用户名: 密码: 验证码:
水稻品质性状的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人民生活水平的提高,对优质稻米的质量和数量都提出了更高的要求,品质改良成为目前水稻育种的重要目标,也是水稻研究的热点和难点问题。当前,我国稻米品质存在的主要问题在于稻米食味品质和外观品质差(如:垩白偏高等)。本研究围绕稻米品质稳定性这一主题,从食味品质和外观品质入手,利用Asominori/IR24的染色体片段置换系(CSSLs)群体连续3年分析食味品质相关QTL的表达稳定性;同时,利用18个水稻品种在两年3点多个环境中研究水稻食味和外观品质性状的表型稳定性,期望为优质水稻品种的培育、推广应用以及品质形成的分子机理深入研究奠定基础。主要结论如下:
     1.利用Asominori/IR24的CSSL群体,分析稻米蒸煮食味品质9个性状相关QTL连续3年(2000-2002年)的表达稳定性,结果发现:影响光泽度的qLT-8、控制柔软性的qTD-6和qTD-8、共同作用于综合口感的qIVVOE-6a和qIVOE-8,以及影响直链淀粉含量的qAC-8等6个QTL,在3年都能稳定地表达。这为QTL的精细定位、克隆以及优质食味品质水稻品种的辅助选择(MAS)育种都奠定基础。
     2.利用加性主效应和乘积交互作用模型(AMMI模型),分析18个供试品种20项品质指标在两年3点(2001-2002年,南京、金湖和东海)表型稳定性,结果表明:①稳定性高的品质性状有粒长、粒宽和长宽比(Di平均值≤0.36),相反,垩白率、垩白大小、最高粘度、冷胶粘度、消减值和米饭综合口感的稳定性偏低(Di平均值>1.1),另外11项品质性状的稳定性适中(0.49≤Di平均值≤1.06);②品质性状稳定性高(Di平均值<0.8)的品种有南京16号、W002、汕优63号、3004和丰优香占;而稳定性较低(Di平均值>1.1)的品种有常优1号、淮引9901、扬两优6号和特优559。这对优质稳定水稻品种的培育和推广利用都有重要指导意义。
     3.粒长、长宽比、直链淀粉含量、糊化温度、蛋白质含量、热浆粘度、冷胶粘度、回复值和消减值9个指标都与米饭综合口感(IVOE)呈极显著负相关,而粒宽、崩解值、米饭光泽度、柔软性、粘性和弹性6个指标都与米饭综合口感呈极显著正相关。从相关程度来看,崩解值、消减值、糊化温度、蛋白质含量等理化
    
     指标与IVOE之间的相关性,都比直链淀粉含量与WOE之间的相关性高,因
     此综合利用这些理化指标,在育种早期世代选择,克服早代所获稻米不足以食
     味品尝的困难,对加快优质育种进程、提高选择效率均有重要意义。
    4.除稻米粒长、粒宽和长宽比受栽培生产方式影响很小外,另外17个品质性状在
     四种食品生产方式下都存在显著差异。单就改良米饭适口性而言,绿色食品生
     产方式下最佳;对于外观品质,高产栽培方式下最好,因此在优质米产业化生
     产中,应首先选择圣白低且对环境钝感的优质品种,再结合绿色食品生产技术,
     以生产出外观和食味品质优良的安全无公害大米.
Quality improvement of rice grains has become one of the most important goals in rice breeding. The major problems for rice grain quality are the bad appearance and eating quality in China, i.e., the high percentage of chalky grain and bad palatability of cooked rice. In this study, a chromosome segment substitution lines (CSSLs) population, derived from Asominori (japonica)/ IR24 (indicd) with Asominori as the recurrent parent, was planted and phenotyped for nine rice-eating-quality traits in three successive years. Thereby, quantitative trait loci (QTLs) for these cooking and eating quality traits were determined, meanwhile expression stability of the QTLs was investigated across the three years. On the other hand, 18 rice cultivars were selected and planted by four production ways in two years and three sites, of which 20 eating and appearance quality traits were observed and analyzed to evaluate the stability of the cultivars and traits with additive main effects and multiplicative interaction (AMMI) mod
    el. The main results are as follows:
    1. A total of 32 QTLs for nine cooking and eating quality traits were identified in the three years, and the phenotypic values were different significantly (p<0.001) between the CSSLs harboring any of the QTLs and Asominori. Among them, six QTLs on chromosomes 6 and 8, namely qLT-8 for luster (LT), qTD-6 and qTD-8 for tenderness (TD), qIVOE-6a and qIVOE-8 for IVOE, and qAC-8 for amylose content (AC), were detected consistently across the three successive years, indicating that genes of the QTLs could function stably across different years. The markers flanking the QTLs would be very useful not only for applying marker-assisted selection (MAS) to rice breeding for quality improvement, but also for fine mapping and map-based cloning of these genes.
    2. Stability for the eighteen tested cultivars was analyzed based on the phenotypic values of twenty quality traits in two years and three sites with the AMMI model. Three appearance quality traits, namely, grain length (GL), grain width (GW) and length-width ratio (LWR), showed good stability in six different environments; while six quality traits low, including ratio of grains with chalkiness (RC), size of chalkiness
    
