用户名: 密码: 验证码:
离子液体中Bi系光催化剂的设计及其降解环境有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的快速发展,能源短缺和环境污染问题严重影响和威胁着人类的生活。光催化技术是一种绿色高级氧化技术,在环境污染治理领域和能源开发方面有着广泛的研究和应用。开发高效、高稳定性光催化剂已经成为光催化研究的热点问题。本论文旨在探索反应型离子液体中新型高效卤化氧铋催化剂的可控合成及其在环境污染方面应用。并采用XRD、XPS、SEM、TEM、BET、DRS等测试手段对所合成光催化剂的结构、形貌、生长机理及其光催化性能与催化剂结构之间的构效关系进行了深入研究。
     本文通过碘代1-丁基-3-甲基咪唑反应型离子液体中乙二醇溶剂热合成了多孔结构和表面带一个孔的中空花状结构BiOI材料。通过XRD、SEM、TEM、EDS、BET、DRS等方法对催化剂进行表征分析,并分析了中空结构BiOI材料可能的晶体生长机理。研究结果表明,反应型离子液体不仅起到溶剂和模板剂的作用外,还作为碘源参与BiOI中空、多孔结构材料的合成,离子液体对中空结构材料的形成起到重要的调控作用。可见光照射条件下BiOI材料光催化降解甲基橙环境污染物活性研究发现,合成的中空结构的BiOI材料相对于片状结构的BiOI材料和TiO2 (Degussa, P25)具有更好的光催化降解甲基橙活性,光照180 min对甲基橙的降解率达94%。其构效关系研究表明中空和多孔结构BiOI材料的高活性来源于能带结构、高的比表面积、高体表比以及强光吸收因素的协同作用。
     本文还通过溴代1-十六烷基-3-甲基咪唑反应型离子液体乙二醇溶剂热方法合成得到了多孔、中空花状结构的BiOBr材料。通过XRD、XPS、SEM、TEM、EDS、BET、DRS等方法对光催化剂进行表征分析。对中空结构的BiOBr晶体的生长机理进行研究,并给出了可能的生长机理。研究发现,反应型离子液体体系中离子液体同时起到溶剂、模板剂和反应源的作用,离子液体有助于中空、多孔BiOBr材料的形成。可见光照射下的光催化降解罗丹明B活性研究表明,多孔结构的BiOBr材料相对于常规方法合成的BiOBr材料和TiO2 (Degussa, P25)具有更好的光催化降解活性,光照105 min,罗丹明B被完全降解。催化剂结构与活性之间构效关系研究发现,中空和多孔结构BiOBr材料的高活性来源于窄的禁带宽度、高的比表面积、小的颗粒尺寸以及强光吸收因素的协同作用。
     同时,本文还通过氯代1-十六烷基-3-甲基咪唑反应型离子液体溶剂热合成得到了球状、多孔状结构的BiOCl材料。通过XRD、SEM、EDS、DRS等方法对光催化剂进行表征分析。研究表明反应型离子液体同时起到溶剂、模板剂和反应源的作用,对BiOCl材料起到重要的调控作用。同时,研究了离子液体阳离子和溶剂热的溶剂对BiOCl材料结构和形貌的影响。此外,可见光下光催化降解罗丹明B活性研究表明,离子液体-PVP复合体系中合成的BiOCl材料相对于单离子液体体系中合成的BiOCl材料具有更好的光催化降解罗丹明B的活性,BiOCl材料的光催化活性随着离子液体阳离子碳链的增长而增强。此外,1,3-丁二醇中合成的BiOCl材料比同等条件下乙二醇中合成的材料活性强。
     在上述工作基础上,本文还通过反应型离子液体[C16mim]Cl, [C16mim]Br和[Bmim]I两两结合乙二醇溶剂热合成了花状结构的BiOX1/BiOX2(X1, X2=Cl, Br, I)复合材料。通过XRD、SEM、EDS、DRS等方法对光催化剂进行表征分析。研究发现,离子液体同时起到溶剂、模板剂和反应源的作用,对花状结构BiOX1/BiOX2(X1,X2=C1,Br,I)复合材料的形成起到重要的调控作用。复合材料光学性质研究发现,BiOBr/BiOI, BiOBr/BiOCl和BiOCl/BiOI材料的禁带宽度分别为2.18 eV,2.89 eV和2.39 eV。同时,制备的花状结构BiOCl/BiOI X2=Cl, Br, I)复合材料进行了可见光照射条件下光催化降解罗丹明B(RhB),亚甲基蓝(MB)和甲基橙(MO)污染物活性的考察。研究发现,合成的花状结构的BiOX1/BiOX2(X1, X2=Cl, Br, I)复合材料对三种不同种类的染料污染物均有可见光降解活性,对罗丹明B染料的降解活性最好。
     此外,本文还通过1-丁基-3-甲基咪唑四氟硼酸盐离子液体辅助热合成方法制备了鸟巢状结构Bi2W06层状结构材料。研究发现Bi2W06材料是由尺寸在18-20 nm直径Bi2WO6纳米片自组装而形成的3-5/μm的鸟巢层状结构。离子液体对鸟巢状结构Bi2W06材料的形成起到重要的作用。紫外漫反射光谱研究发现鸟巢状Bi2W06结构材料相对于片状Bi2W06材料在紫外可见光区存在明显的光吸收增强性能,这可能是由于鸟巢状Bi2W06材料存在散射作用,使得光线的传播路线延长从而增强光吸收。此外,对制备得到的鸟巢状结构的Bi2W06材料进行了可见光照射条件下光催化降解罗丹明B污染物活性的考察。研究发现制备的鸟巢状结构的Bi2W06材料相对于没有离子液体条件下合成的片状Bi2W06材料具有更好的光催化降解罗丹明B的活性。
With the development of our society, the problems of energy shortage and environment Pollution affect our living standard. Photocatalytic technology is one kind of green Advanced oxidation technology, which has been widely used in environmental pollutant treatment and energy development. Visible-light-driven photocatalysts with high activity and stability had attracted a great deal of attention. In this paper, it was focused on the synthesis of BiOX visible-light-driven photocatalysts in reactable ionic liquids system. These resulting materials were characterized by XRD、XPS、SEM、TEM、BET、DRS and photocatalytic activity test, the relationship between the structure of the photocatalyst and the photocatalytic activities were also discussed in details.
