用户名: 密码: 验证码:
大黄蟅虫超微粉剂干预大鼠肝、肾纤维化的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     纤维化是组织、器官炎症损伤后的常见病理转归,可见于多种脏器和组织,是一个涉及细胞、细胞因子、细胞外基质及其降解酶类等多个复杂因素的病理生理过程。目前关于纤维化的形成机制尚不完全清楚,临床缺乏有效的早期诊断方法和治疗方法。
     肝肾等不同器官的纤维化,虽然发病病因与临床表现不同,但其基本病理特点与形成机制相同。而临床上慢性肝病也常可导致慢性肾脏病变,如乙肝相关性肾病,慢性乙型肝炎肝纤维化病变可形成免疫复合物导致肾小球基膜增厚相关膜性肾炎,最终可导致肾纤维化、慢性肾衰等病变。在器官纤维化中研究对肝肾纤维化同时有效的药物及治疗方法有其特殊意义。
     大黄蟅虫丸出自《金匮要略》,功能活血祛瘀、扶正补虚,是中国中西医结合学会肝病专业委员会制定的“肝纤维化中西医结合诊疗指南”推荐的防治肝纤维化的中成药。大黄蟅虫丸临床应用广泛,其抗组织器官纤维化的作用受到关注。大黄蟅虫超微粉剂是对传统丸剂的剂型改进,能减少药量的同时提高药效。
     中医学认为,肝肾纤维化均存在“正虚”与“血瘀”的病机。大黄蟅虫丸能扶正祛瘀,因此,研究同一方剂对不同脏器纤维化的作用,对于防治慢性肝病与慢性肾病,探讨异病同治的内涵有重要意义。
     目的
     研究大黄蟅虫超微粉剂对实验性大鼠肝纤维化、肾纤维化的干预作用,用荧光差异凝胶电泳技术和质谱分析技术研究其对肝、肾纤维化大鼠肝、肾组织蛋白表达的影响,用Western免疫印迹方法及免疫组化方法对差异蛋白进行验证,探讨大黄蟅虫超微粉剂干预肝、肾纤维化的蛋白质水平的作用机制。
     方法
     1.大黄蟅虫超微粉剂对实验性大鼠肝纤维化的干预作用
     24只SD大鼠(雌雄各半,体重100-120g)随机分成3组:正常组、模型组、给药组。正常组腹腔注射等渗生理盐水0.5 mL,其余组腹腔注射猪血清0.5 mL,每周2次,连续12周。药物组(0.27g/kg/d)于造模之日起灌胃给药,正常组与模型组灌服等容积生理盐水,每天1次,连续12周。第12周末处死大鼠,取其血与肝组织。
     指标检测。肝组织病理学检查:HE染色与Masson染色观察其肝纤维化程度。血清纤维化指标:透明质酸(HA)、层粘连蛋白(LN)、Ⅲ型前胶原(PCⅢ)、Ⅳ型胶原(Ⅳ-C)含量。肝功能指标:血清谷丙转氨酶(ALT)、谷草转氨酶(AST)含量。血液流变学指标:反映血液粘度的4个全血粘度值(切变率150/s、30/s、5/s、1/s)、全血高切还原粘度、全血低切还原粘度,与反映红细胞流变性的红细胞压积、红细胞聚集指数。
     2.大黄蟅虫超微粉剂对实验性大鼠肾间质纤维化的干预作用
     24只SD大鼠(雌雄各半,体重180-200g)随机分成3组:假手术组、模型组、给药组。假手术组:暴露肾脏后游离左侧输尿管,然后逐层缝合;其他组:暴露肾脏后游离左侧输尿管,在肾盏处和肾下极处分别结扎输尿管,然后逐层缝合。给药组于造模之日起灌胃给药,假手术组与模型组灌服等容积生理盐水,每天1次,连续5周。第5周末处死大鼠,取其血与梗阻侧肾组织。
     指标检测。肾组织病理学检查:HE染色与Masson染色观察其肝纤维化程度。血清纤维化指标:透明质酸(HA)、层粘连蛋白(LN)、Ⅲ型前胶原(PCⅢ)、Ⅳ型胶原(Ⅳ-C)含量。肾功能指标:血清肌酐(Cr)、尿素氮(Urea)含量。血液流变学指标:反映血液粘度的4个全血粘度值(切变率150/s、30/s、5/s、1/s)、全血高切还原粘度、全血低切还原粘度,与反映红细胞流变性的红细胞压积、红细胞聚集指数。
     3.大黄蟅虫超微粉剂对肝纤维化大鼠肝组织蛋白表达的影响
     采用Ettan DIGETM蛋白质组学技术平台比较肝纤维化大鼠与给予中药治疗的肝纤维化大鼠的肝组织的蛋白表达差异。蛋白样品处理:肝组织研粉,加入DIGE用裂解液,制备肝组织全蛋白裂解液→蛋白定量:采用EttanTM 2-D QuantKit定量蛋白。标记样品:采用CyDye DIGE最小标记法,用不同的CyDye荧光染料标记不同组样品(Cy2、Cy3、Cy5)。双向凝胶电泳:固相pH梯度胶条被动重水化14小时后用GE公司电泳仪等电聚焦电泳。等电聚焦完毕,将固相pH梯度胶条立即在平衡液中平衡,之后进行垂直板SDS-聚丙烯酰胺凝胶(SDS-PAGE)电泳,得到凝胶。图像扫描与分析:用Typhoon扫描仪在不同波长分别对Cy2,Cy3,Cy5荧光染料标记的图像进行扫描,用DeCyder Image QuantTM图像分析软件对DIGE图像进行凝胶内差异分析,凝胶间生物学误差分析,确定差异蛋白质,筛选表达量差异2倍以上的蛋白质点。制备胶与染色、酶解:制作一块制备胶,硝酸银染色后切下感兴趣的蛋白质点进行酶解。质谱鉴定:初步鉴定12个表达量差异2倍以上的蛋白点,进行MALDI-TOF MS/MS分析,获得肽质量指纹图谱,采用Mascot软件在NCBInr数据库中进行检索,鉴定蛋白。蛋白功能分析和作用网络分析:对于质谱鉴定出的差异蛋白质,用蛋白质序列数据库Swiss Prot + TrEMBL查询相关信息,用String数据库进行蛋白质作用网络分析。
     4.大黄蟅虫超微粉剂对肝纤维化大鼠肝组织与肾间质纤维化大鼠肾组织中蛋白Regucalcin、ERp57、CAⅢ表达水平的影响
     采用免疫印迹(Western blot)与免疫组化(Immunohistochemistry)方法对前部分实验中得到的差异蛋白质Regucalcin、ERp57、CAⅢ在肝组织、肾组织中的表达水平进行定量分析。免疫印迹方法:组织蛋白样品提取,SDS-PAGE电泳,转膜,免疫检测及ECL化学发光,软件进行图像分析及数据处理。免疫组化方法:制备组织切片,二甲苯脱蜡,乙醇水化,3%H2O2孵育,PBS液洗,加一抗,PBS液洗,加二抗,PBS液,DAB显色,苏木素复染,梯度酒精脱水,中性树胶封片,软件进行图像分析及数据处理。
     5.统计学方法
     用SPSS 13.0统计软件进行数据分析。数据满足方差齐性检验,则用One-way ANOVA与LSD法进行组间两两比较。数据以“x±s”表示,P<0.05为差异有统计学意义。
     结果
     1.大黄蟅虫超微粉剂对实验性大鼠肝纤维化的干预作用
     模型组肝组织假小叶形成,肝组织胶原纤维含量与血清HA. LN. PCⅢ. IV-C、ALT、AST及血液流变学指标显著高于正常组(P<0.01)。给药组肝脏无假小叶形成,肝组织胶原纤维含量与血清HA、LN、PCⅢ、IV-C、ALT、AST及血液流变学指标显著低于模型组(P<0.01)。