    
    
    per grain (SC), peak viscosity (PKV), cool paste viscosity (CPV), setback viscosity (SBV) and integrated value of organoleptic evaluation (IVOE) of cooked rice. Moreover, the other eleven quality traits showed medium stability. On the other hand, five cultivars, Nanjing 16, W002, Shanyou 63, 3004 and Fengyouxiangzhan, were characterized by high stability, while four low, i.e., Changyou 1, Huaiyin 9901, Yangliangyou 6 and Teyou 559. These results would be very useful to improve rice quality and production stability.
    3. Negative correlation were detected among IVOE and eight quality characters, namely, GL, LWR, AC, CPV, SBV, consistency viscosity (CSV), gelatinization temperature (GT) and protein content (PC); while positive among the IVOE and GW, LT, TD, viscosity (VC), elasticity (EL) and breakdown viscosity (BDV), respectively. It is noteworthy that the correlation coefficient between AC and IVOE was lower than that between IVOE and other physical-chemical properties such as BDV, SBV, GT, PC, etc. Therefore, it would be more practical to apply these physical-chemical properties related to eating quality rather than AC for improving the palatability of cooked rice.
    4. The four cultivations for rice could affect all the twenty quality traits significantly except GL, GW and LWR. In term of the palatability of cooked rice, the green food cultivation produced the best rice quality, however, the high production cultivation could produce the rice grains with lower RC and SC. Therefore it might be a good strategy that the rice cultivars of lower RC and higher stability could be planted by green food cultivation to produce the good-quality and safe rice grains.
引文
Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw 2.2: A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA 1996, 93:15503-15507
    Baba T, Tanaka KI. Identification cDNA cloning and gene expression of soluble starch synthase in rice (Oryzasativa L.) immature seeds. Plant Physiol, 1993, 103:565-573
    Ball S, Guan HP, James M, et al. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell, 1996, 86:349-352
    Bao JS, Xia YW. Genetic control of paste viscosity characteristics in Indica rice, Theor. Appl.Genet, 1999, 98:1120-1124
    Bao JS, Zheng XW, Xia YW, et al. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.), Theor. Appl.Genet, 2000, 100:280-284
    Bether DK, Hoff BJ. Inheritance of scent in American long grain rice, Crop Sci.. 1986, 26:876-878
    Blakeney AB. Developing rice varieties with different textures and tastes, Chemistry in Australia, 1992,9: 475-476
    Bollich CN, Webb BD. Inheritance of amylose in two hybrid populations of rice, Cereal Chem. 1973, 50(6): 631-636
    Borah R. Effect of light stress on starch, protein content and grain yield in rice. Indian Journal of plant physiology, 1995, 38 (4): 320-321
    Brabender M. The new MICRO-VISCO-AMYLO-GRAPH: comparison of some results with those of the Viscograph. Poster presentation at 1998 Am. Assoc. Cereal. Chem Annual Meeting, Minneapoils.98/2
    Champagne ET, Bett KL, Vinyard BT, et al. Correlation between cooked rice texture and Rapid Visco Analyser measurements. Cerealchem. 1999, 76 (5): 764-771
    Chang WL, Li WY. Inheritance of amylose content and gel consistency in rice, Botanical Bulletin of Academia Sinica, 1981, 22(1): 35-47
    Chang. TT, Somrith B. Genetic studies on the grain quality of rice.In: Chemical aspects of rice quality, 1979, 49-58, IRRI, Los Banos, Philippines
    Chauhan JS, Chanhan VS, Lodh SB. Comparative analysis of variability and corrections between quality components in traditional rainfed upland and lowland rice. Indian J. Genet. Plant Breed, 1995,55(1): 6-12
    Choi HC, Hong HC, Nahm H. Physicochemical and structural characteristics of grain associated with palatability in Japonica rice. Korean J Breed, 1997,29(1): 15-27
    
    
    Cooper M. Concepts and strategies for plant adaptation research in rainfed lowland rice, Field Crops Research, 1999, 64: 13-34
    Crossa J, Gauch HG, Zobel RW. Additive main effects and multiplicative interaction analysis of two international maize cultivar trails, Crop Sci., 1990,30:493~500
    Dhulappanavar CV. Inheritance of scent in rice. Euphytica, 1976, 25:659-662
    Efferson JN. Rice quality in world market, in: Grain quality and marketing paper presented at the international rice research conference, 1-5 June 1985, pp. 1-29
    Francisco PBJR, Zhang Y, Park SY, et al. Genomic DNA sequence of a rice gene coding for a pullulanase-type of starch debranching enzyme, Biochimica Biophysica Acta, 1998, 1387(1/2): 469-477
    Fujita N, Kubo A, Francisco PBJR, et al. Purification, characterization, and cDNA structure of isoamylase from developing endosperm office, Planta, 1999, 208(2): 283-293
    Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnology, 1999, 17(3):282-286
    Gravois K A. Genetic and genotype×environment effects for rough rue and head rice yield. Crop Sci., 1991, 31: 907-911
    Gravois KA, Webb BD. Inheritance of long grain rice amylograph viscosity characteristics. Euphytica, 1997 97:25-29
    Hamaker BR, Griffin VK. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting, Cereal Chem, 1993, 70:377-380
    Han XZ, Hamaber BR. Amylopectin fine structure and rice starch paste breakdown. Journal of Cereal science, 2001, 34:279-284
    Harrington SE, Bligh HFJ, Park WD, et al. Linkage mapping of starch branching enzymeⅢ in rice (Oryza sativa L) and prediction of location of orthologous genes in other grasses. Theor Appl Genet, 1997,94: 564-568
    Harushima Y, Yano M, Shomura A, et al. A high-density rice genetics linkage map with 2275 markers using a single F_2 population. Genetics, 1998, 148:479-494
    He P, Li SG, Qian Q, et al. Genetic analysis of rice grain quality, Theor Appl Genet, 1999, 98:502-508
    Heda GD and Reddy GM. Studies on protein content and yield levels in rice. Theor Appl.Genet, 1984, 69: 93-95
    Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa. L) mediated grobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6:271-282
    Hillerislambers D. Genetic and environment variation in protein content rice (Oryza sativa L). Euphytica,
    
