用户名: 密码: 验证码:
AZ31镁合金双向挤压变形的组织性能与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究DDE变形过程中AZ31系镁合金的微观组织演变和变形后的力学性能以及DDE变形工艺。重点讨论了DDE变形过程中的晶粒细化机制,变形后的室温力学性能及断裂机制,以及DDE变形过程中的挤压力和应力应变分布。以期对AZ31镁合金的DDE变形机理和DDE变形工艺本身进行初步研究和探讨。
     论文选取了应用比较广泛的AZ31镁合金作为研究对象。采用金相显微分析(OM)、X射线衍射分析和电子背散射衍射分析(EBSD)等手段,对不同挤压温度下AZ31镁合金在DDE变形过程中的显微组织和织构的演变规律进行了分析;进行室温力学性能测试,探讨了DDE成型后AZ31镁合金的室温力学性能和室温下的断裂方式及断裂机理;采用透射电子显微技术(TEM),探讨了DDE变形过程中AZ31镁合金的晶粒细化机制;对经DDE变形后的AZ31镁合金进行了退火处理,探讨了经DDE变形后AZ31镁合金显微组织的变化及其力学性能;采用有限元软件对DDE变形工艺进行了模拟分析,对DDE变形过程中挤压力和应力应变分布进行了初步探讨。取得如下结果:
     AZ31镁合金经DDE变形后,镁合金晶粒明显细化。变形后合金室温延伸率随晶粒细化而提高,屈服强度和硬度都随晶粒细化而提高,与Hall-Petch关系的趋势符合,由于受织构影响,250℃时与Hall-Petch关系相违背。在250~450℃温度范围内进行DDE变形,AZ31镁合金的晶粒随变形温度的降低而减小。AZ31镁合金经DDE热变形后,合金的室温强韧性得到综合改善。
     随着挤压比的增大,合金的晶粒细化效果更显著。在挤压比为10.125时,晶粒变得更加致密细小,而且分布均匀,镁合金的屈服强度和延伸率都得到了提高。同时在挤压比为10.125,温度300℃,挤压后的AZ31镁合金,平均晶粒尺寸为3μm,屈服强度达到232MPa,延伸率达到了18.6%,说明在低温与大挤压比的共同作用下,镁合金的韧性能有效地得到提高。
     DDE变形过程中AZ31镁合金的晶粒细化机制可以归结为模具转角的剪切作用和挤压比变形引起的晶粒破碎和整个DDE变形过程中发生的连续动态回复和再结晶(CDRR)。对于连续动态回复和再结晶,变形初期在粗晶粒内产生许多位错,位错会发生交互作用,重新排列形成位错界面以及亚晶界,而形成的位错界面以及亚晶界会进一步演化为小角度晶界和大角度晶界,镁合金得以细化。
     利用有限元软件Deform-3D对DDE变形过程中的挤压力和应力应变分布进行了有限元模拟,发现模拟结果和实验结果基本吻合。
The purpose of this paper is to investigate the microstructure evolution, mechanical properties of AZ31 magnesium alloy by DDE, and placed an emphasis on the understanding of grain refinement mechanism during DDE, the mechanical properties and fracture mechanism at room temperature, the extrusion force and distribution of stress and strain of DDE, in order to provide a preliminary investigation and discussion for the DDE deformation mechanism and process.
     In this paper, as-casted AZ31 magnesium alloy were elected as DDE deformation material for investigation. The AZ31 magnesium alloy microstructure and texture evolution were analyzed by Optical microscopy (OM), X-ray diffraction and electron backscatter diffraction(EBSD); the mechanical properties and fracture way and mechanism were discussed by mechanical test at room temperature, the grain refinement mechanism were explored by transmission electron microscopy (TEM), the properties and microstructure of annealing after DDE were discussed , and the extrusion force and distribution of stress and strain during DDE process were simulated by finite element analysis. The main results can be summarized as follows:
     For AZ31 magnesium alloy, the grains were refined effectively after DDE. The ductility, strength and microhardness were improved with the grain refinement, which is consistent with Hall-Petch relationship. The effect of grain refinement was improved with lowering the DDE temperature. Both the ductility and synthetic mechanical properties of AZ31 magnesium alloy can be improved by DDE.
