用户名: 密码: 验证码:
湖泊三维水动力水质模型研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊是地球上的璀璨明珠。在自然和人类活动的综合影响下,湖泊的水文过程和生态系统结构均发生深刻变化。探索自然和人文因素双重驱动下的湖泊水生态系统演变过程与格局,揭示湖泊水生态系统内大气、水体、沉积物三相界面之间的相互作用规律,为湖泊水环境治理、湖泊生态调控、重大江湖连通工程优化调度提供科学工具,是一项重要而迫切的研究命题。建立湖泊水环境数学模型、开展湖泊水动力与水生态数值模拟是完成这一研究命题的重要途径。然而,湖泊水环境系统集中体现了大气圈、水圈、生物圈之间的物质交换和能量交换过程,各种物理、化学、生物过程交织在一起,在以水动力学为骨架的研究框架下,需同时考虑化学、生物分支以及人类活动影响,极大地增加了研究难度。本研究为应对这一科学挑战,以湖泊(群)为研究对象,建立了三维湖泊水动力水质耦合数值模型,取得了若干具有理论意义和实用价值的成果。论文主要研究工作和创新成果如下:
     (1)湖泊水流运动复杂多变、湖流输运和混合作用强烈,为正确地模拟湖泊水动力过程,论文推导建立了Sigma坐标系下由连续性方程、动量方程、温度方程和物质输运方程组成的三维湖泊水动力模型控制方程组。采用κ-ε垂向湍流闭合模型及Smagorinsky水平湍流闭合模型对方程组进行闭合。考虑到数值模型计算需要,推导建立了二维垂向积分方程。在水温模型中,基于经典的传热概念,提出了包含辐射、对流、传导和蒸发项的湖泊自由水面热通量计算方法。该方法简单实用,尽量减少了对实测数据的要求,具有广泛的实用性。
     (2)以WASP模型为基础,分析了湖泊中氮、磷等元素的迁移转化规律及其与外界环境和水生生物的相互作用机制,构建了包含溶解氧平衡系统、浮游植物生长系统、氮循环系统和磷循环系统组成的三维湖泊水质模型。
     (3)发展了一种基于有限体积法的湖泊三维水动力水质耦合数值模型。该模型采用无结构三角形网格和垂向Sigma坐标来剖分计算区域,空间上模型采用有限体积法离散三维水动力水质方程组,时间上采用模式分裂技术,即首先通过外模求解二维垂向积分方程以获得水深分布,然后利用内模求解三维水流运动方程组获得三维流场细节,进而求解水温模型和水质模型。外模求解中,采用修正的四阶龙格库塔格式求解时变项,运用Osher格式计算跨边界法向通量。求解三维内模动量方程时,模型采用显示与隐式相结合的方法,其中水平对流项及扩散项采用基于Osher格式的黎曼数值解,垂向对流项采用TVD格式,垂向扩散采用隐格式离散。
     (4)以武汉大东湖水系为对象开展了数值模型验证工作。开展数值模拟需要高质量的气象水文驱动数据,然而对湖泊这样大面积水体的同步观测极为困难。为解决这一难题,本研究利用多源遥感数据(包括MODIS、Landsat5TM和Landsat7ETM+)开展了湖泊水文水质信息反演工作,利用反演数据为数值模拟提供初始条件并对模型进行验证。此外,本研究在数值模拟中全面引入GIS技术来辅助完成前处理、后处理与可视化任务,大大提高了建模和调试的效率。按照以上技术思路,论文研究并探讨了不同气候背景下大东湖水系中东湖、沙湖、杨春湖、北湖、严西湖和严东湖六个主要湖泊的三维流场结构和水温时空变化规律。此外,重点针对东湖开展了水质时空变化模拟研究,以验证模型有效性。结果表明,该研究思路和技术路线为开展湖泊水环境数值模拟提供了可靠、稳定且易执行的一体化解决方案,为建立湖泊水环境调控长效机制提供了有力技术支撑。
     (5)运用建立的数值模型,开展了江湖连通情境下武汉大东湖水系水网调度问题研究。根据大东湖生态水网项目总体规划,提出了初步的水网连通及引水调度方案和方案评价指标体系。运用数值模型开展水网连通研究,分析了不同方案对湖泊水体运动模式、水流形态和水质改善的影响,根据建立的指标体系对比了不同方案的优劣以确定最有利于大东湖水生态环境改善的调度方案。
Lakes are resplendent jewels of the earth. The hydrological process and ecologicalsystem structure in lakes are undergoing deep change due to the dual influence of natureand human behaviors. Exploring evolution procedures and patterns of lakehydro-ecological system, as well as revealing interaction rules between air, water andsediment of the system, are important and necessary research topics. However, intensiveexchanges of substance and energy between atmosphere, hydrosphere and biosphere takeplace in the lake system, resulting in extremely complex mixture of physical, chemical andbiologic procedures. This poses a great challenge on researchers who try to simulate thelake system with numerical models, because a variety of methods and knowledgebelonging to diverse research fields like chemistry and biology have to be integrated intothe hydrodynamics framework, which is the basis for the simulation. In order to meet thischallenge, this paper is focused on the development and application of a three-dimensionalhydrodynamics and water quality lake model using unstructured grid and finite volumemethod (FVM), aiming to provide a general tool for modeling the flow field, transport,and eutrophication processes in lakes. The main contributions and innovations of thiswork are outlined below:
     (1) In order to simulate the complicated circulation and mixture schema of lakes, amathematic model consisting of continuity, momentum, temperature and transportationequations was established. The standard k-ε vertical turbulent model and Smagorinskyhorizontal turbulent model were used to close the model physically and mathematically.Two-dimensional vertically integrated equations were also deducted to satisfy requirementof numerical computation. In particular, this work provides a method for estimating heatflux on the free surface of lakes where the flux is determined based on the balance ofincoming solar radiation, net back radiation flux, sensible heat exchange, and evaporativeheat. This method was liveraged in the temperature model and was proved to be a simpleand practical way for simulating lake temperature since it minimized requirements ofmetrological data.