    1973, 22:264-273
    Hirano HY, Sano Y. Enhancement of Wx gene expression and the accumulation of amylose in response to cool temperatures during seed development in rice. Plant Cell Physiol, 1998, 39(8): 807-812
    Hirano HY, Sano Y. Molecular characterization of the waxy Locus of rice (Oryza sativa L), Plant Cell Physiol, 1991, 32(7): 989-997
    Hiroshi Y. Biosynthesis of storage protein in developing rice seeds. Plant physiol. 1982, 70:1094-1100
    Hizukwri S, Takeda Y, Maruta N, et al. Molecular structures of rice starch. Carbohydro Res, 1989, 189:227-235
    Hizukwri S. Relationship between the distribution of chain length of amylopectin and the crystalline structure of starch granules. Carbohydro Res, 1985,141 : 295-299
    Holguin VJE. Effect of cytoplasm on the expression of white center and gelatinization temperature in rice (Oryza sativa L.), Acta—Agronomica, universidad—National de Colobia. 1995, 45: 7-13
    Horino T, Fukuoka T, Wakimoto K. Characteristics of palatability of cooked rice in relation to the mineral components of brown rice. Japan. J. Crop Sci., 1984, 53 (suppl.): 226-227
    Huang N, ParcoA, Mew T, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Molecular Breeding, 1997, 3:105-113
    Hussain AA, Maurya DM, Vaish CP. Study on quality status of indigenous upland rice (Oryza sativa L). Indian J. Genet, 1987, 47(2): 145-152
    Hussain AA. Effect of growth location on rice protein content and composition, International Rice Research Newsletter, 1992, 17(2):6-7
    Iida S, Amano E, Nishio T. A rice (Oryza sativa L) mutant having a low content of glutelin and a high content of prolamine, Theor Appl Genet, 1993, 87:374-378
    Iida S, Kusaba. Mutants lacking glutelin subunits in rice: mapping and combination of mutanted glutelin genes. Theor Appl Genet, 1997, 94:177-183
    Inouchi N, Asaoka M, Okuno K. The effect of environmental temperature on distribution of unit chains of rice amylopectin, Starch, 2000, 52(1): 8-12
    Isshiki M, Morino K, Nakajima M, et al. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutant at 5' splice site of the first intron. Plant J, 1998, 15:133-328
    Isshiki M, Nakajima M, Satoh H, et al. dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J, 2000, 23(4): 451-460
    Jane J, Chert YY, Lee LF, et al. Effects of amylopectin branch length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem, 1999, 76(5): 629-637
    
    
    Jiang HW, Dian WM, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme, Phytochemistry, 2003, 63:53-59
    Jiang HW, Wu P: The cloning and characterization of the gene for starch synthesis in rice endosperms and studies on the molecular physiological effects of high temperature on rice grain quality forming. A dissertation submitted to Zhe-jiang University. 67-77 (2002)
    Juliano BO, Bautista GM, Lugay JC, et al. Studies on the physico-chemical properties of rice. Agric.Food Chem, 1964,12(2): 131-138
    Juliano BO, Perez CM, Kaosaad M. Grain quality characteristics of export rice in selected markets. Cereal Chem, 1990, 67: 192-197.
    Juliano BO. Rice chemistry and technology, 2nd, Am. Assoc. Cereal Chem. St Paul, MN, USA, 1985, 443-524
    Juliano BO. Rice grain quality: Problem and challenges. Cereal Foods World, 1990, 35(2): 245-253
    Kato T. Heritability for grain size of rice (Oryza sativa L.), Jpn.J. Breed, 1990, 40 (3): 313-320
    Kato T. Diallel analysis of grain size of rice (Oryza sativa L.), Jpn. J. Breed. 1989, 39(1): 39-45
    Katsube T, Kurisaka N, Ogawa M, et al. Accumulation of soybean glycinin and its assembly with the glutelins in rice, Plant physiol, 1999, 120: 1063-1073
    Kaushik RP, Khush GS. Genetic analysis of endosperm mutants in rice Oryza sativa L. Theor Appl Genet, 1991, 83: 146-152
    Kaw RN, and Dela NM. Genetic analysis of amylose content, gelatinization temperature and gel consistency in rice, Jounal of Genetics and breeding, 1990, 44:103-112
    Kawasaki T, Mizuno K, Baba T, et al. Molecular analysis of the gene encoding a rice starch branching enzyme, Mol Gen Genet, 1993, 237:10-16
    Kawasaki T, Mizuno K, Baba T, et al. Coordinated regulation of the gene participating in starch biosynthesis by the rice floury-2 locus. Plant Physiol, 1996, 110 : 89-96
    Kempton RA. The use of biplots in interpreting variety by environment interactions, Journal of Agricultural Science, 1984, 103:123-135
    Khush G.S. Grain quality of hybrid rice, In IRRI, Manila, Philippine, 1986, 201-205
    Khush GS, Paule CM, Dela NM. Rice grain quality evaluation and improvement at IRRI, In: IRRI proceedings of the workshop on chemical Aspects of Rice Grain Quality, Los Banos, Philippines, 1979, 21-23
    Kim WT, Okita TW. Structure expression and heterogeneity of the rice seed prolamins. Plant Physiol, 1988, 88:649-655
    
    
    Kim WT, Okita TW. Nucleotide and primary sequence of a major rice prolamine, FEBS Letter, 1988, 206: 33-35
    Krishnan HB, Okita TW. Structural relationship among the rice glutelin ploypeptides, Plant Physiol, 1986, 81(3): 748-753
    Kubo A, Fujita N, Harada K, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol, 1999, 121:399-409
    Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breeding Science 2002, 52:319-325
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genetics Newsletter, 1999,16:104-106
    Kumamaru T. High-lysine mutants of rice, Oryza sativa L, Plant Breeding, 1997,116:245-249
    Kumar I, Khush G.S. Inheritance of amylose content in rice (Oryza Sativa L), Euphytica, 1988, 38: 261-269
    Kumar I, Khush G.S. Genetic anaiysis of different amylose levels in rice (Oryza Sativa L). Crop Sci. 1987b, 1167-1172
    Kumar I, Khush G.S. Genetics of amylose content in rice (Oryza sativa L). J.Genet, 1986b, 65 (1/2) : 1-11
    Kumar I, Khush GS. Genetic analysis of different amylose levels in rice. Crop Science, 1987, 27:1167-1172
    Kumar I, Khush G.S. Gene dosage effects of amylose content in rice endosperm. Japan.J. Genet, 1986a, 61(6): 559-568.
    Kumar I. Genetic control of waxy locus in rice (Oryza sativa L), Theor. Appl. Genet. 1987a, 73:481-488
    Lanceras JC, Huang ZL, Naivikul O, et al. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Research, 2000, 28:93-101
    Larkin PD, Park WD. Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Molecular Biology, 1999, 40:719-727
    Lee MH, Hettiarachchy NS, McNew RW, et al. Physicochemical properties of calcium-fortified rice. Cereal Chem, 1995, 72:352-355
    Lee.J. Agronomic characteristics of rue recombinant inbred lines developed from a cross of Nonganbyeo and BG279. Korean J. Crop Sci, 1999, 44:86-93
    Li ZF, Wan JM, Xia JF et al. Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Breeding Science, 2003, 53:209-215
    Lu S, Chen CY, Cheng YL. Gel-chromatography fractionation and thermal characterization of rice starch affected by hydrothermal treatment. Cereal Chem, 1996, 73(1): 5-11
    