     With the extrusion ratio increasing, alloy grain could be refined. When the extrusion ratio was 10.125, the grains become more compact and smaller, and distributed evenly. The tensile strength and prolongation rate of Magnesium Alloy got improvement. When the extrusion ratio was 10.125, temperature was 300℃, the average grain size was 3μm, yield stress got to 232MPa, prolongation rate reached 18.6%, it showed that with the low temperature and large extrusion ratio, the toughness of Magnesium Alloy could effectively improved.
     Grain refinement mechanism of AZ31 alloy during DDE can be described as grain fragmentation in the shear zone and extrusion ratio zone for continuous dynamic recovery and recrystallization (CDRR). For the CDRR, at the initial stage of DDE deformation, dislocation density increases and then dislocations are arranged into dislocation boundaries and sub-grain boundaries. With further deformation, these sub-boundaries evolve to low angle grain boundaries (LAGBs) and high angle grain boundaries (HAGBs), therefore the grains can be refined.
     The extrusion force and distribution of stress and strain during DDE process were simulated by finite element software Deform-3D, and the result of simulation was well agree with the experiment result.
引文
[1]陈振华等.镁合金[M].北京:化学工业出版社, 2004.
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [3]余崑,黎文献,李松瑞.变形镁合金的研究进展[J].轻合金加工技术, 2001, (7): 6-11.
    [4]陈振华等.镁合金[M].机械工业出版社, 2004.
    [5] Agnew S R O Z. Continuous, large strain, tension/compression testing of sheet material.[J]. International Journal of Plasticity, 2005, (21): 1161-1193.
    [6]陈振华,夏伟军,严红革,傅定发,陈吉华.镁合金材料的塑性变形理论及其技术[J].化工进展, 2005, (23): 127-135.
    [7] Taylor, G I. Plastic strain in metals[J]. Journal of the Institute of Metals, 1938, (62): 307-324.
    [8]卢志文,汪凌云,潘复生,陈林.变形镁合金及其成形工艺[J].材料导报, 2004, (9): 39-42.
    [9]镁[Z]. http://www. China. com/C2/.
    [10]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究,2003, (1): 34-37.
    [11]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报, 2003, (4): 300-306.
    [12]镁合金的用途及相关产品[Z]. http://www. east.cn/Html/news/20067/2006711103739. html.
    [13]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J].世界科技与发展, 2003, 25 (1): 72-79.
    [14]蒲正丽.美洲虎和沃尔轿车公司开发新镁合金部件阴[J].稀有金属快报, 2002, (11): 22.
    [15]李焕喜,栗丽.先进镁合金在汽车制造业中的应用研究进展[Z]. http: //www. zjxcl. com/ play. asp ? idd=349&picid交通新材料1博览.
    [16] Galiyev A, kaibyshev R. Microstructural revoltion in ZK60 magnesium alloy during severe plastic deformation[J]. Mater Trans, 2001, 42 (7): 1190-1191.
    [17]刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属报, 2006, (1):1-12.
    [18]丁文汇,土渠东,刘满平.轻合金技术新进展[Z]. http: //www. cas. ac. cn/html/B ooks/061 BG/a 1 /2002/2/2.4-htm.
    [19] J Enss, et al. New magnesium rolled Productions for automobile applications[A]. Proceedings of the Second Israeli International Conference on Magnesium Science and Technology[C]. Dead Sea, Israel, 2000, 19-34.
    [20]张颂阳,耿茂鹏,谢水生,周新民,张莹.镁合金成形技术研究进展[J].热加工工艺,2006, 35 (13 ): 77-80.