     (2) Based on principles of WASP, a3D water quality model was constructed. The model is able to simulate spatial and temporal variations of eight water quality variablesincluding dissolved oxygen, carbon biological oxygen demand, nitrogen andphytoplankton. Specially, the original WASP model was improved by providing methodto calculate nutrient fluxes from the bottom sediment layer, allowing for better simulationof interactions between water column and bottom sediment.
     (3) A3D finite volume method for lake hydrodynamics on unstructured grid wasdeveloped. The horizontal computational domain are represented using non-overlappingunstructured triangular meshes, while irregular bottom elevations are represented with astretched or sigma vertical coordinate. The model's time integration employs aninternal-external mode splitting procedure to separate the internal shear mode from theexternal free surface gravity wave. The external mode solution uses a modifiedfourth-order Runge-Kutta time-stepping scheme to calculate the two-dimensional surfaceelevation field and the depth averaged velocities. The model’s internal momentumequation solution is solved numerically using a simple combined explicit and implicitscheme. Specially, the model uses Osher’s scheme to compute numerical flux across theboundary of triangular elements in horizontal direction and use TVD scheme to solvevertical advection.
     (4) The3D model was applied to the Great Lake Donghu area in Wuhan city, Chinato evaluate its effectiveness. To provide better boundary and condition data for drivingand validating the model, RS and GIS techniques were employed to extract water depth,temperature and water quality information from RS images including MODIS, LandsatTM and Landsat ETM+. Furthermore, GIS technique was fully leveraged to aidpre-and-post processing involved in the modeling task. With this methodology,hydrodynamics and temperature field of six major lakes (i.e., Lake Donghu, Lake Shahu,Lake Yangchunhu, Lake Beihu, Lake Yanxihu and Lake Yandonghu) located in the studyarea were carefully researched by considering different metrological conditions. Specialfocus was put on simulation of water quality in Lake Donghu. The modeling resultsshowed that the simulated currents, temperature and water quality variables in watercolumn of the six lakes agreed with the observed or estimated data well. The presentedmethodology that integrates GIS, RS into hydrodynamics modeling provides a reliable, easy-to-use and one-stop solution for modeling lake system.
     (5) A project aimed to reestablish hydraulic connectivity between lakes in the GreatLake Donghu area and the Yangtze River is being implemented in Wuhan at present. Withthe purpose of offering a scientific tool for investigating water quality restoration effectsfollowing alternative designs of the project and determining suitable operation strategies,the3D model was utilized once again. After proposing three water network connectivityschemes and operation solutions as well as an assessment indicator system used toevaluate and compare different solutions, the model was applied to analyze watermovement patterns and possible water quality changes responded to different solutions.Advantages and shortcomings of the solutions were compared under the same roof of theindicator system to determine the best one for restoration of the water quality in the lakes.
引文
[1]王国祥,成小英,濮培民.湖泊藻型富营养化控制技术、理论及应用[J].湖泊科学,2002,14(3):273-282.
    [2]王苏民窦鸿身.中国湖泊志[M].北京:科学出版社.1998.
    [3] Anderson M. A. Influence of pumped-storage hydroelectric plant operation on ashallow polymictic lake: Predictions from3-D hydrodynamic modeling[J]. Lake andReservoir Management,2010,26(1):1-13.
    [4] Liu Z. J., Hashim N. B., Kingery W. L., et al. Hydrodynamic Modeling of St. LouisBay Estuary and Watershed Using EFDC and HSPF[J]. Journal of Coastal Research,2008:107-116.
    [5] Wu T. S., Hamrick J. M., Mccutcheon S. C., et al. Benchmarking the EFDC/HEM3Dsurface water hydrodynamic and eutrophication models[M]. Next GenerationEnvironment Models and Computational Methods, ed. G. Delic and M.F. Wheeler.1997.
    [6] Hamrick J. M., Wu T. S. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models[M]. NextGeneration Environment Models and Computational Methods, ed. G. Delic and M.F.Wheeler.1997.