    
    Mackill DJ, Ni JJ. Molecular mapping and marker-assisted selection for major-gene traits in rice, Rice genetics Ⅳ,2001, 137-151.
    Manner DJ. Recent development in our understanding of amylopectin structure, Carbohydr.Poly, 1989, 1(1): 87-91
    Masumura T, Hibino T, Kidzu K, et al. Cloning and characterization of a cDNA encoding a rice 13kD prolamin, Mol Gen Genet, 1990, 221 : 1-7
    Masumura T, Shibata D, Hibino T, et al. cDNA cloning of an mRNA encoding a sulfur-rich 10kDa prolamin polypeptide in rice seeds, Plant Molecular Biology, 1989, 12:123-130
    Matsue Y, Odahara K, Hiramatsu M. Studies on relationship between the palatability of rice and protein content, Jpn. J. Crop Sci., 1995, 64(3): 601-606
    Matsue Y, Odahara K, Hiramatsu M. Studies on relationship between the palatability of rice and protein content, Jpn.J.Crop Sci., 1995,64(3), 601-606
    Mckenzie KS, Rutger JN. Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice, Crop Sci., 1983, 23:306-313
    Miura K., Lin S. Y., Yano M., et al. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L. ) , Theor. Appl. Genet, 2002, 104:981-986
    Mizuno K, Kawasaki T, Shimada H, et al. Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds, J. BioChem, 1993, 268:19084-19091
    Mizuno K, Kimura K, Arai Y, et al. Starch branching enzyme from immature rice seeds. J. Biochem. 1992, 112:643-651
    Mochizuki K, Umeda M. Characterization of a plant SINE, p-SINE1, in rice genomes, Jpn J Genet, 1992 67(2):155-166
    Morrison WR, Milligan TP and Azudin, MN. A relation between the amylose and lipid contents of starches from diploid cereals, J. Creral Sci., 1984, (2): 257-271
    Nachit MM. Use of AMMI and linear regression models to analyze genotype environment interaction in durum wheat, Theor. Appl. Genet., 1992, 83:597-601
    Nakamura Y, Nagamura Y, Kurata.N, et al. Linkage localization of the starch branching enzyme Ⅰ(Q-Enzyme Ⅰ) gene in rice. Theor Appl Genet, 1994, 489:859-860
    Nakamura Y, Kubo A, Shimamune T, et al. Correlation between activities of starch debranching enzyme and α -polyglucan structure in endosperms of sugary-1 mutants of rice. Plant J, 1997, 12(1): 143-153
    Nakamura Y, Takeichi T, Tawaguchi K, et al. Purification of two forms of starch branching enzyme
    
    (Q-enzyme) from developing rice endosperm, Physiologia Plantarum, 1992, 84:329~335
    Nakamura Y, Umemoto T, Ogata N, et al. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene. Planta, 1996, 199(2) :209-218
    Nakamura Y, Yamanouchi H. Nucleotide sequence of cDNA encoding starch-branching enzyme or Q-enzyme Ⅰ from rice endosperm. Plant Physiol, 1992, 99:1265-1266
    Nakamura.Y, Umemoto T, Takahata Y, et al. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzymes (R-enzymes) in amylopectin biosynthesis, Physiologia Plantarum, 1996, 97:491-498
    Normita D, Cruza L and Kumar I. Effect of temperature during grain development on stability of cooking quality components in rice, Japan J. Breed, 1989, (39): 299-306
    Okamoto M. Studies on effect of chemical components on stickiness of cooked rice and their selection methods for breeding, Bull Chugoku Natl. Agric. Exp. Stn., 1994, (14): 1-68
    Okita TW, Hwang YS, Hnilo J, et al. Structure and expression of the rice protein glutelin multigene family, Bio Chem, 1989, 264:12573-12581
    Ong MH, Blanshard JMV. Texture determinants in cooked, parboiled rice Ⅰ :Rice Starch amylose and the fine structure of amylopectin, J Cereal Sci, 1995a (21): 251-260
    Ong MH, Blanshard JMV. Texture determinants in cooked, parboiled rice Ⅱ :Physicochemical properties and leaching behavior of rice, J Cereal Sci, 1995b (21): 261-269
    Panwar DVS, Paroda RS. Combining ability for grain characters in rice. Indian J.Agri. Sci. 1983, 53(9): 763-766
    Paterson AH, Damon S, Hewitt JD, et al. Mendelian factors underlying quantative traits in tomato: comparion across species, generations, and environments. Genetics, 1991, 127:181-197
    Paule CM. Variability in amylose content of rice. MS thesis, University of Philippines: Los Banos, Philippines, 1977
    Piepho H. P. Robustness of statistical tests for multiplicative terms in the AMMI model for cultivar trials. Theor. Appl. Genet. 1995, 90:438-443
    Pinson SRM. Inheritance of aroma in six rice cultivars, Crop Sci., 1994, 34:1151-1157
    Pooni HS, et al. Genetic control of amylose content in a diallel set of rice crosses. Heredity. 1993b, 71:603-613
    Pooni HS, Kumar I, Khush GS. Genetical control of amylose content in selected crosses of Indica rice. Heredity, 1993, 70:269-280
    