    [21] C.M. Choy, S.C. V Lim, C.F. Chan and M.S. Yong. Plane-Strain Backward Extrusion of AZ31 Magnesium Alloy[J]. Materials Science Forum, 2003, 419-422.
    [22] N Ogawa, K Osaka da. Forming limit of magnesium alloy at elevated temperature for precision forging [J]. Int. J. Machine Tools and Manufacture, 2002, 42: 607-614.
    [23] M. Mabuchi, M. Nakamura. Microstructural Evolution and Superlasticity of Rolled Mg-9A1-1Zn Alloy[J]. Materials Science and Engineering, 2000, A290: 139-144.
    [24]李秀华,陈立佳等.热挤压及后续热处理对AZ91镁合金微观组织和力学性能的影响[J].沈阳航空工业学院学报, 2006, (8): 6-8.
    [25] Chen F X, Su J H, Yang Y L. et al. Research on superplasticity and superplastic extrusion of MB26 Magnesium alloy [J]. J. Mater. Sci.Techno1.2001, 17 (1): 147-148.
    [26]丁水,张凯锋等. MB15镁合金板材的超塑性性能研究[J].锻压技术, 2003, (3): 44-46.
    [27]麻彦龙,左汝林,汤爱涛,张静,潘复生. ZK60镁合金铸态显微组织分析[J].重庆大学学报, 2004, 27 (8): 52-56.
    [28]屠怡范,陈晶益,张波萍,李鹏喜,铃木洋夫. AZ31铸造镁合金的物相和显微组织[J].铸造, 2006, 55 (5): 509-512.
    [29]张青来,李强,卢晨,丁文江. AZ31变形镁合金压力成形[J].轻合金加工技术, 2004, 32 (1): 30-34.
    [30]刘满平,马春江,土渠东,吴国华,朱燕萍,丁文江等.工业态AZ31镁合金的超塑性变形行为[J].中国有色金属学报, 2002, (4): 797-781.
    [31]张宝红,张星,土强,张治民,李保成.塑性变形对铸态AZ31镁合金组织和性能的影响[J].材料工程, 2005, 5: 45-48.
    [32]余棍,黎文献.细晶粒AZ31镁合金板材的组织与性能[J].金属热处理, 2005, 30 (4): 34-37.
    [33]李峰,桑玉博,赵立伟.热变形对AZ31镁合金显微组织的影响[J].热加工工艺, 2006, 35 (6): 8-9.
    [34]黄光杰,赵国丹. AZ31镁合金热变形规律的研究[J].重庆工学院学报, 2006, 20 (2): 60-64.
    [35]万玉刚,康永林,蔡庆伍,魏松波,张济山.加热温度对AZ31镁合金薄板组织性能的影响[J].轻合金加工技术, 2006, 34 (3): 45-47.
    [36]姚素娟,张英.镁及镁合金的应用与研究[J].世界有色金属, 2005, (1): 26-30.
    [37]吴秀铭,孟树昆.发展中的中国镁工业[J].镁矿与镁质材料, 2005, (3): 20-22.
    [38] Klaus B. Indirect Extrusion of AZ31 and AZ61[J]. Magnesium Technology, 2003, (1): 247.
    [39] Matsuoka S M, Miyamoto S et al. Effect of extrusion conditions on microstructure andmechanical properties of AZ31B magnesium alloy extrusions[J]. Journal of Materials Processing Technology, 2003, (2): 207.
    [40] Takeshi Y, Ken S and Yoshihito K. The Microstructures and Mechanical Properties of Hot-Processed Magnesium Casting Alloys[J]. Materials Science Forum, 2006, (1): 775-780.
    [41] Segal V M, Reznikov V I. Plastic working of metals by simple shear[J]. Russian Metallugy, 1981, (1): 99-105.
    [42] Mukai T, Watanabe H. Ductility enhancement In AZ31 magnesium alloy by controlling its grain structure[J]. Sci Mater, 2001, (45): 89-94.
    [43] Valiev R Z, Korznikov A V, Mulyklov R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Mater Sci Eng, 1993, (168): 141-148.