    [7] Ji Z. G., Hu G. D., Shen J. A., et al. Three-dimensional modeling of hydrodynamicprocesses in the St. Lucie Estuary[J]. Estuarine Coastal and Shelf Science,2007,73(1-2):188-200.
    [8] Park K., Jung H. S., Kim H. S., et al. Three-dimensional hydrodynamic-eutrophicationmodel (HEM-3D): application to Kwang-Yang Bay, Korea[J]. Marine EnvironmentalResearch,2005,60(2):171-193.
    [9] Wool T. A., Davie S. R., Rodriguez H. N. Development of three-dimensionalhydrodynamic and water quality models to support total maximum daily load decisionprocess for the Neuse River Estuary, North Carolina[J]. Journal of Water ResourcesPlanning and Management-Asce,2003,129(4):295-306.
    [10] Kernkamp Herman W. J., Van Dam A., Stelling G. S., et al. Efficient scheme for theshallow water equations on unstructured grids with application to the ContinentalShelf[J]. Ocean Dynamics,2011,61(8):1175-1188.
    [11] Kuang C., He L., Xing F., et al. Numerical Study on the Evolution Process ofPolluted Water Cluster in Gonghu, Taihu Lake[C].20093rd International Conferenceon Bioinformatics and Biomedical Engineering,2009:1-11.
    [12] Los H. Eco-hydrodynamic modelling of primary production in coastal waters andlakes using BLOOM[M]. Ios Pr Inc,2009.
    [13] Nauta T. A., Bongco A. E., Santos-Borja A. C. Set-up of a decision support system tosupport sustainable development of the Laguna de Bay, Philippines[J]. MarinePollution Bulletin,2003,47(1-6):211-219.
    [14] Xiao C., Liang X., Du C., et al. Numerical Simulation and Improvement Measures ofWater Quality in Yangshapao Lake[M].20093rd International Conference onBioinformatics and Biomedical Engineering, Vols1-11.2009.
    [15] Zhu Y., Yang J., Hao J., et al. Numerical simulation of hydrodynamic characteristicsand water quality in yangchenghu lake[M]. Advances in Water Resources andHydraulic Engineering, Vols1-6, ed. C.K.T.H.W. Zhang.2009.
    [16] Andersen H. E., Kronvang B., Larsen S. E., et al. Climate-change impacts onhydrology and nutrients in a Danish lowland river basin[J]. Science of the TotalEnvironment,2006,365(1-3):223-237.
    [17] Baker T., Lang J. R. Fluid inclusion characteristics of intrusion-related goldmineralization, Tombstone-Tungsten magmatic belt, Yukon Territory, Canada[J].Mineralium Deposita,2001,36(6):563-582.
    [18] Moeini M. H., Etemad-Shahidi A. Application of two numerical models for wavehindcasting in Lake Erie[J]. Applied Ocean Research,2007,29(3):137-145.
    [19] Carracedo P., Torres-Lopez S., Barreiro A., et al. Improvement of pollutant driftforecast system applied to the Prestige oil spills in Galicia Coast (NW of Spain):Development of an operational system[J]. Marine Pollution Bulletin,2006,53(5-7):350-360.
    [20] Saraiva S., Pina P., Martins F., et al. Modelling the influence of nutrient loads onPortuguese estuaries[J]. Hydrobiologia,2007,587:5-18.
    [21] Trancoso A. R., Braunschweig F., Leitao P. C., et al. An advanced modelling tool forsimulating complex river systems[J]. Science of the Total Environment,2009,407(8):3004-3016.
    [22] Trancoso A. R., Saraiva S., Fernandes L., et al. Modelling macroalgae using a3Dhydrodynamic-ecological model in a shallow, temperate estuary[J]. EcologicalModelling,2005,187(2-3):232-246.
    [23] Vaz N., Dias J. M., Leitao P. C., et al. Application of the Mohid-2D model to amesotidal temperate coastal lagoon[J]. Computers&Geosciences,2007,33(9):1204-1209.
    [24]陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学,2005,24(4):28-30.
    [25] Li Y., Acharya K., Yu Z. Modeling impacts of Yangtze River water transfer on waterages in Lake Taihu, China[J]. Ecological Engineering,2011,37(2):325-334.
    [26] He G., Fang H., Bai S., et al. Application of a three-dimensional eutrophicationmodel for the Beijing Guanting Reservoir, China[J]. Ecological Modelling,2011,222(8):1491-1501.
    [27] Wu G., Xu Z.. Prediction of algal blooming using EFDC model: Case study in theDaoxiang Lake[J]. Ecological Modelling,2011,222(6):1245-1252.
    [28]贾海峰,孔萌萌,郭羽.水环境决策支持系统框架下的密云水库水质模型[J].清华大学学报(自然科学版),2010,50(9):1383.
    [29] Yu Q., Wang Y., Gao S., et al. Modeling the formation of a sand bar within a largefunnel-shaped, tide-dominated estuary: Qiantangjiang Estuary, China[J]. MarineGeology,2012,299–302(0):63-76.