     BiOI uniform porous nanospheres and flower-like hollow microspheres with a hole in its surface structures have been synthesized through an EG-assisted solvothermal process in the presence of ionic liquid 1-butyl-3-methylimidazolium iodine ([Bmim]I). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), nitrogen sorption and diffuse reflectance spectroscopy (DRS). Possible formation mechanism for the growth of hollow microspheres was discussed. During the reactive process, ionic liquid not only acted as solvents and templates but also as I source for the fabrication of BiOI hollow microspheres, and was vital for the structure of hollow microspheres. Additionally, we evaluated the photocatalytic activities of BiOI on the degradation of methyl orange (MO) under visible light irradiation and found that as-prepared BiOI hollow microspheres exhibited higher photocatalytic activity than BiOI nanoplates and TiO2 (Degussa, P25) did. On the basis of such analysis, it can be assumed that the enhanced photocatalytic activities of BiOI hollow microspheres could be ascribed to its energy band structure, high BET surface area, high surface-to-volume ratios and light absorbance.
     BiOBr uniform flower-like hollow microspheres and porous nanospheres structures have been synthesized through a one-pot EG-assisted solvothermal process in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). Possible formation mechanism for the growth of hollow microspheres was discussed. During the reactive process, ionic liquid [C16mim]Br played the role of solvent, reactant and template at the same time. Moreover, the photocatalytic activities of BiOBr flower-like hollow and porous structures were evaluated on the degradation of rhodamine B (RhB) under visible light irradiation. The results assumed that BiOBr porous nanospheres samples showed much higher photocatalytic activity than the conventional method prepared sample and TiO2 (Degussa, P25). The relationship between the structure of the photocatalyst and the photocatalytic activities were also discussed in details, it can be assumed that the enhanced photocatalytic activities of BiOBr materials could be ascribed to a synergetic effect, including high BET surface area, the energy band structure, the smaller particle size and light absorbance.