    
    Reddy.PR. Inheritance of aroma in rice. Indian J. Genet. Plant Breed. 1994, 40:327-327
    Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics, Theor. Appl. Genet., 1998, 96:957-963
    Resurrection Ap. Effect of temperature during ripening on grain quality of rice, Soil Sci. and Plant Nutrition, 1977, 23(1): 109-112
    Rivai IF, Koyamo H, Suzuki S. Cadmium content of rice and its daily intake in various countries, Bull, Environ. Contam. Toxicol., 1990, (44): 910-916
    Ron JO, Susan RW. Comparsion of non-mutant and mutant waxy genes in rice and maize. Genetics, 1988, 120:1137-1143
    Sano Y, Makekawa M, Kikuchi H. Temperature effects on Wx-protein level and amylose content in endosperm of rice, Heredity, 1985, 76:221-222
    Sano Y. Differential regulation of waxy gene expression in rice endosperm, Theor. Appl. Genet., 1984, (68): 467-473
    SAS Institute Inc., SAS/STAT User's Guide, Cary, NC, USA, 1988
    Sato H, Suzuki Y, Okuno K. Genetic analysis of low-amylose content in a rice variety,' Milky Queen', Breeding Research, 2001, 3: 13-19
    Shenoy VV and Seshu DV. Inheritance of protein per grain in rice, Indica J.Genet, 1991, 51(2): 214-220
    Shi CH. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments, Theor. Appl.Genet, 1997, 95:294-300
    Shi CH. Analysis of genetic effect on nutrient quality traits in indica rice. Theor Appl Genet. 1996, 92:1099-1102
    Shimada H, Tada Y, Kawasaki T. Antisense regulation of the rice waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch. Theor. Appl. Genet, 1993, 86:665-672
    Shubash KDG, Mosina SB. Inheritance of the amylose content of the grain of rice hybrids. Rice Abstracts, 1987,10(4): 1471
    Singh NB, Sight HG. Gene action for quality components in rice, Indian J. Agri. Sci, 1982, 52(8): 485-488
    Singh RK, Singh US, Khush GS. Genetics and biotechnology of quality traits in aromatic rices, In:Singh RK et al(ed) Aromatic Rices, Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, India, 2000, p47-69
    Singh, N.B, H.G.Singh. Hererosis and combining ability for kernel size in rice. Indian J. Gene. Plant Breed. 1985, 45(2): 181-185
    Smith AM, Denyer K, Martin C. The synthesis of the starch granule, Annu. Rev. Plant PhysioL Plant Mol Biol, 1997, 48:67-87
    
    
    Smith.AM, Denyer K, Martin C. The synthesis of the starch granule, Annu.Rev.Plant Physiol, Plant Mol Biol, 1997, 48:67-87
    Sood BC, Siddiq EA. Genetic analysis of crude protein content in rice, Indian J. Agri. Sci., 1986,56(11): 796-797
    Sood BC, Siddiq EA. Possible physico-chemical attributes of kernel influencing kernel elongation in rice, Indian J. Genet, 1986, 46(3): 456-460
    Taira T. Influence of low air temperature in 1993 and high air temperature in 1994 on palatability and physicochemical characteristics of rice varieties in Fukushima prefecture. Japan J. Crop Sci, 1998, 67(1) 26-29
    Takaiwa F, Oono K. Analysis of the 5' flanking region reponsible for the endosperm-specific expression of a rice glutetin chimeric gene in transgenic tobacco, Plant Molecular Biology, 1991, 26:49-58
    Takaiwa F, Oono K. Genomic DNA sequences of two new gene for new storage protein glutelin in rice. Jpn. J. Genet, 1991a, 66:161-171
    Takaiwa F, Kikuchi S, Oono K. The structure of rice storage protein glutelin precursor deduced from cDNA. FEBS Letters, 1986, 206:33-35
    Takaiwa F, Yamanochi U, Yoshihara T, et al. Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family, Plant Molecular Biology, 1996, 30:1207-1221
    TakaiwaF, Oono K, Wing D, et al. Sequence of three members and expression of a new major subfamily of glutelin genes from rice, Plant Molecular Biology , 1991b, 17:875-885
    Takeda Y, Hizukuri S, Juliano BO. Structure of rice amylipectin with low and high affinities for iodine, Carbohydr Research, 1987,168:79-88
    Takeda Y, Maruta N, Hizukar S, et al. Structures of indica rice starches (IR8 and Ir64) having intermediate affinities for iodine. Carbohydrate Research, 1989, 187(2): 287-290
    Takeda Y, Sasaki T. Temperature response of amylose content in rice varieties of Hokkaido. Jpn J Breed, 1988, 38:357-362
    Tan YF, Sun. M, Xing YZ, et al. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet, 2001, 103:1037-1045
    Tan YF, Li JX, Yu SB, et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet, 1999, 99:642-648
    Tan YF, Xing YZ, Li JX, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice
    