     2.大黄蟅虫超微粉剂对实验性大鼠肾间质纤维化的干预作用
     模型组肾组织弥漫性间质纤维化形成,肾组织胶原纤维含量与血清HA、LN、PCⅢ、Ⅳ-C、Cr、Urea及血液流变学指标显著高于假手术组(P<0.01)。给药组肾组织轻度间质纤维化形成,肾组织胶原纤维含量与血清HA、LN、PCⅢ、Ⅳ-C、Cr、Urea及血液流变学指标显著低于模型组(P<0.01)。
     3.大黄蟅虫超微粉剂对肝纤维化大鼠肝组织蛋白表达的影响
     利用荧光差异凝胶电泳(2D DIGE)技术比较了肝纤维化大鼠与给予中药治疗的肝纤维化大鼠肝组织蛋白质组学差异,在58个表达量差异大于2倍的蛋白质点中,利用MALDI-TOF MS/MS质谱分析技术初步鉴定了12个。其中Regucalcin、ERp57、CAⅢ蛋白在慢性肝、肾疾病中报道颇多,故对三者进行进一步研究。
     4.大黄蟅虫超微粉剂对肝纤维化大鼠肝组织与肾间质纤维化大鼠肾组织中蛋白Regucalcin、ERp57、CAⅢ表达水平的影响
     免疫印迹与免疫组化结果显示:Regucalcin、ERp57、CAⅢ三个蛋白在正常肝组织、肾组织都有一定表达;肝纤维化模型组与肾间质纤维化模型组大鼠组织中Regucalcin、ERp57的表达量显著高于正常组/假手术组、CAⅢ的表达量显著低于正常组/假手术组;给药组大鼠组织中Regucalcin、ERp57的表达量均显著低于模型组、CAⅢ表达量均显著高于模型组;这与2D DIGE结果一致。
     结论
     1.大黄蟅虫超微粉剂对猪血清诱导的大鼠肝纤维化有一定的干预作用:能减轻肝纤维化大鼠的肝组织损害、保护肝细胞,降低肝组织纤维化程度与血清纤维化指标(HA、LN、PCⅢ、Ⅳ-C),改善血清肝功能指标(ALT、AST),改善血液流变学性能与微循环。
     2.大黄蟅虫超微粉剂对单侧输尿管结扎诱导的大鼠肾间质纤维化有一定的干预作用:能减轻肾间质纤维化大鼠的肾组织损害、保护肾小管上皮细胞,降低肾组织纤维化程度与血清纤维化指标(HA、LN、PCⅢ、Ⅳ-C),改善血清肾功能指标(Cr、Urea),改善血液流变学性能与微循环。
     3.大黄蟅虫超微粉剂对肝纤维化大鼠肝组织的蛋白质表达水平有影响。利用2D DIGE技术和MALDI-TOF MS/MS技术比较了肝纤维化大鼠与给予药物治疗的肝纤维化大鼠的肝组织蛋白质组学差异,在58个差异表达蛋白质点(表达量差异大于2倍)中,初步鉴定了12个。这12个蛋白参与机体的损伤修复、氧化应激、炎症反应、免疫反应、凋亡、细胞因子与炎症介质的释放及信号传导通路等机制。这12个蛋白是否参与大黄蟅虫超微粉剂干预实验性肝、肾纤维化的作用机制,需要进一步研究。
     4.大黄蟅虫超微粉剂干预实验性肝纤维化、肾间质纤维化的部分作用机制与Regucalcin、ERp57、CAⅢ三个蛋白相关。大黄蛰虫超微粉剂能够调节这三个蛋白在肝纤维化大鼠肝组织及肾纤维化大鼠肾组织的表达量,而这三个蛋白通过细胞钙稳态失调(参与细胞损伤、增殖、凋亡)、过氧化应激、炎症反应、免疫反应、纤维组织癌变等机制参与器官纤维化的病理过程。
     5、本研究建立的2D DIGE到MALDI-TOF MS/MS的技术平台相对稳定,在此基础上开展药物蛋白质组学研究,探讨中药复方干预器官纤维化的作用机制是切实可行的。
Background
     Organic fibrosis are the result of abnormally depositing of extracellular matrix, the mechanism of organic fibrosis is unknown. The study of the forming mechanism and the methods of diagnosis in early period and effective blocking ways of organic fibrosis are still the urgently probles of basic and clinical studies.
     Dahuang Zhechong recipe (DHZC), come from Golden Chamber, is a traditional Chinese complex prescription, which can promot blood circulation, strengthening healthy Qi and dispelling pathogenic factors. It is the Chinese patent medicine for preventing and curing chronic liver disease including fibrosis and cirrhosis recommended by Chinese association of integrative medicine. The antifibrotic effects of DHZC continues to remain a major concern in clinical treatment.
     According to the theories of Traditonal Chinese Medicine, there are same mechanisms between hepatic fibrosis and renal fibrosis. healthy Qi-deficiency and Blood-stagnation are the main pathogenesis of organic fibrosis. The key principles for the treatment are strengthening healthy Qi and dispelling pathogenic factors. On the one hand, to reinforce deficiency and strengthening body resistance was used for retrieving function of organ and elevating resistant-illness power. On the other hand, to activate the blood circulation and removing the blood stasis. Therefore, DHZC maybe have the protective and therapeutic effect of organic fibrosis.