     BiOCl uniform flower-like and sphere-like structures have been synthesized through an solvothermal process in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]C1). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). During the reactive process, ionic liquid not only acted as solvents and templates but also as Cl source for the fabrication of BiOCl materials. The influence of the ionic liquid cations and solvothermal solution on the morphology of BiOCl materials was studied in detail. Additionally, the photocatalytic activities of BiOCl crystals on the degradation of rhodamine B (RhB) under visible light irradiation were evaluated. The results showed that flower-like BiOCl structures synthesized with exhibited higher photocatalytic activity than other BiOCl materials and the photocatalytic activities of BiOCl crystals were increased with the increasing alkyl carbon chain of ionic liquid cations.
     BiOX1/BiOX2(X1, X2=C1, Br, I) uniform flower-like composites have been synthesized through an solvothermal process in the presence of ionic liquid [C16mim]Cl, [C16mim]Br and [Bmim]I. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). During the reactive process, ionic liquid acted as solvents, templates and halides source for the fabrication of BiOX1/BiOX2(X,, X2=C1, Br, I) materials. The optical properties of BiOX1/BiOX2(X1, X2=C1, Br, I) were studied studied in detail and the band gaps of the as-prepared composites were estimated to about 2.18,2.89, and 2.39 eV for BiOBr/BiOI, BiOBr/BiOCl and BiOCl/BiOI, respectively. Additionally, the photocatalytic activities of BiOX1/BiOX2(X1, X2=C1, Br, I) crystals on the degradation of rhodamine B (RhB), Methylene Blue (MB) and Methyl Orange (MO) under visible light irradiation were evaluated. The results showed that flower-like BiOX1/BiOX2(X1,X2=C1, Br, I) structures synthesized with exhibited good photocatalytic activity of the three types of dye and the photocatalytic activity of RhB was the best.
     Bi2WO6 uniform hierarchical nest-like structures have been synthesized through an ionic liquid-assisted hydrothermal method in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The Bi2WO6 hierarchical structures have an average diameter of about 3-5μm and are assembled by Bi2WO6 nanosheets with size ranging from 18 to 20 nm. The results show that ionic liquid [Bmim]BF4 is vital for the formation of Bi2WO6 nest-like hierarchical structures. The UV-vis diffuse reflectance spectroscopy indicate that Bi2WO6 hierarchical nest-like structures induces a significantly enhanced optical absorbance in the UV-visible region, which is ascribed to multiple scattering within the hierarchical assemblies to the lengthened optical path length for light transporting. Additionally, the photocatalytic activities of Bi2WO6 crystals on the degradation of rhodamine B (RhB) under visible light irradiation were evaluated. The results showed that nest-like Bi2WO6 structures synthesized with exhibited higher photocatalytic activity than Bi2WO6 nanosheets prepared in conventional method.
引文
[1]Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238,37-38
    [2]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contam. Toxicol.,1976, 16,697-701
    [3]Frank S N, Bard A J. Semiconductor electrodes.12. Photoassisted oxidations and photoelectrosythesis at polycrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.,1977, 99,4667-4675
    [4]Sano T, Negishi N, Koike K, Takeuchi K, Matsuzawa S. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+with a nitrogen-containing ligand[J]. J. Mater.Chem.2004,14,380-384
    [5]Wei W, Dai Y, Guo M, Zhu Y T, Huang B B. Density Functional Theory Study of Ag Adsorption on SrTiO3 (001) Surface[J]. J. Phys. Chem. C,2010,114, 10917-10921
    [6]Liu Z, Sun D D, Guo P, Leekie J O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano. Lett.2007,7,1081-1085
    [7]刘守新,刘鸿.光催化及光电催化基础与应用[M].材料科学与工程出版中心,2005.