    hybrid. Theor Appl Genet, 2000, 101: 823-829
    Tanaka K, Ohnishi S, Kishimoto N, et al. Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase, Plant Physiol, 1995, 108:677-683
    Tang QY, Feng MG. DPS data processing system for practical statistics, 北京:科学出版社.2002
    Tomar JB, Nanda JS. Genetic and association studies of kernel shape in rice. Indican J.Genet, 1985, 45(2): 278-283
    Tomar JB, Nanda JS. Genetics and correction studies of gel consistency in rice, Cereal Research Communications, 1987, 15(1): 13-20
    Tomar JB, Nanda JS. Genetics of geltinization temperature and its association with protein content in rice (Oryza sativa L.), Rice Abstracts, 1984, 7(7): 1004
    Tsunematsu H, Yoshimura A, Harushima Y, et al: RFLP framework map using recombinant inbred lines in rice. Breeding Science, 1996, 46:279-284
    Tsuzuki E, Furasho M. Study on the characteristics of scanted rice. Ⅹ. A trail of rice breeding for high protein variety (2). Japan J. Crop Sci, 1986, 55(1): 7-14
    Tsuzuki E, Shimokawa E. Inheritance of aroma in rice, Euphytica, 1990, 46:157-159
    Umemoto T, Nakamyra Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm, Phytochemistry, 1995, 6:1613-1616
    Villareal CP, Hizukuri S, Juliano BO. Amylopectin staling of cooked milled rice and properties of amylopectin and amylose. Cereal Chem, 1997, 74 (2): 163-167
    Wang ZY, Zheng FQ, Shen GZ, et al. The amylose content in rice endosperm is related to the posttranscriptional regulation of the waxy gene. Plant J, 1995, 7:613-622
    Wang ZY, Zheng FQ, Shen GZ, et al. Nucleotide sequence of rice waxy gene, Nucl Acids Res, 1990, 18:5898
    Webb BD. Rice quality and grades, In: Lub BS(ed). Rice Utilization, 2nd edition, New York, 1992, p89-119
    Yamamoto R, Horisue N, Ikeda R. Rice Breeding Manual, Miscellaneous publication of the National Agriculture Research Centre in Japan, No. 30, October 1995
    Yano M, Okuno K, Kawakami J, Satoh H, Omura T, Sato H. High amylose mutants of rice, Oryza sativa L. Theor.Appl. Genet, 1985, 69: 253-257.
    Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice, Plant Mol. Biol, 1997, 35:145-153
    Yano M. Naturally occurring allelic variations as a new resource for functional genomics in rice. Rice genetics Ⅳ, 2001, 227-238.
    Yano.M, Isono Y, Satoh H,. et al. Genetic analysis of sugary and shrunken mutants of rice, Oryza sativa L, Jpn.
    
    J, Breed, 1984, 34:43-49
    Ye X, Babili S, Kloti A, et al. Engineering the provitamin A (β-Carotene) Biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287:303-305
    Yoshihara T, Takaiwa F. Cis-regulatory elements responsible for quantitative regulation of rice seed storage protein glutelin GluA-3 gene. Plant Cell Physiol, 1996, 37(1):107-111
    Yuan Z, Douglas JL, Thomas WO, et al. Tissue-specific expression and temporal regulation of the rice glutelin GT3 gene are conferred by at least two spatially separated cis-regulatory elements. Plant Molecular Biology, 1994, 25:429-436
    Zaman F. Genetical analysis of gel consistency in rice, Indian J.Genet.Plant Breed. 1985, 45(1) : 111-118
    Zheng ZW. The bean seed storage protein β-phaseolin is synthesized bodies of transgenic rice endosperm. Plant physiol, 1995, 109:777-786
    Zhou XJ, Fan YL. Cloning and identification of rice prolamin 4a gene promoter, Rice Genentics Newsletter, 1990, 7:155-159
    Zhou XJ, Fan YL. The endosperm-specific expression of a rice prolamin chimeric gene in transgenic tobacoo plants, Transgenic Research, 1993, 2(3): 141 - 146
    Zhu J, Weir BS. Analysis of cytoplasmic and maternal effects, Ⅱ. Genetic models for triploid endosperm, Theor. Appl. Genet, 1994, 89:160-166.
    Zobel RW, Wright MJ, Gauch HG. Statistical analysis of a yield trial. Agron J, 1988, 80:388-393
    包劲松,夏英武.稻米淀粉RVA谱的基因型/环境互作效应分析.中国农业科学,2001,34(2):123-127
    包劲松,何平,夏英武等.稻米淀粉RVA谱特征主要受Wx基因控制.科学通报,1999,44(18):1973-1976
    包劲松,何平,李仕贵等.异地比较定位控制稻米蒸煮食用品质的数量性状基因.中国农业科学,2000,33(5):8-13
    包劲松,舒庆尧,吴殿星等.水稻Wx基因(CT)n微卫星标记与稻米淀粉品质的相关研究.农业生物技术学报,2000,8(3):241-244
    陈葆棠,彭仲明.水稻糊化温度的遗传分析.华中农业大学学报.1992,11(2):115-119
    陈建国,宋国清,瞿绍洪等.杂交早稻米质性状的直接和母体遗传效应分析.中国水稻科学,1998,12(2):79-84
    陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型×环境互作效应研究.中国农业科学,1998,31(4):1-7
    