     Objective
     To examine the protective and therapeutic effect of ultramicro-powder of Dahuang Zhechong recipe (DHZC) on liver fibrosis and renal interstitial fibrosis of rats. To investigate its possible mechanisms of anti-hepatic fibrosis effect by 2D DIGE based proteomics analysis and MALDI-TOF MS/MS. Three proteins representing significant changes of expression were confirmed by Western blot and immunohistochemistry. To find some of drug targets of traditional Chinese formulations by Pharmacoproteomics Technology.
     Methods
     1. Effect of ultramicro-powder of DHZC on hepatic fibrosis in rats.
     Wistar rats (n=24,12 males,12 females, SPF) weighing 100g-120g were housed in a pathogen-free environment at room temperature(22-25℃) and maintained on rat chow. All animals received humane care in compliance with the institution's guidelines. They were provided with commercial rodent diet and tap water adlibitum throughout the experiments.
     All rats were divided randomly into three groups:normal group, model group, DHZC-treated group. Eight rats were treated in each group. Except in normol group, liver fibrosis in rat was produced in each group. The rats were injected intraperitoneally with 0.5 ml sterile porcine serum twice a week for 12 weeks. In addition, rats of normal group treated with physiological saline in the same way. Ultramicro powders of DHZC were processed by ultramicro pulverization technology. At the same time, DHZC was given to the DHZC-treated group (0.27g/kg/d, i.g.) for 12 weeks. The model group and the normal group were given equal volume of physiological saline. The rats were killed in fasted status after 12 weeks of porcine serum treatment. Animals were anesthetized with isoflurane according to their weight and killed by cervical dislocation. Blood samples of all groups were drawn from the abdominal aorta. Livers were rapidly excised, cut into parts.
     liver samples for histopathological evaluation were fixed in 4% neutral buffered formalin, dehydrated with 50%-100% ethanol, and embedded in paraffin. Paraffin sections were cut and stained with HE and Masson to obeserve the histopathological changs. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined by standard spectrophotomeric method using commercial test reagents (BioSino Bio-technology and Science Inc, China). Serum content of hyaluronic acid (HA), laminin (LN), procollagen typeⅢ(PC-Ⅲ) and collagen typeⅣ(Ⅳ-C) were assessed by radio-immune method using commercial kits (BioSino Bio-technology and Science Inc, China). And indexes of blood rheology (four index of whole blood viscosity, two index of whole blood reduction viscosity of high shear rate, hematocrit, erythrocyte aggregation index)were measured.
     2. Effect of ultramicro-powder of DHZC on kidney interstitial fibrosis in rats.
     Wistar rats (n=24,12 males,12 females, SPF) weighing 100g-120g were housed in a pathogen-free environment at room temperature(22-25℃) and maintained on rat chow. All animals received humane care in compliance with the institution's guidelines. They were provided with commercial rodent diet and tap water adlibitum throughout the experiments.
     All rats were divided randomly into three groups:sham-operated group, model group, DHZC-treated group. Eight rats were treated in each group. Except in sham-operated group, liver fibrosis in rat was produced in each group. The renal interstitial fibrosis was induced by unilateral ureter obstruction before the start of experiment. In addition, rats of sham-operated group were just separated left ureter. Ultramicro powders of DHZC were processed by ultramicro pulverization technology. At the same time, DHZC was given to the DHZC-treated group (0.27g/kg/d, i.g.). The model group and the sham-operated group were given equal volume of physiological saline. The rats were killed in fasted status after 5 weeks. Animals were anesthetized with isoflurane according to their weight and killed by cervical dislocation. Blood samples of all groups were drawn from the abdominal aorta, kidneys were rapidly excised, cut into parts.
     Renal samples for histopathological evaluation were fixed in 4% neutral buffered formalin, dehydrated with 50%-100% ethanol, and embedded in paraffin. Paraffin sections were cut and stained with HE and Masson to obeserve the histopathological changs. The activity of serum creatinine (Cr) and urea nitrogen (Urea) were determined using commercial test reagents (BioSino Bio-technology and Science Inc, China). Serum content of hyaluronic acid (HA), laminin (LN), procollagen typeⅢ(PC-Ⅲ) and collagen typeⅣ(Ⅳ-C) were assessed by radio-immune method using commercial kits (BioSino Bio-technology and Science Inc, China). And indexes of blood rheology (four index of whole blood viscosity, two index of whole blood reduction viscosity of high shear rate, hematocrit, erythrocyte aggregation index) were measured.
     3. Effect of ultramicro-powder of DHZC on expression of proteins in liver tissues.
     Using 2D-DIGE to find differentially expressed protein spots between model group (rats were treated with porcine serum) and DHZC-treated group (rats were treated with porcine serum and DAZC).
     Preparation of liver lysates. Liver samples of model group and DHZC-treated group for proteomic analysis were immersed in ice-cold PBS buffer, and washed three times. After washing, the livers were cut into large pieces, weighed, and minced into 1 mm3-2 mm3. Then, liver tissue of model group and DHZC-treated group were pulverized in liquid nitrogen. Twenty milligrams of liver tissue were dissolved in 1 mL of lysis buffer (7 M urea,2 M thiourea,4%CHAPS,30 mM Tris-HCL, pH8.5). the solution was sonicated on ice for 15 min (with 5 s pulse-on and 3 s pulse-off to prevent overheating).The sample was incubated for 60 min at room temperature. After centrifugation (45 min,12000 rpm,4℃) the protein concentration of the supernatant was determined by EttanTM2-D Quant Kit (GE healthcare, USA). Samples were stored at-80℃until use.
     2D-DIGE. Protein labelling with cyanine dyes (Cy2, Cy3 and Cy5) according to the instructions of the manufacturer (GE healthcare, USA). Sample from DHZC-treated group were labelled with Cy5, sample from model group with labelled with Cy3, and the internal standards with Cy2. Thus, qualitative and quantitative analysis of protein expression was carried out. IEF was carried out by the IPGphor system (GE Healthcare) utilizing IPG strips (Immobiline DryStrip, pH4-7,24cm, GE Healthcare). The labelled mixture was added to the IPG-strips and rehydrated with 30V for 9h. The first dimension was performed with a total of 49.5kV-h of isoelectric focussing at 20℃. The second dimension was carried out with 12.5% SDS/PAGE gels. Gel images were scanned using the Typhoon 9410 imager (GE Healthcare). Images were analysed using DeCyder software (GE Healthcare). The quantitative statistical analysis was performed using the BVA (Biological Variation Analysis) module from the DeCyder Software setting 2.0-fold protein expression change as the differential threshold. Spots with a Student's t-test p value less than 0.05 were included for further investigations.