    [30] Xie D., Wang Z., Gao S., et al. Modeling the tidal channel morphodynamics in amacro-tidal embayment, Hangzhou Bay, China[J]. Continental Shelf Research,2009,29(15):1757-1767.
    [31]刘俊勇,张云,崔树彬. MIKE软件在珠江流域水资源管理与规划中的应用[J].人民珠江,2010,17(1):56-59.
    [32] Martins F., Neves R. J. J., Leit o P. C.. A three-dimensional hydrodynamic modelwith generic vertical coordinate[J]. Hydroinformatics,1998,98:1403-1410.
    [33] Martins F., Lei P., Silva A., et al.3D modelling in the Sado estuary using a newgeneric vertical discretization approach[J]. Oceanologica Acta,2001,24, Supplement1(0):51-62.
    [34] Ezer T., Mellor G. L.. A generalized coordinate ocean model and a comparison of thebottom boundary layer dynamics in terrain-following and in z-level grids[J]. OceanModelling,2004,6(3):379-403.
    [35] Blumberg A. F., Mellor G. L. A description of a three-dimensional coastal oceancirculation model, in Three-Dimensional Coastal Ocean Models[J]. Coastal EstuarineSciences,1987,4:1-16.
    [36] Sauvaget P., David E., Demmerle D., et al. Optimum design of large flood reliefculverts under the A89motorway in the Dordogne—Isle confluence plain[J].Hydrological Processes,2000,14(13):2311-2329.
    [37] Guo Y., Liu R., Duan Y., et al. A characteristic-based finite volume scheme forshallow water equations[J]. Journal of Hydrodynamics,2009,21(4):531-540.
    [38] Yang C., Cai X.. A parallel well-balanced finite volume method for shallow waterequations with topography on the cubed-sphere[J]. Journal of Computational andApplied Mathematics,2011,235(18):5357-5366.
    [39] Chen C., Liu H., Beardsley R. C. An Unstructured Grid, Finite-Volume,Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Oceanand Estuaries[J]. Journal of Atmospheric and Oceanic Technology,2003,20(1):159-186.
    [40]谭维炎.浅水动力学的回顾和当代前沿问题[J].水科学进展,1999(3).
    [41]谭维炎,胡四一,韩曾萃.钱塘江口涌潮的二维数值模拟[J].水科学进展,1995,62(2):83-93.
    [42]谭维炎.计算浅水动力学—有限体积法的应用[M].北京:清华大学出版社.1998.
    [43]李绍武,卢丽锋,时钟.河口准三维涌潮数学模型研究[J].水动力学研究与进展,2004,19(4):407-415.
    [44]于守兵,王万战,余欣.基于非结构网格的三维浅水模型[J].河海大学学报(自然科学版),2011,39(2):195-200.
    [45]赵棣华,姚琪,蒋艳,等.通量向量分裂格式的二维水流-水质模拟[J].水科学进展,2002,13(6):6.
    [46] Maccormack R.W., Paullay A. J. Computational efficiency achieved by time splittingof finite difference operators[J]. American Institute of Aeronautics and Astronautics,1972:72-154.
    [47] Pappou Th., Tsangaris S. Development of an artificial compressibility methodologyusing flux vector splitting[J]. International Journal for Numerical Methods in Fluids,1997,25(5):523-545.
    [48] Sengupta T. K., Jain R., Dipankar A. A new flux-vector splitting compact finitevolume scheme[J]. Journal of Computational Physics,2005,207(1):261-281.
    [49] Sun M., Takayama K.. An artificially upstream flux vector splitting scheme for theEuler equations[J]. Journal of Computational Physics,2003,189(1):305-329.
    [50] Roe P. L. Approximate Riemann solvers, parameter vectors and differenceschemes[J]. Journal of Computational Physics,1981,43:357-372.
    [51] Harten A., Lax P. D., Van Leer B. On upstream differencing and Godunov-typeschemes for hyperbolic conservation laws[J]. SIAM Review1983,25(1):35-61.
    [52] Osher S., Chakravarthy S.. Upwind schemes and boundary conditions withapplications to Euler equations in general geometries[J]. Journal of ComputationalPhysics,1983,50(3):447-481.
    [53] Sweby P. K. High Resolution Schemes Using Flux Limiters for HyperbolicConservation Laws[J]. SIAM Journal on Numerical Analysis,1984,21(5):995-1011.
    [54] Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal ofComputational Physics,1983,49(3):357-393.
    [55] Hu C., Shu C.. Weighted Essentially Non-oscillatory Schemes on TriangularMeshes[J]. Journal of Computational Physics,1999,150(1):97-127.
    [56]任华堂,陈永灿,刘昭伟.大型水库水温分层数值模拟[J].水动力学研究与进展A辑,2007,22(6):9.
    [57]王建平,苏保林,贾海峰,等.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学,2006,27(7):6.
    [58]史铁锤,王飞儿,方晓波.基于WASP的湖州市环太湖河网区水质管理模式[J].环境科学学报,2010,30(3).
    [59]于顺东,尤学一. WASP水质模型检验及参数敏感度分析[J].水资源与水工程学报,2007,18(6):5.