    
    陈建国.籼粳亚种间杂交水稻品质性状的遗传研究,1996,浙江农业大学博士学位论文
    陈丽,王宗阳,张景六等.一个能与水稻未成熟种子核蛋白特异结合的31bp的DNA片段.植物生理学报,1997,3(4):313-318
    陈丽,邢彦彦,张景六等.应用酵母单杂交系统分离水稻蜡质基因5’调控区蛋白的基因.植物生理学报 1999,25(2):110~114
    陈能,罗玉坤,朱志伟等.食用稻米米饭质地及适口性的研究.中国水稻科学,1999,13(3):152-156
    程方民,张嵩午,吴永常.灌浆结实期温度对稻米垩白形成的影响.西北农业学报,1996,5(2):31-34
    程方民,朱碧岩.气象生态因子对稻米品质影响的研究进展.中国农业气象,1998,19(5):39-45
    戴离安,周坤炉,黎用朝等.土壤条件对优质食用稻米品质及产量的影响.中国水稻科学,1998,增刊:51-57
    伏军.稻米垩白发生的机理与改良.湖南农业科学,1987,(2):15-18
    附福鸿,王丰,黄文剑等,杂交水稻谷粒性状的遗传分析.作物学报,1994,20(1):39-45
    高如嵩,张嵩午.稻米品质气候生态基础研究.西安:陕西科学技术出版社,1994
    高越峰.高赖氨酸蛋白基因导入水稻及可育转基因植株的获得.植物学报,2001,43(5):506-511
    葛鸿飞,王宗阳,洪孟民.糯性水稻中蜡质基因第一内含子的剪接活性.植物生理学报,2000,26(3):237~240
    郭益全,刘清,张德梅等.籼稻烹调与食用品质及谷粒性状之遗传.中华农业研究,1985,3(3):243-257
    郭益全,谢顺景.稻谷粒形性状的遗传研究.中华农业研究,1982,31(3):177-186
    郭银燕,张云康,陈润兴等.早籼稻碾磨品质品种、地点、品种×地点互作效应的研究.遗传,1997,19(4):12-16
    郭银燕,张云康,杨尧城等.浙江省早籼稻外观品质品种、地点、品种/地点互作效应研究.浙江农业大学学报,1998,24(1):20-26
    国家质量技术监督局.中华人民共和国国家标准——优质稻谷,GB/T 17981-1999,(2000)
    何光华,袁祚廉,郑家奎等,水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析.作物学报,1996,22(2):192-196
    胡秉民,耿旭.作物稳定性分析法.北京:科学出版社,1993
    胡培松.食用稻米品质评价与改良研究.南京农业大学博士论文,2002,47-51
    黄英金,刘宜柏.水稻蛋白质含量的遗传与选择的初步研究,江西农业大学学报(增刊),1990,20-27
    黄祖六,潭学林,Tragoonrung S等.稻米直链淀粉含量基因座位的分子标记定位.作物学报,2000,26(6):777~782
    
    
    黄祖六,潭学林,徐辰武等.稻米胶稠度基因位点的标记和分析.中国农业科学,2000,33(6):1-5
    季军,顾德法,李林峰.环境与栽培因子对稻米品质影响的研究进展.上海农业学报,1997,13(1):94-97
    贾志宽,高如嵩,张嵩午等.水稻齐穗后温度对稻米垩白影响途径的研究.西北农业大学学报,1991,19(3):27-30
    简佩如,卢虎生,朱军.稻米储藏性蛋白质性质与品质改进.科学农业,1997,45(7,8):200-206
    蒋开锋,郑家奎,赵甘霖等.基于AMMI模型的NC Ⅱ交配设计试验的配合力分析.作物学报,2000,26(6):959-962
    蒋开锋,郑家奎,赵甘霖等.杂交水稻产量性状稳定性及其相关性研究.中国水稻科学,2001,15(1):67-69
    蒋雅光,潘重光.作物品质改良.北京:农业出版社,1998,242-272
    李太贵,沈波,陈能等.Q酶在水稻子粒垩白形成中作用的研究.作物学报,1997,23(3):338-344
    李欣,顾铭洪,程祝宽等.水稻米香基因的染色体定位研究.江苏农学院学报,1996,17(3):33-39
    李欣,顾铭洪,潘学彪.常见水稻品种稻米品质的研究.江苏农学院学报,1987,8(1):1-8
    李欣,顾铭洪,潘学彪.稻米品质研究Ⅱ.灌浆期间环境条件对稻米品质影响.江苏农学院学报,1989,10(1):7-12
    李欣,莫惠栋,王安民.粳型杂交稻米品质性状的遗传表达.中国水稻科学,1999,13(4):197-204
    李欣等.谷类作物品质性状遗传研究进展,68-74,1990,江苏农业出版社
    李欣等.粳稻米糊化温度的遗传研究.江苏农学院学报,1995,16(1):15-20
    李泽福,万建民,夏加发等.水稻外观品质的数量性状基因位点分析.遗传学报,2003,30(3):251-259
    梁敬琨等,籼型杂交稻品质性状与其亲本关系的初步研究,中国水稻科学,1989,2(3):111-116
    林鸿宣,闵绍楷,熊振民等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位.中国农业科学,1995,28(4):1~7
    凌兆凤,莫惠栋,顾铭洪等.籼稻米糊化温度的遗传研究.谷类作物品质性状遗传研究进展,江苏科技出版社,1990,P106-112
    刘巧泉,王宗阳,顾铭洪等.反义waxy基因导入水稻降低胚乳直链淀粉含量的研究.21世纪水稻遗传育种展望,中国农业出版社,北京,1999,206~271
    刘文江,李浩杰,王旭东等.用AMMI模型分析杂交水稻基本性状的稳定性.作物学报,2002,28(4):569~573
    刘宜柏,黄克英.稻米食味品质的相关性研究.江西农业大学学报,1989,4:55-59
    