     Protein identification by MALDI-TOF MS/MS. Gels were fixed and then under went silver staining in order to visualize proteins. Protein spots of interest, as defined by the 2D-DIGE/DeCyder analysis, were excised from the gels. Proteins were digested with trypsin, and peptide mass mapping was per-formed by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) using an ABI Voyager DE-STR mass spectrometer. Each sample is first analyzed with MALDI-TOF MS to generate the PMF data. Then the five most abundant peptides (precursors) are selected for further fragmentation (MALDI-TOF/TOF) analysis to generate the full scan mass spectrum. To identify the original protein, the masses of the tryptic peptides were entered into MASCOT Database. The database search was restricted to rat proteins, with no constraints on either the molecular weight or the isoelectric point of the protein.
     4. Effect of ultramicro-powder of DHZC on expression of Regucalcin, ERp57 and CAⅢin liver tissues and kidney tissues.
     Verification of DIGE results by Western blotting and immunostaining were performed for proteins of Regucalcin、ERp57 and CAⅢ. Differences of Regucalcin, ERp57 and CAⅢexpression in liver tissues and kidney tissues between two model groups and two DHZC-treated groups were observed.
     Western blot analysis experiment. Selected proteins based on the 2-D MALDI experiments were analyzed further using commercially available antibodies. Liver and renal cell lysates from six groups were prepared on ice in RIPA buffer [1×PBS, 1% NP40,0.1% sodium dodecyl sulfate (SDS),5 mM EDTA,0.5% sodium deoxycholate, and 1 mM sodium orthovanadate] with protease inhibitors. Protein concentration was determined by the modified Bradford method[9]. Equal amounts of proteins were separated electrophoretically on 12% SDS/polyacrylamide gels and transferred onto polyvinylidene difluoride membranes(PVDF) (Amersham Pharmacia Biotech, Piscataway, NJ). The membrane was probed with primary antibodies, which were anti-Regucalcin antibody (diluted 1:10, abcam, UK), anti-EREp57 antibody (diluted 1:10, abcam, UK) and anti-CAⅢantibody (diluted 1:10, abcam, UK). Expression was determined with horseradish peroxidase-conjugated secondary antibodies and enhanced chemiluminescence (ECL) (Pierce, Rockford, IL). The immunoreactive bands were visualized on Kodak 2000M camera system (Eastman Kodak, Rochester, NY) and analysed by HMIAS-2000 software according to the instructions of the manufacturer.β-actine was used to confirm equal loading. The experiments were repeated three times.
     Immunohistochemistry experiment. Regucalcin, ERp57 and CAⅢexpression were studied by immunohistochemical analysis conducted on 5μm thick paraffin-embedded liver and renal sections from rats of six groups (n=8, each) Briefly, deparaffinized unstained tissue sections were treated with 3% solution of H2O2 in order to quench the endogenous peroxidase activity. ChemMateTM EnVisionTM Detection Kit, Peroxidase/DAB is employed in a two-step procedure where the first step is incubation of the tissue with primary antibodies, anti-Regucalcin antibody (diluted 1:10, abcam, UK), anti-EREp57 antibody (diluted 1:10, abcam, UK) and anti-CAⅢantibody (diluted 1:10, abcam, UK), and the second step is incubation with the ChemMateTM EnVisionTM/HRP, Rabbit/Mouse reagent. The reaction is visualized by ChemMateTM DAB+ Chromogen. Expression was identified by the brown-colored liver and renal tissue staining. For immunostaining, all samples were treated identically and digital artwork was performed in the same manner for all micrographs.
     5. Statistical analysis.
     All statistical analyses were carried out using the SPSS 13.0 statistical software package. Quantitative data were expressed as mean±SD and compared using the One-way ANOVA and LSD. Statistical significance was set at p≤0.05.
     Results
     1.Effect of ultramicro-powder of DHZC on hepatic fibrosis in rats.
     Rats of model group with hepatic fibrosis showed significantly increased serum ALT, AST, HA, LN, PCⅢ,Ⅳ-C and indexes of blood rheology levels compared with rats of normal group (P<0.01). Concurrent administration of ultramicro-powder of DHZC group significantly reduced the increase in ALT, AST, HA, LN, PCⅢ,Ⅳ-C and indexes of blood rheology levels, compared with rats of model group (P<0.01). The histopathological analysis suggested that the severe liver fibrosis happened in porcine serum alone treatment group compared with control group. Administration with ultramicro-powder of DHZC obviously alleviated the degree of liver fibrosis based on HE stained and Masson stain tissue sections
     2. Effect of ultramicro-powder of DHZC on kidney interstitial fibrosis in rats.
     Rats of model group with renal interstitial fibrosis showed significantly increased serum ALT, AST, HA, LN, PCⅢ,Ⅳ-C and indexes of blood rheology levels compared with rats of sham-operated group (P<0.01). Concurrent administration of ultramicro-powder of DHZC group significantly reduced the increase in ALT, AST, HA, LN, PCⅢ,Ⅳ-C and indexes of blood rheology levels, compared with rats of model group (P<0.01). The histopathological analysis suggested that the severe renal interstitial fibrosis happened in alone treatment of unilateral ureter obstruction group compared with control group. Administration with ultramicro-powder of DHZC obviously alleviated the degree of renal interstitial fibrosis based on HE stained and Masson stain tissue sections
     3. Effect of ultramicro-powder of DHZC on expression of proteins in liver tissues.
     Differentially expressed protein spots were identified by computer analysis using the DeCyder Software.58 spots with greater than 2.0-fold differences in abundance representing significant changes in protein expression were identified. Thirty of these proteins were down-regulated while 28 were up-regulated compared to fibrotic liver. Preliminary choosed twelve protein spots to identificat by MALDI-TOF MS/MS. The regulation on the expressions of these proteins may be one of the pathways for ultramicro-powder of DHZC to exert its anti-organizational fibrosis effect.
     4. Effect of ultramicro-powder of DHZC on expression of Regucalcin, ERp57 and CAⅢin liver tissues and kidney tissues.
     Differences of proteins of Regucalcin, ERp57 and CAⅢexpression in liver tissues and kidney tissues were observed via immunostaining and Western blotting.