    [60]李兴,李畅游,勾芒芒,等.挺水植物对湖泊水质数值模拟过程的影响[J].环境科学,2010,31(12).
    [61]周勇峰,孟安梅,于健.贡湖水动力与水质模拟研究[J].河南水利与南水北调,2011(12):3.
    [62]潘晓东,王伟卓,唐健生,等.哈达山水库水动力与水质模拟研究[J].人民黄河,2010,32(8).
    [63]张怡,盛连喜,田竹君,等.桃山水库水动力和水质模拟研究[J].东北师大学报(自然科学版),2011,43(4).
    [64] Liang Shin-Jye, Frank Molkenthin. A virtual GIS-based hydrodynamic model systemfor Tamshui River[J]. Journal of Hydroinformatics2001(3):195-202.
    [65] Ng S. M.Y., Wai O., Li Y., et al. Integration of a GIS and a complexthree-dimensional hydrodynamic, sediment and heavy metal transport numericalmodel[J]. Advances in Engineering Software,2009,40(6):391-401.
    [66] Yu J. J., Qin X. S., Larsen L. C., et al. A GIS-based management and publicationframework for data handling of numerical model results[J]. Advances in EngineeringSoftware,2012,45(1):360-369.
    [67]赵晓东,王亮,沈永明.基于GIS和FVCOM数值模型的近海岸水动力计算[J].地理科学进展,2011,30(9):1152-1158.
    [68]陈启东,邓孺孺,秦雁,等.广东飞来峡库区水深遥感[J].中山大学学报(自然科学版),2012,51(1):6.
    [69]黄可,熊显名.基于TM遥感影像的水深遥感研究[C].第三届全国虚拟仪器学术交流大会论文集,2009.
    [70]齐述华,龚俊,舒晓波,等.鄱阳湖淹没范围、水深和库容的遥感研究[J].人民长江,2010,41(9).
    [71]徐升,张鹰.长江口水域多光谱遥感水深反演模型研究[J].地理与地理信息科学,2006,22(3):5.
    [72]叶小敏,郑全安,纪育强,等.基于TM影像的胶州湾水深遥感[J].海洋测绘,2009,29(2):12-15.
    [73]于杰,李永振,陈丕茂,等.利用Landsat TM6数据反演大亚湾海水表层温度[J].国土资源遥感,2009,81(3):24-29.
    [74]黄妙芬,毛志华,邢旭峰. HJ-1B/IRS水温反演模型及监测示范[J].国土资源遥感,2011,89:82-86.
    [75]徐同仁,刘绍民,秦军,等.同化MODIS温度产品估算地表水热通量[J].遥感学报,2009,13(6):21.
    [76]于瑞宏,刘廷玺,李畅游,等.干旱区草型湖泊悬浮固体浓度及水深的遥感与分析[J].水利学报,2005,36(7):10.
    [77] Chavula G., Brezonik P., Thenkabail P., et al. Estimating chlorophyll concentration inLake Malawi from MODIS satellite imagery[J]. Physics and Chemistry of the Earth,2009,34(13-16):755-760.
    [78] Patro S., Chatterjee C., Mohanty S., et al. Flood Inundation Modeling using MIKEFLOOD and Remote Sensing Data[J]. Journal of the Indian Society of RemoteSensing,2009,37(1):107-118.
    [79] Amel A. M. Integrating GIS, Remote Sensing, and Mathematical Modelling forSurface Water Quality Management[M]. Dissertation: Delft, the Netherlands.2012.
    [80] Imboden D. M., Wuest A. Mixing mechanisms in lakes, in Physics and Chemistry ofLakes[M], A. Lerman, D.M. Imboden, and J.R. Gat, Editors.1995, Springer Verlag. p.83-138.
    [81]施成熙,梁瑞驹.陆地水文学原理[M].北京:中国工业出版社.1964.
    [82] Chandrasekhar S. Hydrodynamic and hydromagnetic Stability[M]. London: OxfordUniversity.1961:480-514.
    [83]王立锋,范征锋,叶文华,等.用NND格式模拟Kelvin-Helmholtz不稳定性[J].计算物理,2010,27(2):168-172.
    [84] Jellison R, Melack J. M. Algal photosynthetic activity and its response to meromixisin hypersaline Mono Lake, California[J]. Limonology And Oceanography,1993,38(4):818-837.
    [85] Imerito A. Dynamic reservoir simulation model DYRESM v4science manual[M].Exchange Organizational Behavior Teaching Journal,2007, Centre for WaterResearch, University of Western Australia.
    [86] Dhamotharan S. Mathematical Model for Temperature and Turbidity StratificationDynamics in Shallow Reservoirs[M]. PhD thesis, University of Minnesota.1979.
    [87] Fr hlich C., Lean J.. The Sun's total irradiance: Cycles, trends and related climatechange uncertainties since1976[J]. Geophys. Res. Lett.,1998,25(23):4377-4380.
    [88] Reed R. K. On Estimating Insolation over the Ocean[J]. Journal of PhysicalOceanography,1977,7(3):482-485.