    [44]张悦.用等径弯曲通道变形(ECAP)加室温下轧制的方法制备纳米晶铜[D]. 2004.
    [45] Wangj.T, Cao.X.F, Du.Z.Z, et al. The effect of equal channel angular pressing routes on structure evolution in a commercial low carbon steel[J]. Materials Processing and Manufacturing Division. Ultrafine Grained Materials III[C]. Charlotte, NC,USA: TMS, 2004, 345-350.
    [46] Kim.S.M, Kim.J, Shin.D.H, et al. Microstructure development and segment formation during ECAE pressing of Ti26Al24V alloy [J]. Scripta Materialia, 2004, 50 (7): 927-930.
    [47] Zherna kov.V.S, Stol Yarov.V.V, et al. The developing of nanostructured SPD Ti for struct ural use[J]. Scripta Materialia, 2001, 44 (8-9): 1771-1774.
    [48] Cabibbo.M, Evangelista.E, Latini.V, et al. Development of nanostructured 1200 and 3103 aluminum alloys by equal channel angular pressing[J]. Materials Science Forum, 2003, 426-432 (3): 2673-2680.
    [49]冯广海,符寒光,赵西成. ECAP变形与材料组织性能控制的研究[J].材料工程, 2006, (3): 64-68.
    [50] Nakashima.K, Horita.Z, Nemoto.M, et al. Influence of channel angle on the development of ult rafine grains in equal channel angular pressing[J]. Acta Materialia, 1998, 46 (5): 1589-1599.
    [51] NaKashima.K, Horita.Z, Nemoto M, et al. Development of a multi-pass facility for equal channel angular pressing to high total strains[J]. Materials Science and Engineering A, 2000, 281 (1): 82-87.
    [52] E.O.Ha11.The deformation and ageing of mild steel:III discussion of results[J]. Soc. Lond: Proc.Phys.1951 (64): 747-753.
    [53] N.J Petch. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, (174): 25-28.
    [54] Kim W J, Hong S I, Kim Y S. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J]. Acta Materialia, 2003, (51): 3293.
    [55]佐藤雅彦,薄板压延:秘制造工程诸特性[J].轻金属, 2004, (11): 465.
    [56] Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J]. Materials Science and Engineering, 2004, (385): 300-308.
    [57] Akihiro Y, Zenji H, Langdon G Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering, 2001, (300): 142-147.
    [58] Kim W J, Jeeng H G. Mechanical Properties and Texture Evolution in ECAP Processed AZ61 Mg alloys[J]. Materials Science Forum, 2003, (201): 419-422.
    [59] Hiroyuki W, Toshiji M, Koichi I. Low temperature susperplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J]. Scripta Materialia, 2002, (46): 851.
    [60] Yu Y, Lawrence C, Shigeharu K. Effect of microstructural factors on tensile properties of an ECAE-Processed AZ3 I Magnesium alloy[J]. Materials Transactions, 2003, (4): 468.
    [61]崔中圻.金属学与热处理[M].哈尔滨:哈尔滨工业大学出版社, 2002.
    [62]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994.
    [63]庄权华. St15深冲钢板的再结晶规律研究与应用[D], 2003.
    [64]陈振华等.变形镁合金[M].北京:化学工业出版社, 2005.
    [65] S.E. Ion, F.J. Humphreys and S.H. White. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica et Materical, 1982, (30), 1909-1919.
    [66]刘晓霏,严巍,陈国学. AZ31B镁合金塑性变形动态再结晶的实验研究[J].塑性工程学报, 2005, 12 (3): 10-13.
    [67] Watanabe H, Mukai T, Ishikawa K, et al. Realization of High-strain-rate Superplasticity at low temperatures in a Mg-Zn-Zr Alloy[J]. Materials Science and Engineering A, 2001,307: 119.
    [68] Barnett M R. Recrystallization during and Following Hot Working of magnesium Alloy AZ31[J]. Materials Science Forum, 2003, 419-422: 503.