     The specificity of the antibodies against Regucalcin, ERp57, CAⅢhad been testified by Western blot. The up-regulation of Regucalcin and ERp57 and the down-regulation of CAⅢwere observed in model group with hepatic fibrosis compared with normal group. These results were consistent with the DIGE results. Furthermore, the up-regulation of Regucalcin and ERp57 and the down-regulation of CAⅢwere observed in model group with renal interstitial fibrosis compared with sham-operated group.
     Expression of Regucalcin, ERp57 and CAⅢin hepatocyte cytoplasm and renal tubular epithelial cells were observed in liver tissues from normal group and kidney tissues from sham-operated group. Immunostaining of liver tissues and kidney tissues verified markedly increased levels of Regucalcin and ERp57 in samples from two model groups and decreased levels in samples from two DHZC-treated groups. It also verified markedly decreased levels of CAIII in samples from two model groups and increased levels in samples from two DHZC-treated groups.
     Conclusions
     1. The ultramicro-powder of Dahuang Zhechong recipe significantly inhibited the progression of hepatic fibrosis induced by porcine serum. The inhibitory effect of DHZC on hepatic fibrosis might be associated with its ability to significantly improve the liver function, markedly reduced the levels of serum aminotransferase and serum fibrosis makers, greatly improve blood rheology and microcirculation, protect the liver cells, repaire damage of liver tissue.
     2. The ultramicro-powder of Dahuang Zhechong recipe significantly inhibited the progression of renal interstitial fibrosis induced by unilateral ureter obstruction. The inhibitory effect of DHZC on renal interstitial fibrosis might be associated with its ability to significantly improve the renal function, markedly reduced the levels of serum fibrosis makers, greatly improve blood rheology and microcirculation, protect the renal tubular epithelial cells, repaire damage of renal tissue.
     3. According to 2-D DIGE and MALDI-TOF MS/MS, considerable differences in protein regulation during fibrogenesis exist. DHZC's mechanism of action is related to regulation of these differentially expressed proteins. Preliminary choosed twelve protein spots to identificat by MALDI-TOF MS/MS. these proteins are relevant to mechanism of cell damage c, oxidative stress, inflammatory reaction, immune reaction, the process of apoptosis, release of various cytokines and inflammatory mediators, signal transduction and molecular regulation. The regulation on the expressions of these proteins may be one of the pathways for ultramicro-powder of DHZC to exert its anti-fibrosis effect.
     4. Verification of DIGE results by Western blotting and immunostaining were performed for proteins of Regucalcin、ERp57 and CAⅢ. The inhibitory effect of ultramicro-powder of DHZC on hepatic fibrosis and renal interstitial fibrosis might be associated with the ability of Regucalcin、ERp57、CAⅢto rehabilitate calcium ions homeostasis, restrain early malignant transformation of tissues, interpose the immune-regulating mechanism and inflammation reaction, protect the cells function of liver and kidney, inhibit oxidative stress.
     5. Verification of protein expression confirmed that the technology platform of 2D DIGE and MALDI-TOF MS/MS was relatively stable. Our study shows the great development potential of finding drug target of traditional Chinese formulations by Pharmacoproteomics Technology.
引文
[1]高志强,王彩花.大黄素和器官纤维化[J].中国中西医结合杂志,2005,25(11):1030-1032.
    [2]赵宗江,刘昆,张新雪,等.异病同治和同病异治理论在多器官纤维化防治中的应用[J].中医杂志,2005,16(10):728.
    [3]陆新良,钱可大.丹参抗纤维化作用机制的研究进展[J].中华内科杂志,2006,45(7):608-610.
    [4]戚红丹,郭顺根,庞奕晖,等.川芎嗪抗组织器官纤维化研究进展[J].解剖学杂志,2008,31(2):268-270.
    [5]陆新良,钱可大.丹参抗纤维化作用机制的研究进展[J].中华内科杂志,2006,45(7):608-610.
    [6]刘剑毅,姚恒,戴霞,等.三七总甙抗纤维化作用的研究进展[J].中国美容医学,2006,15(8):985-986.
    [7]牛建昭,郭顺根,赵宗江,等.复方鳖甲软肝方防治多器官纤维化的作用机理研究[DB/OL].国家科技成果数据库,2005-04.15.
    [8]郭传勇,黄培新,钟敏章,等.清肝饮对人成纤维细胞DNA和胶原合成的影响[J].实用肝脏病杂志,2000,5(1):26-27
    [9]赵钢,陈建杰,高脉.王灵台教授论柔肝冲剂防治肝肾肺等多脏器纤维化的研究思路[J].中医药学刊,2004,22(11):1998-1999.
    [10]李康,党诚学.大黄蟅虫丸药理作用及临床应用[J].现代中西医结合杂志,2004,13(11):1440-1442.
    [11]闫俊杰,陈信义.大黄蟅虫丸实验研究进展[J].中国实验方剂学杂志,2000,6(5):61.
    [12]李文琍,吴诗品.大黄蟅虫丸治疗慢性肝炎肝纤维化的临床疗效观察[J].中国药房,2008,19(21):1658-1660.
    [13]詹小涛.阿德福韦酯联合大黄蟅虫丸治疗乙型病毒性肝炎失代偿期肝硬化疗效观察[J].中国医药,2009,4(7):505-507.
    [14]梁小立.大黄蛰虫丸治疗病毒性肝炎肝硬化临床观察[J].中外医疗,2009,28(11):129-130.
    [15]何泽云,齐亮.试述对大黄蟅虫丸“缓中补虚”的理解及用于肾病综合征的治疗[J].光明中医,2008,23(12):1918-1921.
    [16]杨韶华,王祥生,曹务礼.大黄蟅虫丸治疗肾病综合征并急性肾功能衰竭疗效观察[J].中国中医急症,2005,14(9):843-844.
    [17]魏连波,栗德林,叶任高,等.大黄蟅虫丸对非胰岛素依赖型Ⅳ期糖尿病肾病患者Ⅷ因子相关抗原及纤维蛋白原的影响[J].中医杂志,2003,44(1):30-31.
    [18]潘志恒,成家茂,李永伟.等大黄蟅虫丸对大鼠肝星状细胞活化增殖的影响[J].中山大学学报·医学科学版,2009,30(3):250-254.
    [19]潘志恒,谢瑶,何宏文,等.大黄蟅虫丸对大鼠肝星状细胞基质金属蛋白酶表达及活性的影响[J].中国中西医结合杂志,2005,25(12):1100-1103.
    [20]魏连波,马志刚,吕瑞和,等.大黄蟅虫丸对大鼠肾间质纤维化及TGF-β1表达的影响[J].中国中西医结合杂志2003,23(基础理论研究特集):115-118.