    [89] Ingle J. D. J., Crouch S. R.. Spectrochemical Analysis[M]. New Jersey: Prentice Hall.1988.
    [90] Henderson-Sellers B. Calculating the surface energy balance for lake and reservoirmodeling: A review[J]. Rev. Geophys.,1986,24(3):625-649.
    [91] Balistrieri L. S., Tempel R. N., Stillings L. L., et al. Modeling spatial and temporalvariations in temperature and salinity during stratification and overturn in Dexter PitLake, Tuscarora, Nevada, USA[J]. Applied Geochemistry,2006,21(7):1184-1203.
    [92] Iziomon M. G., Mayer H., Matzarakis A. Downward atmospheric longwaveirradiance under clear and cloudy skies: Measurement and parameterization [J].Journal of Atmospheric and Solar-Terrestrial Physics,2003,65(10):1107-1116.
    [93] Swinbank W. C. Long-wave radiation from clear skies[J]. Quarterly Journal of theRoyal Meteorological Society,1963,89(381):339-348.
    [94] Berliand T. C. Method of climatological estimation of global radiation[J]. Meteor.Gidrol.,1960,6:9-12.
    [95] Churchill J. H., Kerfoot W. C.. The Impact of Surface Heat Flux and Wind onThermal Stratification in Portage Lake, Michigan[J]. Journal of Great Lakes Research,2007,33(1):143-155.
    [96] Lofgren B. M., Zhu Y.. Surface Energy Fluxes on the Great Lakes Based onSatellite-Observed Surface Temperatures1992to1995[J]. Journal of Great LakesResearch,2000,26(3):305-314.
    [97] Gleckler P. J., Bryan C. Weare. Uncertainties in Global Ocean Surface Heat FluxClimatologies Derived from Ship Observations[J]. Journal of Climate,1997,10(11):2764-2781.
    [98] Buck A. L. New equations for computing vapor pressure and enhancement factor[J].Journal of Applied Meteorology,1981,20(12):1527-1532.
    [99] Bunker A. F. Computations of surface energy flux and annual air-sea interactioncycles of the North Atlantic Ocean[J]. Mon. Weath. Rev.,1976,104:1122-1140
    [100] Fischer H. B. Mixing in Inland and Coastal Waters[M]. New York, NY: AcademicPress,.1979.
    [101] Andreas E. L., Murphy B. Bulk Transfer Coefficients for Heat and Momentum overLeads and Polynyas[J]. Journal of Physical Oceanography,1986,16(11):1875-1883.
    [102]陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[J].水力学报,1998(9):14-20.
    [103] Garrett A. J. Analyses of MTI imagery of power plant thermal discharge[C].Imaging Spectrometry VII, Proceedings of SPIE,2002,12.
    [104] Garratt J. R. Review of Drag Coefficients over Oceans and Continents[J]. MonthlyWeather Review,1977,105(7):915-929.
    [105] Large W. G., Pond S.. Open ocean momentum flux measurements in moderate tostrong winds [J]. J. Phys. Oceanogr.,1981,11:324-336.
    [106]李炜,徐孝平.水力学[M].武汉:武汉水利电力大学出版社,2000.6.
    [107] Launder B. E., Sandham N. D. Closure Strategies for Turbulent and TransitionalFlows[M]. Cambridge University Press,2002.
    [108] Anany M. N., Schnell U., Scheffknecht G. Implementation of a smoothing pressurecorrection approach to the pressure-correction equation in order to maintain the use ofSIMPLEC algorithms on non-staggered grids[J]. Progress in Computational FluidDynamics,2010,10(1):40-50.
    [109] Shen W. Z., Michelsen J. A., Sorensen N. N., et al. An improved SIMPLEC methodon collocated grids for steady and unsteady flow computations[J]. Numerical HeatTransfer Part B-Fundamentals,2003,43(3):221-239.
    [110] Barton I. E. Improved laminar predictions using a stabilised time-dependent simplescheme [J]. International Journal for Numerical Methods in Fluids,1998,28(5):841-857.
    [111] Barton I. E. Comparison of SIMPLE-and PISO-type algorithms for transientflows[J]. International Journal for Numerical Methods in Fluids,1998,26(4):459-483.
    [112] Park T. S. Effects of time-integration method in a large-eddy simulation using thePISO algorithm: Part I-Flow field[J]. Numerical Heat Transfer Part a-Applications,2006,50(3):229-245.
    [113] Smagorinsky J. General circulation experiments with the primitive equations[J].Monthly Weather Review,1963,91(3):99-164.
    [114] Brandt T. A Posteriori Study on Modelling and Numerical Error in LES Applyingthe Smagorinsky Model[J]. Lecture notes in computational science and engineering,2007,56:173-190.
    [115] Worthy J., Sanderson V. E., Rubini P. A. A comparison of modified K-ε turbulencemodels for buoyant plumes[J]. Numerical Heat Transfer: Part B: Fundamentals,2001,39(2):151-165.
    [116] Moin P., Kim J. Numerical investigation of turbulent channel flow[J]. Journal ofFluid Mechanics,1981,118:341-377.