    
    刘宜柏,吴慧光,饶治祥等.水稻品种稻米品质的研究.江西农业大学学报,水稻品质育种研究专辑,1990,36-44
    卢荣禾,余辉.水稻品种Lemont和七桂早的光抑制性的比较研究.中国水稻科学,1997,12(2):125-128
    马国辉.环境生态对中国稻米品质的影响.农业现代化研究,1998,19(3):146-150
    闵绍楷,申宗坦,熊振民等.水稻育种学.北京:中国农业出版社,1996,322-323
    闵绍楷.稻米品质的鉴定与改良.国外农学—水稻,1981,(3):113-123
    莫惠栋,黄超武,顾铭洪等.谷类作物品质遗传研究进展.南京:江苏科学技术出版社,1990
    莫惠栋.我国稻米品质的改良.中国农业科学,1993,26(4):8-14
    倪玲娟,全立勇,袁勤等.杂交粳稻米质性状遗传效应.上海农业学报,1996,12(2):13-17
    祁祖白,李宝健,杨文广等.水稻籽粒外观品质及脂肪的遗传研究.遗传学报,1983,10(6):452-458
    钱前,何平,郑先武等.籼稻分类的形态指数及其相关鉴定性状的遗传分析.中国科学(C辑),2000,30(3):305-340
    沈波,陈能,李太贵等.温度对早籼稻米垩白发生与胚乳物质形成之研究.中国水稻科学,1997,11(3):183-186
    石春海,稻米碾磨品质性状遗传效应及其与环境互作的遗传分析.遗传学报,1998,25(1):46-53
    石春海,何慈信,朱军等.籼稻稻米外观品质性状的遗传主效应和环境互作效应分析.中国水稻科学,1999,13(3):179-182
    石春海,申宗坦,早籼稻谷粒性状遗传效应的分析,浙江农业大学学报,1994,20(4):1993,405-410
    石春海,朱军.稻米营养品质种子效应和母体效应的遗传分析.遗传学报,1995,22(5):372-379.
    石春海,朱军.籼稻稻米外观品质与其它品质性状的相关性分析.浙江农业大学学报,1994,20(6):606-610
    石春海,朱军.籼稻稻米蒸煮品质的种子和母体遗传效应分析.中国水稻科学,1994,8(3):129-134
    石春海,朱军.籼型杂交稻稻米外观品质的种子和母体遗传效应分析,北京农业大学学报,1993,19(增刊):69-74
    舒庆尧,吴殿星,夏英武等.稻米淀粉RVA谱特征与食用品质的关系.中国农业科学,1998,31(3):25-29
    汤圣祥,Khush GS.籼稻胶稠度的遗传.作物学报,1993.19(2):119-124
    汤圣祥,张云康,余汉勇等.籼粳杂交稻米胶稠度的遗传特性分析.中国水稻科学,1996,29(5):51-55
    汤圣祥.我国杂交水稻蒸煮与食用品质的研究.中国农业科学,1987,20(5):17-22
    唐威华,王宗阳,张景六等.水稻蜡质基因第一内含子中g片段上核蛋白因子结合位点的确定.植物生
    
    理学报,2000,26(4):323~330
    唐湘如,余铁桥.灌浆成熟期温度对稻米品质及有关生理生化特性的影响.湖南农学院学报,1991,17(1):1-9
    屠曾平.水稻光合特性研究与高光效育种.中国农业科学,1996,30(3):28-35
    王建林,熊振民,朱旭东等.籼粳亚种间杂种一代米质性状的优势表现及性状间的相关分析.水稻育种通讯(中国水稻研究所育种系编),1992,12:20-26.
    王磊,杨仕华,沈希宏等.作物品种区试数据分析的主效可加互作可乘模型(AMMI)图形.南京农业大学学报,1998,21(2):18-23
    吴长明,孙传清,陈亮等.稻米营养品质性状的QTL及其与食味品质的关系研究.吉林农业科学,2002,27(4):3-7
    吴长明,孙传清,陈亮等.水稻直链淀粉含量与籼粳分化度的QTL及其相互关系研究.中国农业大学学报,2000,5(5):6-11
    吴长明,孙传清,陈亮等.应用RFLP图谱定位分析稻米粒形的QTL.吉林农业科学,2002,27(5):3-7
    吴殿星,舒庆尧,夏英武.RVA分析辅助选择食用优质早籼稻的研究.作物学报,2001,27(2):165-172
    伍时照,黄超武,欧烈才.水稻籼型品种胚乳淀粉性状的扫描电镜观察.植物学报,1986,28(2):145-149
    武小金.稻米蒸煮食用品质性状的遗传研究.湖南农学院学报,1989b,15(4):6-10
    邢永忠,谈移芳,徐才国等.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,2001.43(8):840-845
    熊振民,朱旭东,卢玉坤等.稻米品质研究的新进展.水稻文摘,1993,12(3):1-6
    徐辰武,莫惠栋.籼稻米糊化温度的质量—数量遗传分析.作物学报,1996,22(4):385-391
    徐辰武,张爱红,等.籼粳杂交稻米品质性状遗传分析.作物学报,1996,22(5):530-534
    徐辰武,张爱红.几个籼粳交组合稻米品质性状遗传表达的鉴定.中国水稻科学,1998,12(1):51-54
    徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解析.中国水稻科学,2002,16(1):6-10
    徐庆国.稻米营养品质的研究.Ⅱ糙米赖氨酸与苏氨酸含量的品种(组合)差异及与蛋白质含量的关系.湖南农学院学报,1987,3:1-6
    许乃银,陈旭升,郭志刚等.AMMI模型在棉花区试数据分析中的应用.江苏农业学报,2001,17(4):205-210
    严长杰,梁国华,陈峰等.利用籼粳回交群体分析水稻粒形性状相关QTLs.遗传学报,2003,30(8):711-716
    
    
    杨联松,白一松,许传万等.水稻粒形与稻米品质间相关性研究进展.安徽农业科学,2001,29(3):312-316
    易小平,陈芳远.籼型杂交水稻品质性状的细胞质遗传效应研究.广西农学院学报,1991,10(1):25-32
    易小平,陈芳远.籼型杂交水稻蒸煮品质、碾磨品质及营养品质的细胞质遗传效应.中国水稻科学,1992,6(4):187-189
    游志鹏,范云六,廖玫江.水稻种子贮存醇溶蛋白4a基因的启动子Ⅰ及其调控元件.农业生物技术学报 1999,7(2):103-108
    张世平,范云六,张春义等.水稻醇溶蛋白4a基因启动子在转基因水稻中的特异性表达.农业生物技术学报,1999,7(3):205-209
    张小明,石春海,富田桂.粳稻米淀粉特性与食味间的相关性分析.中国水稻科学,2002,16(2):157-161
    张云康,林榕辉,闵捷等.浙江水稻品种资源的研究.作物品种资源,1992,(4):23-25
    赵军,范云六.水稻种子醇溶蛋白4a基因的表达受串联复合启动子调控.中国科学(C辑),1996,26(2):156-163
    赵式英.灌浆期气温对稻米品质的影响.浙江农业科学,1983(4):178-181
    朱碧岩,贾志宽.水稻品质性状遗传参数的分析.西北农业大学学报,1990,18(3):69-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700