    [8]许宜铭.环境污染物的光催化降解:活性物种与反应机理[J].化学进展,2009,21:524-533
    [9]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009,21:406-419
    [10]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径[J].硅酸盐通报,2000,1:53-57
    [11]Carey J H, Lawrenee J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension[J]. Bull. Environ. Contam. Toxicol.1976,16,697-701
    [12]Ollis D F, Hsiao C Y, Budiman L, Lee C L. Heterogeneous photoassisted catalysis:Conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes[J]. J. Catal.,1984,88,89-96
    [13]Chen C Y. Photocatalytic Degradation of Azo Dye Reactive Orange 16 by TiO2[J]. Water, Air, Soil Pollut.,2009,202,335-342
    [14]Prado A G S, Costa L L. Photocatalytic decouloration of malachite green dye by application of TiO2nanotubes[J]. J. Hazard. Mater.,2009,169,297-301
    [15]Sun S M, Wang W Z, Xu H L, Zhou L, Shang M, Zhang L. Bi5FeTi3O15 Hierarchical Microflowers:Hydrothermal Synthesis, Growth Mechanism, and Associated Visible-Light-Driven Photocatalysis[J]. J. Phy. Chem. C,2008,112, 17835-17843.
    [16]Huang J H, Ding K N, Wang X C, Fu X Z. Nanostructuring Cadmium Germanate Catalysts for Photocatalytic Oxidation of Benzene at Ambient Conditions[J]. Langmuir,2009,25,8313-8319
    [17]Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Fabrication of a TiO2-BOD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr(VI)[J]. Environ. Sci. Technol.,2008,42,3791-3796
    [18]Wu S, Cao H, Yin S, Liu X, Zhang X. Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals[J]. J. Phys. Chem. C,2009,113, 17893-17898
    [19]Rauf M A, Ashraf S S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution[J]. Chem. Eng. J.,2009,151,10-18
    [20]Wang Q, Chen C, Zhao D, Ma W, Zhao J. Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible Irradiation[J]. Langmuir,2008,24,7338-7345
    [21]Zhao J C, Chen C C, Ma W H. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top. Catal.2005,35,269-278
    [22]Yang J, Chen C, Ji H, Ma W, Zhao J. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation:photoelectrocatalytic study by TiO2-Film Electrodes[J]. J. Phys. Chem. B,2005,109,21900-21907
    [23]Chen C C, Ma W H, Zhao J C, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev.,2010,39,4206-4219
    [24]Takeda H, Koike K, Inoue H, Ishitani O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(1) complexes based on mechanistic studies [J]. J. Am. Chem. Soc.,2008,130,2023-2031
    [25]Ishida H, Terada T, Tanake K, Tanaka T. Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO[J]. Organometallics,1987,6,181-186.
    [26]Hawecker J, Lehn J M, Ziessel R. Efficient Photochemical Reduction of CO2 to CO by Visible-Light Irradiation of Systems Containing Re(bipy)(CO)3X or Ru(bipy)32+-Co2+Combinations as Homogeneous Catalysts [J]. J. Chem. Soc. Chem. Commun.,1983,536-538.
    [27]Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunsehwig B S, Shinozaki K, Fujita E. Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2[J]. J. Phys. Chem. A,2000, 104,11332-11339.
    [28]Ogata T, Yanagida S, Brunsehwig B S, Fujita E. Mechanistic and Kinetic Studies of Cobalt Macrocycles in a Photochemical CO2 Reduction System:Evidence of CO-CO2 Adducts as Intermediates[J]. J. Am. Chem. Soc.,1995,117,6708-6716.
    [29]Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S. Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of carbon dioxide[J]. J. Am. Chem. Soc.,1993,115,601-609.