    [21]马志刚,魏连波,昌瑞和,等.大黄蟅虫丸对肾间质纤维化影响的实验研究[J].中国中西医结合肾病杂志,2001,2(12):689-691.
    [22]孙伟,陈继红,高坤,等.大黄蟅虫丸对阿霉素肾硬化大鼠系膜基质增生抑制作用的实验研究[J].江苏中医药,2008,40(1):77-79.
    [23]孙伟,朱萱萱,曾安平,等.大黄蟅虫丸对改良阿霉素肾病肾硬化大鼠模型作用的实验研究[J].中成药,2006,28(1):81-85.
    [24]《金匮要略》不同方药对肺纤维化大鼠模型早期阶段(1~14d)的影响—肺纤维化早期阶段中医基本病机探讨[J].中国中医基础医学杂志,2009,15 (6):432-434.
    [25]国家药典委员会编.中华人民共和国药典·第一部[M].北京:化学工业出版社,2005:330-331.
    [26]徐月红,王宁生.中药微粉化的现状与分析[J].中国中药杂志,2004,20(6):497-500.
    [27]邓雯,夏荃,詹若挺,等.中药超微粉碎技术的研究进展.食品与药品,2007,9(11):59~62.
    [28]Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol 1997; 32:424-430
    [29]高春芳,陆伦根.纤维化疾病的基础和临床[M].上海:上海科学技术出版社,2004:362.
    [30]黄志刚,翟为溶,张月娥,等.异种动物血清诱导的大鼠肝纤维化模型及其机制[J].上海医科大学学报,1998,24(5):351.
    [31]李晓东,王保兴.抗肾间质纤维化分子的研究进展[J].国外医学泌尿系统分册,2005,25(6):844-847.
    [32]Diamond DL, Proll SC, Jacobs JM, et al. HepatoProteomics:applying proteomic technologies to the study of liver function and disease. Hepatology. 2006,44(2):299-308.
    [33]Hanash S.Disease proteomics. Nature,2003,422:226-232.
    [34]Van den Bergh G, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol.2004,15(1):38-43.
    [35]Yan JX, Devenish AT, Wait R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics.2002,2(12):1682-98.
    [36]Dowling P, O'Driscoll L, Meleady P, et al.2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis. 2007,28(23):4302-10.
    [37]Sun W, Xing B, Sun Y, et al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis:novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics.2007,6(10):1798-808.
    [38]Jin T, Hu LS, Chang M, et al. Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients. Eur J Neurol.2007, 14(5):563-8.
    [39]Zhang X, Guo Y, Song Y, et al. Proteomic analysis of individual variation in nomal livers of human beings using difference gel electrophoresis. Proteomics. 2006,6(19):5260-8.
    [1]Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol 1997; 32:424-430.
    [2]于世瀛,贲长恩,杨美媚,等.免疫性和化学性损伤肝纤维化动物模型的比较[J].实验动物科学和管理,1995,12(4):5-12.
    [3]莫国艳,林启云,戴柏勇,等.肝硬克颗粒抗猪血清致大鼠免疫性肝纤维化的实验研究[J].中药药理与临床,2004,20(1):24-26.
    [4]王晓昆,唐瑛.肝纤维化动物模型研究进展.动物医学进展.2007,3(25):56-58.
    [5]5.施旭光.虎金颗粒抗免疫性肝纤维化作用的实验研究[D].广东:广州中医药大学,2005:18-23.
    [6]国家药典委员会编.中华人民共和国药典2005年版[M].北京:化学工业出版社,2005:330-331.
    [7]高春芳,陆伦根.纤维化疾病的基础和临床[M].1版.上海:上海科学技术出版社,2004:362.
    [8]时昭红.银杏叶提取物治疗大鼠肝纤维化的机制研究[D].湖北:湖北中医学院,2006:28-29.
    [9]阳惠湘AKF-PD对DMN诱导大鼠肝纤维化预防性治疗的实验研究[D].湖南:中南大学,2008:7-8.
    [10]蔡红兵.大黄蟅虫丸对肝纤维化大鼠细胞因子表达谱的影响及其调控机制研究[D].广东:南方医科大学,2008:67-68.
    [11]李滨.大黄蟅虫丸和自主神经功能对肝纤维化卵圆细胞生成的调控研究[D].广东:南方医科大学,2009:67-68.
    [12]吴繁荣.鬼针草总黄酮对免疫性肝纤维化大鼠治疗作用及部分机制研究[D].安徽:安徽医科大学,2008:26-27.
    [13]史成章,李健生,王柏生,等.76例肝硬化患者的血液流变学改变[J].实用内科杂志,1990,10(1):16-17.
    [14]高志强,王彩花.大黄素和器官纤维化[J].中国中西医结合杂志,2005,25(11):1030~1031.
    [15]朱锐,杨玲,刘建国,等.肝纤维化模型大鼠血液流变学变化的实验研究[J].湖北中医杂志,2008,30(6):10-11.
    [16]朱清静,陆定波.剔毒护肝方对乙型肝炎肝纤维化麻鸭球结膜微循环和血液流变学的影响[J].中国中西医结合消化杂志,2002,10(3):170.
    [1]辛冰牧,杨红振,胡卓伟.肾纤维化发病机制及治疗学研究进展[J].国际药学研究杂志,2008,35(5):349-350.
    [2]姚颐,张杰.肾间质纤维化相关信号转导通路的研究进展[J].国际泌尿系统杂志,2007,27(6):831-834.
    [3]高春芳,陆伦根.纤维化疾病的基础和临床[M].上海:上海科学技术出版社,2004:435-436.
    [4]毛晓琴,赵亚,舒惠荃.肾间质纤维化的中西医治疗研究进展[C].中华中医药 学会肾病分会.中华中医药学会第二十二届全国中医肾病学术会议论文汇编(下),北京,2008:368-370.
    [5]张秋林.尿毒清胶囊抗肾纤维化作用及其机制研究[D].广东:广州中医药大学,2006:5-6.
    [6]罗海清,梁东,刘华锋.肾间质纤维化的形成机制及中药防治作用[J].中国中西医结合肾病杂志,2004,5(7):432-434.
    [7]李相军.tTG在大鼠肾间质纤维化中的作用及银杏叶提取物干预的研究[D].吉林:吉林大学,2007:27-29.
    [8]马志刚,魏连波,昌瑞和,等.大黄蟅虫丸对肾间质纤维化影响的实验研究[J].中国中西医结合肾病杂志,2001,2(12):689-691.