    [69]冯端等著.金属物理学(第三卷).金属力学性质[M].北京:科学出版社, 1999.
    [70]黄光胜,汪凌云,范永革. AZ31B镁合金挤压工艺研究[J].金属成形工艺, 2002, 20 (5): 11-14.
    [71] Yoo.M.H, Agnew.S.R, Morris.J.R, Ho.K.M. Non-basal slip systems in hcp metals and alloys:source mechanisms[J]. Materials Science and Engineering A, 2001, 87: 319-321.
    [72] Staroselsky.A, Anand.L. A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B[J]. Internationsl Journal of Plasticity, 2003, 19: 1843.
    [73] Ono.N, Rowak.R. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Material Letters, 2003, 58: 39-45.
    [74] Mukai.T, Watanabe.H, Ishikawa.K, Higashi.K. Guide for enhancement of room temperature ductility in mg alloys at high strain rates[J]. Materials Science Forum, 2003, 171: 419-422.
    [75] Doris Kuhlmann Wilsdorf. High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDs theory[J]. Scripta Materialia, 1997, (36): 173-181.
    [76] Lin D.L., Liu Y. Microstructural evolution and mechanisms of superplasticity in large-grained iron aluminides[J]. Materials Science and Engineering A, 1999, (268): 83-89.
    [77] Lin D. L., Sun F. Superplasticity in a large-grained TiAI[J].Alloy Intermetallics, 2004, (12): 875-883.
    [78] Hu J, Lin D. L. Microstructure evolution of superplasticity in large-grained Ni-48A1 intermetallics[J]. Materials Science and Engineering A, 2004, (371): 113-118.
    [79] Lin D. L., Hu J, Jiang D. M. Superplasticity of Ni-rich single phase NiAI intermetallics with large grains[J]. Intermetallics, 2005, (13): 343-349.
    [80]杨歊? AZ31镁合金高温变形时的微细晶粒组织的生成[J].轻金属, 2002, 52 (7): 318.
    [81] Galiyev A, Kaibyshev R, Sakai T. Continuous Dynamic Recrystallization in Magnesium Alloy[J]. Materials Science Forum, 2003, 419-422: 509.
    [82]谢水生,王祖唐著.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社, 1997.
    [83] Y.W. Tham, M.W. Fu, H.H. Hng, M.S. Yong, K.B. Lim. Study of deformation homogeneity in the multi-pass equal channel angular extrusion process[J]. Journal of Materials Processing Technology, 2007, (192-193): 121-127.
    [84]钟春生,韩静涛编著.金属塑性变形力计算基础[M].北京:冶金工业出版社, 1994.
    [85]吕炎等编著.精密塑性体积成形技术[M].北京:国防工业出版社, 2003.
    [86] Prangnell P B, Harris C, Roberts S M. Finite element modeling of equal channel angular extruson[J]. Scripta Mater, 1997, 37 (7): 983-989.
    [87] Raghavan S. Computational simulation of the equi-channel angular extrusion process[J]. Scripta Mater, 2001, 44 (1):91-96.
    [88] Shan A, Moon In-Ge, Ko H S, et al. Direct observation of shear deformation during equalchannel angular pressing of pure aluminum[J]. Scripta Mater, 1999, 41 (4):353-357.
    [89]于沪平,彭颖红,阮雪榆.平面分流焊合模成形过程的数值模拟[J].锻压技术, 1999, 24 (5): 9-11.
    [90]刘静安.铝型材挤压模具设计制造使用及维修[M].北京:冶金工业出版社, 1999.
    [91]刘祖岩,王尔德.等径侧向挤压变形载荷的有限元模拟[J].塑性工程学报, 1999, 6 (3): 7-11.
    [92]娄燕.钦合金热挤压的有限元模拟[J].热加工工艺, 2003, (1): 39-41.
    [93]王裕.等通道转角挤压的有限元模拟及应用[D]. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700