    [30]Varghese O K, Paulose M, LaTempa T J, Grimes C A. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels[J]. Nano Lett.,2009,9,731-737
    [31]杨亚辉,陈启元,尹周澜,李洁.光催化分解水的研究进展[J].化学进展.2005,17:631-642
    [32]Kudo A. Development of photocatalyst materials for water splitting[J]. Int. J. Hydrogen Energy,2006,31:197-202
    [33]Kudo A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting[J]. Int. J. Hydrogen Energy,2007,32:2673-2678
    [34]Zou Z G, Ye J H, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature,2001,414, 625-627
    [35]Kale B B, Baeg J O, Lee S M, Chang H, Moon S J, Lee C W. CdIn2S4 nanotubes and "marigold" nanostructures:A visible-like photocatalyst[J]. Adv. Funct., Mater. 2006,16,1349-1354
    [36]Ritterskamp P, Kuklya A, Wustkamp M A, Kerpen K, Weidenthaler C, Demuth M. A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation-Reversible storage of oxygen and hydrogen[J]. Angew. Chem. Int. Ed., 2007,46,7770-7774
    [37]Chen X B, Shen S H, Guo L J, Mao S S. Semiconductor-based Photocatalytic Hydrogen Generation [J]. Chem. Rev.2010,110,6503-6570
    [38]Wu P G, Xie R C, Imlay J A, Shang J K. Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide[J]. Appl. Catal. B:Environ.,2009,88:576-581
    [39]Wu P G, Xie R C, Imlay K, Shang J K. Visible-Light-Induced Bactericidal Activity of Titanium Dioxide Co doped with Nitrogen and Silver, Environ[J]. Sci. Technol.,2010,44:6992-6997
    [40]Li Q, Xie R C, Li Y W, Mintz E A, Shang J K. Enhanced visible-light-induced photocatalytic disinfection of E-coli by carbon-sensitized nitrogen-doped titanium oxide[J]. Environ. Sci. Technol.,2007,41:5050-5056
    [41]郭健,胡学香,王爱民,胡春NiO/SrBi2O4可见光催化杀菌的研究[J].环境化学,2007,26:207-209
    [42]Yu J G, Yu X X, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ. Sci. Technol.2008,42,4902-4907
    [43]Deng D, Martin S T, Ramanathan S. Synthesis and characterization of one-dimensional flat ZnO nanotower arrays as high-efficiency adsorbents for the photocatalytic remediation of water pollutants[J], Nanoscale,2010,2,2685-2691
    [44]Hayat K, Gondal M A, Khaled, M M, Ahmed S, Shemsi A M. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water[J], Appl. Catal., A,2011,393,122-129
    [45]Sun J H, Dong S Y, Feng J L, Yin, X J, Zhao X C. Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation[J], J. Mol. Catal. A:Chem.,2011,335,145-150
    [46]Li B J, Cao H Q. ZnO@graphene composite with enhanced performance for the removal of dye from water[J], J. Mater. Chem.,2011,1,3346-3349
    [47]Mu J B, Shao C L, Guo Z C, Zhang Z Y, Zhang M Y, Zhang P, Chen B, Liu Y C, High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures[J], ACS Appl. Mater. Interfaces,2011,3,590-596
    [48]Karuppasamy K M, Subrahmanyam A. The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films [J]. Sol. Energy Mater. Sol. Cells,2008,92:1322-1326
    [49]Takeo A, Masatoshi Y, Yoshinari K, Ami I, Yasukazu I, Hideki S, Kazuhiro S. The enhancement of WO3-catalyzed photodegradation of organic substances utilizing the redox cycle of copper ions[J]. Appl. Catal., B,2008,84:42-47
    [50]Lin C F, Wu C H, Onn Z N. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems[J]. J. Hazard. Mater.,2008,154:1033-1039
    [51]Yu J G, Yu X X, Huang B B, Zhang X Y, Dai Y, Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres[J]. Cryst. Growth Des.,2009,9,1474-1480
    [52]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chem. Rev.,1995,95,735-758
    [53]Yu H G, Yu J G, Liu S W, Mann S, Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres[J]. Chem. Mater.,2007,19,4327-4334.