    [9]魏连波,马志刚,吕瑞和,等.大黄蟅虫丸对大鼠肾间质纤维化及TGF-β1表达的影响[J].中国中西医结合杂志2003,23(基础理论研究特集):115-118.
    [10]高峻钰,时振声.大黄蟅虫丸治疗大鼠CRF的实验研究[J].中国中医药科技,1998,5(2):73-74.
    [11]孙伟,陈继红,高坤,等.大黄蟅虫丸对阿霉素肾硬化大鼠系膜基质增生抑制作用的实验研究[J].江苏中医药,2008,40(1):77-79.
    [12]孙伟,朱萱萱,曾安平,等.大黄蟅虫丸对改良阿霉素肾病肾硬化大鼠模型 作用的实验研究[J].中成药,2006,28(1):81-85.
    [13]陈继红,孙伟,高坤,等.大黄蟅虫丸对阿霉素肾硬化大鼠血栓素B2、6-酮-前列腺素F1α的影响[J].中国中医药信息杂志,2007,14(10):26-27.
    [14]高春芳,陆伦根.纤维化疾病的基础和临床[M].1版.上海:上海科学技术出版社,2004:362.
    [15]刘蔚.Ab1酪氨酸激酶抑制剂对小鼠梗阻性肾病肾间质纤维化的影响及机制研究[D].湖北:华中科技大学,2007:21-22.
    [16]孙广东.Rho/Rock通路在大鼠肾间质纤维化发生机制中的作用及阿魏酸钠改善效果的研究[D].吉林:吉林大学,2007:40-41.
    [17]赵宗江,谷海瑛,李相辉,等.复方鳖甲软肝方防治大鼠肾间质纤维化作用机理的实脸研究[J].世界科学技术-中医药现代化,2005,7(6):50-51.
    [18]郑慧.螺内酯对单侧输尿管梗阻大鼠肾组织中骨形成蛋白-7的表达的影响[D].河北:河北医科大学,2008:34-35.
    [19]梁栋,王辉,王涛,等.联合检测TNF、尿β2-MG、肝纤四项对肾纤维化无创诊断的评价[J].中国中西医结合肾病杂志,2008,9(1):91-92.
    [20]Kang DH, Kanellis J, Hugo C, et al. Role of the microvascularendothelium in progressive renal disease. J Am Soc Nephrol,2002,13(3):806-816.
    [21]Ohashi R, Shimizu A, Masuda Y, et al. Peritubular capillary regession during the progression of experimental obstructive nephropathy. J Am Soc Nephrol, 2002,13(7):1795-1805.
    [22]Kang DH, Hughes J, Mazali M, et al. Impaired anglogenesis in the remnant kidney model:Ⅱ. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol,2001,12(7): 1448-1457.
    [23]Khan S, Cleveland RP, Koch CJ, et al. Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab Invest,1999,79(9):1089-1099.
    [24]Norman JT. Mechanisms of hupoxia-induced changes in collagen-Ⅰ and tissue inhibitor of metalloproteinase-Ⅰ (TIMP-Ⅰ)gene expression in human renal fibroblasts. J Am Soc Nephrol,1997,8:523 A.
    [25]Annuk M, Zilmer M, Lind L, et al. Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol,2001,12(12):2747-2752.
    [26]赵霞,张玉侠.改善肾脏微循环延缓肾纤维化的研究进展[J].中国中西医结合肾病杂志,2008,9(11):1031-1032.
    [27]孙伟,高坤,周栋.中医药治疗慢性肾脏疾病的临床疗效评价研究[C].中华中医药学会肾病分会.中华中医药学会第十九次全国中医肾病学术交流会,云南昆明,2006:370-371.
    [1]葛文松.乙型肝炎病毒相关性肝纤维化组织的比较蛋白质组学研究[D].上海:第二军医大学,2007:36-37.
    [2]张丹,孙军德,杨洁.蛋白质组学在药物研究中的应用[J].世界临床药物, 2006,27(6):374-378.
    [3]陈晓红,张卫东,李时悦,等.蛋白质组学与药物研究[J].广州医学院学报2006,35(5):57-58.
    [4]李静,尹杰超,隋秀文,等.蛋白质组学与药学研究[J].畜牧兽医科技信息,2008,8:16-17.
    [5]Yan JX, Wait R, Berkelman T et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000;21(17):3666-3672.
    [6]Von Mering C, Jensen LJ, Kuhn M, et al. STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res.2007, 35(Database issue):D358-362.
    [7]熊新贵,梁清华,陈疆,等.脑出血与脑缺血模型大鼠脾淋巴细胞的蛋白质组学研究[J].中国生物工程杂志,2008,28(9):7-13.
    [8]杨国欢,代智,周俭.肝细胞癌的蛋白质组学研究进展[J].世界华人消化杂志,2008,16(24):2487-2492.
    [9]龚志斌,厉有名,虞朝辉.EZH2在肝细胞性肝癌中的表达及其对HepG2增殖作用的研究[J].实用肿瘤杂志,2006,21(6):523-526.
    [10]卢德赵,沃兴德,沃立科,等.甲状腺切除的肾阳虚大鼠肝线粒体蛋白质组的研究[J].中医药学报,2008,36(4):13-14.
    [11]梁宏洁.大鼠肝癌发生过程中差异表达蛋白的筛选及67LR等相关蛋白的研究[D].广西:广西医科大学,2008:60-61.
    [12]屈霞,欧阳冬生.肝脏型脂肪酸结合蛋白与代谢综合征[J].国际病理科学与临床杂志,2008,28(3):247-249.
    [13]Peslers M. M. A. L.肝型脂肪酸结合蛋白是肝移植者急性肝细胞损伤的敏感标志[J].国外医学临床生物化学与检验分册,2003,24(5):309-310.
    [14]董立华,李,王凡,等.肝脏型脂肪酸结合蛋白与代谢综合征[J].南方医科大学学报,2007,27(3):247-249.
    [15]孔亚慧.HRP-3在肝癌组织中上调表达的生物学意义探讨[D].上海:复旦大学,2005:72-76.
    [16]曲海霞,杨金菊,刘莹,等鼠抗人醛脱氢酶1A1单克隆抗体的制备与鉴定[J].中华肝脏病杂志,2007,15(11):867-868.
    [1]Corbett JM, Dunn MJ, Porch A, et al.Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension:an interlaboratory comparison. Electrophoresis.1994; 15(8-9):1205-1211.
    [2]王菊,张莉民,刘鲁,等.蛋白质组学在药物研究中的应用[J].齐鲁药事,2007,26(7):419-420.
