 41(5): 533~539
    [121] Iordanis Kioskeridis, Nikos Margaris. Loss minimization in scalar-controlled induction motor drives with search controller. IEEE Trans. Power Electron. [J], 1996, 11(2): 213~220
    [122] Iordanis Kioskeridis, Nikos Margaris. Loss minimization in induction motor adjustable-speed drives. IEEETrans. Ind. Electron. [J], 1996, 43(1): 226~231
    [123] Kouki Matsuse, Tatsuya Yoshizumi, Seiji Katsuta, Shotaro Taniguchi. High_response flux control of direct-filed-oriented induction motor with high efficiency taking core loss into account. IEEE Trans. Ind. Appli. [J], 1999, 35(1): 62~69
    [124] Flemming Abrahamsen, Frede Blaabjerg, John K Pedersen et al. Efficiency-Optimized Control of Medium-Size Induction Motor Drives. IEEE Trans. Ind Appli. [J], 2001, 37(6): 1761~1767
    [125] D S Kirschen, D W Novotny, W Suwanwisoot. On-line efficiency optimization of a variable frequency induction motor drive. IEEE Trans. Ind. Appli. [J], 1985, 21(3): 610~615
    [126] Cao-Minh Ta, Yoichi Hori. Convergence improvement of efficiency-optimization control of induction motor drives. IEEE Trans. Ind. Appli. [J], 2001, 37(6): 1746~1753
    [127] Gilberto C D Sousa, B K Bose, John G C. Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive. IEEE Trans. Ind. Electron. [J], 1995, 42(2): 192~198
    [128] Chandan Chakraborty, Yoichi Hori. Fast efficiency optimization techniques for the indirect vector-controlled induction motor drives. 1EEE Trans. Ind. Appli. [J], 2003, 39(4): 1070~1076
    [129] Xu X, Novotny D W. Selecting the flux reference for induction machine drives in the field weakening region. IEEE Trans. onlnd Appl. [J], 1992, 28(6): 1353~1358
    [130] Kim S H, Sul S K. Voltage control strategy for maximum torque operation of an induction machine in the field weakening region. Proc. IECON'94[C], 1994: 599~604
    [131] Huang M S, Liao C M. Improved field-weakening control of IFO induction. IEEE Trans. on Aerospace andElec. Sys. [J], 2003, 39 (2): 647~658
    [132] 汤蕴球,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2005
    [133] 陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社.1991
    [134] Emil Levi et al. Impact of iron loss on behavior of vector controlled induction machines. IEEE Trans. Ind Appli. [J], 1995, 31(6): 1287~1296
    [135] S. Wade et al. Modeling and simulation of induction machine vector control with rotor resistance identification. IEEE Trans. Power Electron. [J], 1997, 12(3): 495~505
    [136] Emil Levi et al. Iron loss in rotor-flux-oriented induction machines: identification, assessment of detuning, and compensation. IEEE Trans. Power Electron. [J], 1996, 11(5): 698~709
    [137] Jinhwan Jung et al. A vector control scheme for EV induction motors with a series iron loss model. IEEE Trans. Ind. Electr. [J], 1998, 45(4): 617~624
    [138] Kouki Matsuse et al. A speed-sensorless vector control of induction motor operating at high efficiency taking core loss into account. IEEE Trans. Ind Appli. [J], 2001, 37(2): 548~558
    [139] 黎英,时维国,谭昆玲.考虑铁损时异步电动机的数学模型及其仿真研究.电气传动[J],1998,(3):7~9
    [140] 张晓华,朱峰,阮毅.电压空间矢量PWM逆变器—异步电机仿真模型的分析.电气传动自动化[J],2001,(10):4~6
    [141] 项世军,谢宗安.MATLAB语言在异步电动机同步旋转坐标系下模型仿真研究.计算机仿真[J],2000(3):70~72
    [142] Ozpineci B, Tolbert L M. Simulink implementation of induction machine model - a modular approach. IEEE International Electric Machines and Drives Conference 2003 [C], 2003(2): 728~734
    [143] Writing S-Functions (Version 4) [M], The Math Works, 2001
    [144] Using Simulink (Version 4) [M], The Math Works, 2001
    [145] 冯垛生.曾岳南.无速度传感器矢量控制原理与实践[M].北京:机械工业出版社,1997
    [146] Greg Welch, Gary Bishop. An introduction to the Kalman filter, http.//www.cs.unc.edu/
    [147] Eric A. Wan, Rudolph van der Menve. The unscented Kalman filter for nonlinear estimation. Adaptive Systems for Signal Processing, Communications, and Control Symposium [C], 2000: 153~158
    [148] S J Julier, J K Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of the IEEE[J], 2004, 92(3): 401~422
    [149] S J Julier, J K Uhlmann. A new extension of the Kalman filter to nonlinear systems, the 11th Int. Symp. Aerospace/Defense Sensing, Simulation and Controls [C], 1997: 182~193
    [150] S J Juliet, J K Uhlmann, H F Durrant-Whyte. A new approach for filtering nonlinear systems. Proceedings of the American Control Conference [C], 1995(3): 1628~1632
    [151] S J Julier, J K Uhlmann, H F Durrant-Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Trans. Auto. Cont. [J], 2000, 45(3): 477~482
    [152] S J Julier, J K Uhlmann. Reduced sigma point filters for the propagation of means and covariance through nonlinear transformations. Proceedings of the American Control Conference [C], 2002(2) 887~892
    [153] Simon Haykin. Adaptive Filter Theory (Fourth Edition) [M]. Beijing: Publishing House of Electronics Industry, 2003
    [154] 潘泉,杨峰,叶亮等.一类非线性滤波器一UKF综述.控制与决策[J],2005,20(5)481~489
    [155] Rudolph van der Merwe, Eric A. Wan. The square-root unscented Kalman filter for state and parameter-estimation. Proc. of the International Conference on Acoustics, Speech, and Signal Proeessing(ICASSP) [C], 2001
    [156] Rudolph van der Merwe et al. The unscented particle filter[R]. Technical report, Cambridge University, Aug. 2000
    [157] Yunqiang Chen, Huang T, Yong Rui. Parametric contour tracking using unscented Kalman filter. Proceedings. 2002 International Conference on Image Processing[C], 2002(3): 613~616
    [158] Vijay Kumar C, Rajagopal R, Kiran R. An optimal integrated tracking (ITS) for passive DOA tracking using unscented Kalman filter, Information, Decision and Control[J], 2002: 253~258
    [159] Azizi F, Houshangi N. Sensor integration for mobile robot position determination. IEEE International Conference on Systems, Man and Cybernetics [C], 2003(2): 1136~1140
    [160] Lingji Chert, Seereeram S, Mehra R K. Unscented kalman filter for multiple spacecraft formation flying. Proceedings of American Control Conference [C], 2003(2): 1752~1757
    [161] 诸静.模糊控制原理与应用[M].北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700