    [117] Burchard H., Helmut B. On the performance of a mixed-layer model based on thek-ε turbulence closure[J]. J. Geophys. Res.,1995,100(C5):8523-8540.
    [118] Umlauf L., Burchard H., Hutter K. Extending the k–ω turbulence model towardsoceanic applications[J]. Ocean Modelling,2003,5(3):195-218.
    [119] Burchard H., Karsten B. Comparative Analysis of Four Second-Moment TurbulenceClosure Models for the Oceanic Mixed Layer[J]. Journal of Physical Oceanography,2001,31(8):1943-1968.
    [120] Rodi W. Turbulence Models and Their Application in Hydraulics: A State-of-theArt Review[M]. Rotterdam, Netherlands A.A. Balkema1993.
    [121] Gastel P. V., Pelegrí J. L. Estimates of gradient Richardson numbers from verticallysmoothed data in the Gulf Stream region[J]. Strain,2004,68:459-482.
    [122]万蕾,朱伟.重污染河道中浮游植物初级生产力特征[J].生态环境学报,2010,9(1):34-39
    [123] Monod J. The Growth of Bacterial Cultures[J]. Annual Review of Microbiology,1949,3:371-394.
    [124] Di Toro Dominic M., Donald J. O., Robert V. T. A Dynamic Model of thePhytoplankton Population in the Sacramento San Joaquin Delta[C], inNonequilibrium Systems in Natural Water Chemistry, American chemical society,1971,131-180.
    [125] Pakulski J. D., Benner R., Whitledge T., et al. Microbial Metabolism and NutrientCycling in the Mississippi and Atchafalaya River Plumes[J]. Estuarine, Coastal andShelf Science,2000,50(2):173-184.
    [126] Zheng L., Chen C., Zhang F. Y. Development of water quality model in the SatillaRiver Estuary, Georgia[J]. Ecological Modelling,2004,178(3–4):457-482.
    [127]孙刚,盛连喜.湖泊富营养化治理的生态工程[J].应用生态学报,2001,12(4):590-592.
    [128] S ndergaard M., Jensen J. P., Jeppesen E. Internal phosphorus loading in shallowDanish lakes[J]. Hydrobiologia,1999,408-409(0):145-152.
    [129]范成新,张路,包鲜明.太湖沉积物一水界面生源要素迁移机制及定量化—2.磷释放的热力学机制及汇源转换[J].湖泊科学,2006,15(3):207一217.
    [130] Covar A. P. Selecting the proper reaeration coefficient for use in water qualitymodels., in the U.S. EPA conference on Environmental Simulation Modeling,1976:Cincinnati, Ohio.
    [131] O'connor D. J. Wind Effects on Gas-Liquid Transfer Coefficients[J]. Journal ofEnvironmental Engineering,1983,109(3):731-752.
    [132] Blake A., Kineke G., Milligan T., et al. Sediment trapping and transport in the ACEBasin, South Carolina[J]. Estuaries and Coasts,2001,24(5):721-733.
    [133] Herron I. H., Foster M. R. Partial Differential Equations in Fluid Dynamics[M].Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S o Paulo:Cambridge University Press.2008.
    [134] Eymard R., Gallou t T., Herbin R. Finite volume methods[M], in Handbook ofNumerical Analysis, P.G. Ciarlet and J.L. Lions, Editors.2000, Elsevier. p.713-1018.
    [135]傅德薰.计算空气动力学[M].北京:宇航出版社.1994.
    [136]李绍武,卢丽锋,时钟.河口准三维涌潮数学模型研究[J].水动力学研究与进展,2003,19(4):407-415.
    [137] Spekreijse S. P. Multigrid Solution of the Steady Euler Equations[M]. Centrum voorWiskunde en Informatica. The Netherlands: Amsterdam.1988.
    [138] Zhao J., Rao Y. R., Wassenaar L. I. Numerical modeling of hydrodynamics andtracer dispersion during ice-free period in Lake Winnipeg[J]. Journal of Great LakesResearch,2012,33(3):147–157.
    [139] Jameson A., Schmidt W., Turkel E. Numerical solution of the Euler equations byfinite volume methods using Runge-Kutta time stepping schemes[J]. AIAA paper,1981:81-1259.
    [140] Jameson A., Mavriplis D. Finite volume solution of the two-dimensional Eulerequations on a regular triangular mesh J]. AIAA Journal,1986,24(4):611-618.
    [141] Sanderse B., Koren B. Accuracy analysis of explicit Runge–Kutta methods appliedto the incompressible Navier–Stokes equations[J]. Journal of Computational Physics,2012,231(8):3041-3063.
    [142] Dick E. Introduction to Finite Volume Methods in Computational FluidDynamics[C], in Computational Fluid Dynamics3rd ed, J.F. Wendt, Editor.2009,Springer-Verlag: Berlin Heidelberg.
    [143] Pike J., Roe P. L. Accelerated convergence of Jameson's finite-volume Eulerscheme using van der Houwen integrators[J]. Computers&Fluids,1985,13(2):223-236.