    [54]West C, Mokaya R. Nanocasting of high surface area mesoporous Ga2O3 and GaN semiconductor materials[J]. Chem. Mater.,2009,21,4080-4086
    [55]Kominami H, Oki K, Kohno M, Onoue S I, Kera Y, Ohtani B. Novel solvothermal synthesis of niobium(V) oxide powders and their photocatalytic activity in aqueous suspensions[J]. J. Mater. Chem.,2001,11,604-609
    [56]Takahara Y, Kondo J N, Takata T, Lu D L, Domen K. Mesoporous tantalum oxide.1. characterization and photocatalytic activity for the overall water decomposition[J]. Chem. Mater.,2001,13,1194-1199
    [57]Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D. ZnS nanostructures:From synthesis to applications[J]. Prog. Mater Sci.,2011,56,175-287
    [58]Barzegar M, Habibi-Yangjeh A, Behboudnia M. Ultrasonic-assisted preparation and characterization of CdS nanoparticles in the presence of a halide-free and low-cost ionic liquid and photocatalytic activity[J]. J. Phys. Chem. Solids,2010,71, 1393-1397
    [59]Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles [J]. J. Colloid Interface Sci., 2001,244,262-265
    [60]Cheng Z G, Wang S Z, Wang Q, Geng B Y. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst[J]. CrystEngComm,2010,12,144-149
    [61]Harris C, Kamat P V. Photocatalytic Events of CdSe Quantum Dots in Confined Media. Electrodic Behavior of Coupled Platinum Nanoparticles [J]. ACS Nano,2010, 4,7321-7330.
    [62]Ishikawa A; Takata T, Matsumura T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation [J]. J. Phys. Chem. B 2004,108,2637-2642.
    [63]Kudo A, Tsuji I, Kato H. AgInZn7yS9 solid solution photocatalyst for H-2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun. 2002,2,1958-1959.
    [64]单雯妍,白雪峰.多元金属硫化物光催化剂的制备及应用[J].化学与黏合,2009,31,35-38.
    [65]Xu X, Lu R J, Zhao X F, Xu S L, Lei X D, Zhang F Z, Evans D. G. Fabrication and photocatalytic performance of a ZnxCd1-xS solid solution prepared by sulfuration of a single layered double hydroxide precursor[J]. Appl. Phys. B,2011,102,147-156
    [66]Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, J. Wei Y, Whangho M H. Ag@AgCl:A highly efficient and stable photocatalyst active under visible light[J]. Angew. Chem. Int. Ed.,2008,47,7931-7933.
    [67]Wang P, Huang B B, Lou Z Z, Zhang X Y, Qin X Y, Dai Y, Zheng Z K, Wang X N. Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures[J]. Chem. Eur. J.,2010,16,538-544
    [68]Xu H, Li H M, Xia J X, Yin S, Luo Z J, Liu L, Xu L. One-Pot Synthesis of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl in Ionic Liquid[J]. ACS Appl. Mater. Interfaces,2011,3 (1),22-29
    [69]Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Wllangho M H. Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr[J]. Chem. Eur. J.,2009,15,1821-1824
    [70]Wang P, Huang B B, Zhang Q Q, Zhang X Y, Qin X Y, Dai Y, Zhan J, Yu J X, Liu H X, Lou Z Z, Highly Efficient Visible Light Plasmonic Photocatalyst Ag@Ag(Br, I) [J]. Chem. Eur. J.2010,16,10042-10047
    [71]王俊珍,傅希贤,杨秋华,孙艺环,陈秀增,曾淑兰.钙钛矿型LaCoO3的光催化活性[J].应用化学,1999,16:97-99