    [3]高春芳,陆伦根.纤维化疾病的基础和临床[M].上海:上海科学技术出版社, 2004:362.
    [4]赵宗江,刘昆,张新雪,等.异病同治、同病异治理论源源及其在多器官纤维化防治中的应用[J].中医杂志,2005,40(10):55-58.
    [5]高红宇.苦参素对单侧输尿管梗阻大鼠肾脏间质纤维化的影响及机制研究[D].湖北:华中科技大学,2005:20-21.
    [6]李静,尹杰超,隋秀文,等.蛋白质组学与药学研究[J].畜牧兽医科技信息,2008,8:16-17.
    [7]Masayoshi yamagllchi. Role of regucalcin in calcium signaling. Life sciences.2000,66(6):1769-1780.
    [8]Masayoshi yamaguchi. The role of regucalcin in nclear regulation of regeneration liver. Biochemical and biophysical research communications.2000,276(5):1-6.
    [9]徐洪,赵涵芳.Regucalcin在肝、肾细胞中的作用[J].诊断学理论与实践,2006,5(2):172-174.
    [10]Izumi T, Tsurusaki Y, Yamaguchi M. Suppressive effect of endogenous regucalcin on nitric oxide synthase activity in cloned rat hepatoma H4-II-E cells overexpressing regucalcin. J Cell Biochem,2003,89(4):800-807.
    [11]宾业鸿,劳明,谢小薰.衰老标记蛋白30-一种具有应用前景的新型蛋白.中国组织化学与细胞化学杂志,2005,14(2):235-238.
    [12]杨红莲,吴纯启,王青秀,等.氯丙嗪致大鼠肝脏损伤的蛋白质组学研究.中国新药杂志,2007,16(17):93.
    [13]曾惠.用纯净水对围产期大鼠及其仔鼠镁相关生物学效应的实验研究[D].重庆:第三军医大学,2007,94-95.
    [14]帕侬赛.肝癌相关抗原衰老标记蛋白-30(SMP30)在肝癌组织的表达及其意义的研究[D].广西:广西医科大学,2001:15-17.
    [15]周素芳,谢小薰,蓝玲,等.肝癌相关抗原SMP-30羧基端基因的构建、 表达及血清学分析[J].中国免疫学杂志,2004,20(12):821-824.
    [16]罗国容,谢小薰,陈维平,等衰老标记蛋白-30—一种新的肝细胞癌相关抗原广西医科大学学报,1999,16(2):115-116.
    [17]仲昭岩,袁志宏,许文等.抗Carlreticulin、ERp57、Vimentin自身抗体的免疫调节作用[C].江苏:中国免疫学会第五届全国代表大会暨学术会议论文摘要,2006:15-16.
    [18]高晓明,仲昭岩,许文,等.一种预防和/或治疗免疫相关疾病的T细胞组分疫苗[P].中国专利:CN101401934,2009-04-08.
    [19]吴涓涓.分子伴侣与MHC分子[J].国外医学免疫学分册,2004,27(6):358-361.
    [20]郑奕.HLA-Ⅱ类等位基因多态性与乙肝病毒感染的相关性研究进展[J].中国医学文摘,2005,26(3):333-334.
    [21]F. Strutz. H. Okada. E. G. Neilson.The role of the tubular epithelial cell in renal fibrogenesis[J].Clinical and Experimental Nephrology,2001,5(2):62~74.
    [22]倪莲芳,张志刚,卜定方,等.Ⅱ类主要组织相容性抗原在博来霉素致大鼠纤维化肺组织中的表达[J].北京大学学报(医学版)2008,40(5):514-518.
    [23]于刃锋.大黄蟅虫丸化裁方对荷瘤小鼠抑瘤作用与丁淋巴细胞亚群影响的实验研究[D].辽宁:辽宁中医药大学,2007:15-16.
    [24]瞿俊红.大黄蟅虫丸对H22肝肿瘤小鼠免疫调节的实验研究[D].山东:山东中医药大学,2007:29-30.
    [25]白雪.结直肠癌发生和肝转移相关蛋白质差异表达及其意义的研究[D].重庆:第三军医大学,2008:42-43.
    [26]Corinna Henkel, Martin Roderfeld, Ralf Weiskirchen,et al. Changes of the hepatic proteome in murine models for toxically induced fibrogenesis and sclerosing cholangitis. Proteomics 2006,6:6538-6548.
    [27]华锡慧,陆月海.病毒性肝炎患者血清CA RIA的变化及其临床意义[J].放 射免疫学杂志,2007,7(1):51-52.
    [28]杨红莲,吴纯启,王青秀,等.氯丙嗪致大鼠肝脏损伤的蛋白质组学研究[J].中国新药杂志,2007,16(11):846-847.
    [29]李广君,徐丹令,刘黎明.氯化汞中毒对大鼠肾小管酶活性的影响[J].解剖学杂志,2001,24(5):450-452.
    [30]焦永法,刘洋,李广君.氯化汞中毒对大鼠肾小管上皮细胞碳酸酐酶活性的影响[J].上海铁道大学学报,2000,21(9):25-26.
    [31]廖艳.异烟肼与利福平肝毒性的代谢组学研究[D].四川:四川大学,2005:109-110.
    [32]赵晶晶,张农.核因子相关因子2在氧化应激性纤维化疾病中的最新研究进展[J].复旦学报,2005,36(5):651-652.
    [33]Lee KS, Lee SJ, Park HJ, et al. Oxidative stress effect on the activation of hepatic stellate cells. Yonsei Med J,2001,42(1):1-8.;Hock JB,Pastorino JG. Ethanol. oxidative stress, and cytokine-induced liver cell injury. Alcohol, 2002,27:63-68.
    [34]Parola M, Robino G. oxidative stress-related molecules and liver fibrosis. J Hepatol,2001,35:297-306.
    [35]Ozaras R, Tahan V, Aydin S, et al. N-acetylcysteine attenuates alcohol-induced oxidative stress in the rat. World J Gastroenterol,2003,9:125-128.
    [36]戴颖.熊果酸抗实验性肝纤维化作用及其机制研究[D]江西:南昌大学,2008:34-35.
    [37]张鹏宇,阮颖新,李春媚,等.氧化应激对输尿管梗阻大鼠肾脏TGF-β1及其受体表达的影响[J].吉林大学学报,2009,35(3):400-404.
    [38]张晓暄,李银辉,郑伟,等.单侧输尿管梗阻大鼠肾间质纤维化中氧化应激的变化[J].中国现代医学杂志,2007,17(4):414-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700