    [144] Chen C., Huang H., Beardsley R. C., et al. Tidal dynamics in the Gulf of Maine andNew England Shelf: An application of FVCOM[J]. J. Geophys. Res.,2011,116(C12):C12010.
    [145] Van L. B. Towards the ultimate conservative difference scheme V. A second-ordersequel to Godunov's method[J]. Journal of Computational Physics,1979,32(1):101-136.
    [146] Van L. B. Flux-vector splitting for the Euler equations Eighth InternationalConference on Numerical Methods in Fluid Dynamics[M], E. Krause, Editor.1982,Springer Berlin, Heidelberg. p.507-512.
    [147]韩庆之,马盛元.地表水中NO3-N在武汉东湖水质综合评价中的意义[J].中国地质大学学报,2000,25:492-494.
    [148]李畅游,孙标,高占义,等.呼伦湖多波段遥感水深反演模型研究[J].水利学报,2011,42(2):1423-1431.
    [149]胡顺军,田长彦,宋郁东,等.塔里木河流域水面蒸发折算系数分析[J].中国沙漠,2005,25(5):649-651.
    [150]牛振红,孙明.水面蒸发折算系数的对比观测实验与分析计算[J].水文,2003,23(3):49-51.
    [151]王远明,李成荣.宜昌站水面蒸发系数折算[J].人民长江,1999,30(1):41-45.
    [152]闵骞,苏宗萍,王叙军.近50年鄱阳湖水面蒸发变化特征及原因分析[J].气象与减灾研究,2007,30(3):17-20.
    [153]陈星银.官厅水库水面蒸发实验分析[J].北京水利,1997(4):17-22.
    [154] Ottlé C., Vidal-Madjar D.. Estimation of land surface temperature with NOAA9data[J]. Remote Sensing of Environment,1992,40(1):27-41.
    [155]覃志豪, Zhang M., Karnieli A.用NOAA-AVHRR热通道数据演算地表温度的分裂窗算法[J].国土资源遥感,2001,48(2):33-42.
    [156]翟俊,山发寿,仝彩荣.基于MODIS数据的青海湖流域地表温度反演研究[J].盐湖研究,2009,17(4):14-21.
    [157]何报寅,丁超,徐贵来.基于MODIS的武汉城市圈地表温度场特征[J].长江流域资源与环境,2010,19(12):1380-1385.
    [158]覃志豪, M Zhang, A Karnieli,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,200156(4):456-466.
    [159] Jiménez-Mu oz J. C., Sobrino J. A. A generalized single-channel method forretrieving land surface temperature from remote sensing data[J]. J. Geophys. Res.,2003,108(D22):4688.
    [160] Weng Q., Lu D., Schubring J. Estimation of land surface temperature–vegetationabundance relationship for urban heat island studies[J]. Remote Sensing ofEnvironment,2004,89(4):467-483.
    [161] Qin Z., Karnieli A., Berliner P. A mono-window algorithm for retrieving landsurface temperature from Landsat TM data and its application to the Israel-Egyptborder region[J]. International Journal of Remote Sensing2001,22(18):3719-3746.
    [162]邓兆仁,李新民.武昌东湖热学环境调查分析[J].华中师院学报,1983(2):120-127.
    [163]金伯欣,范业尧,邓兆仁,等.武昌东湖热学环境调查分析[J].华中师院学报,1980(3):79-92.
    [164] Oecd. Eutrophication of waters-Monitoring, assessment and control[M]. OECD,Paris,1982.
    [165]甘义群,郭永龙.武汉东湖富营养化现状分析及治理对策[J].长江流域资源与环境,2004,13(3).
    [166]谢杰,王心源,张洁.基于TM/ETM+影响分析巢湖叶绿素a浓度变化趋势[J].中国环境科学,2010,30(5):677-682.
    [167] Ekstrand S. Landsat TM based quantification of chlorophyll-a during algae bloomsin coastal waters[J]. International Journal of Remote Sensing,1992,13(10):1913-1926.
    [168]陈雄志,王芳.武汉东湖水污染成因和特征分析及综合治理措施探索[J].城市规划学刊,2009(7):209-212
    [169]湖北省水利水电勘测设计院.湖北省武汉市大东湖生态水网构建—水网连通工程(近期)可行性研究报告[M].武汉.2010.
    [170]严江涌,黎南关.武汉市大东湖水网连通治理工程浅析[J].人民长江,2010,41(11):82-84.
    [171]逢勇,璞培民.璞培民太湖水底摩擦系数的估算[J].上海环境科学,1995,14(3):34-35.
    [172]姜应和,程静,颜二茧.武汉市青山区城市污水水质特征分析[J].武汉理工大学学报,2004,26(12):34-37.
    [173]王燕生.工程水文学[M].北京:水利电力出版社.1992.
    [174] Slutsky A. H.,. Yen B. C. A macro-scale natural hydrologic cycle water availabilitymodel[J]. Journal of Hydrology,1997,201(1–4):329-347.
    [175]王学立.东湖生态水网工程调度模型及其应用研究[D].武汉:2008,博士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700