    [72]桑丽霞,傅希贤,白树林,杨秋华,王俊珍,孙艺环.制备方法对LaFeO3及掺杂LaFeO3光催化活性的影响[J].化学工业与工程,2000,17:336-340
    [73]Fu X, Yang Q, Wang J, Bai S, Sang L. Photocatalytic Degradation of Water-Soluble Dyes by LaCoO3[J]. Journal of Rare Earths,2003,21:424-426
    [74]杨秋华,傅希贤,桑丽霞,孙艺环,王俊珍.钙钛矿型LaFeO3和SrFeO3的光催化性能[J].硅酸盐通报,2003,3:15-18
    [75]Ahuja S, kutty T R N. Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol [J]. J. Photochem. Photobiol. A 1996,97,99-107
    [76]Hideki K, Akikiko K. Photocatalytic Water Splitting into H2 and O2 over Various Tantalate Photocatalysts [J]. Catal. Today 2003,78,561-569
    [77]Niu X, Li H, Liu G. Preparation, characterization and photocatalytic properties of REFeO3 (RE=Sm, Eu, Gd)[J]. J. Mol. Catal. A:Chem.,2005,232:89-93
    [78]Li Y, Wu J, Huang Y, Huang M, Lin J. Photocatalytic water splitting on new layered perovskite A2.33Sro.67Nb5O14.335 (A=K, H)[J]. Int. J. Hydrogen Energy,2009, 34:7927-7933
    [79]Huang Y, Li J, Wei Y, Li Y, Lin J, Wu J. Fabrication and photocatalytic property of Pt-intercalated layered perovskite niobates H1-xLaNb2-xMoxO7 (x=0-0.15)[J]. J. Hazard. Mater.,2009,166:103-108
    [80]Zhang H, Lu M, Liu S, Wang L, Xiu Z, Zhou Y, Qiu Z, Zhang A, Ma Q. Preparation and photocatalytic property of perovskite Bi4Ti3O12 films[J]. Mater. Chem. Phys.,2009,114,716-721
    [81]Okazaki Y, Mishima T, Nishimoto S, Matsuda M, Miyake M. Photocatalytic activity of Ca3Ti2O7 layered-perovskite doped with Rh under visible light irradiation[J]. Mater. Lett.,2008,62,3337-3340
    [82]Hur S G, Kim T W, Hwang S J, Choy J H. Influences of A-and B-site cations on the physicochemical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A=Sr, Ba; B=Sn, Pb) photocatalysts[J]. J. Photochem. Photobiol. A:Chem.,2006,183,176-181
    [83]Lou X, Jia X, Xu J, Liu S, Gao Q. Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal[J]. Mater. Sci. Eng., A,2006,432, 221-225
    [84]Lv W, Liu B, Qiu Q, Wang F, Luo Z, Zhang P, Wei S. Synthesis, characterization and photocatalytic properties of spinel CUAl2O4 nanoparticles by a sonochemical method[J]. J. Alloys Compd.,2009,479,480-483
    [85]Wang D F, Zou Z G. A new spinel-type photocatalyst BaCr2O4 for H-2 evolution under UV and visible light irradiation[J]. Chem. Phys. Lett.2003,373,191-196
    [86]Bessekhound Y, Trari M. Photocatalystic hydrogen production from suspension of spinel powders AMn2O4(A=Cu and Zn)[J]. Int. J. Hydrogen Energ.,2001,27, 357-362
    [87]李新勇,李树本,吕功煊.纳米尺寸铁酸锌半导体催化剂的表征及催化性能 研究[J].分子催化,1996,10,187-193
    [88]Cao X, Gu L, Lan X, Zhao C, Yao D, Sheng W. Spinel ZnFe2O4 nanoplates embedded with Ag clusters:Preparation, characterization, and photocatalytic application[J]. Mater. Chem. Phys.,2007,106:175-180
    [89]Boumaza S, Bouarab R, Trari M, Bouguelia A. Hydrogen photo-evolution over the spinel CuCr2O4[J]. Energy Convers. Manage.,2009,50,62-68
    [90]Gurunathan K, Baeg J, Lee S M, Subramanian E, Moon S, Kong K. Visible light active pristine and Fe3+-doped CuGa2O4 spinel photocatalysts for solar hydrogen production[J]. Int. J. Hydrogen Energy,2008,33,2646-2652
    [91]唐新德,叶红齐,马晨霞,刘辉.烧绿石型复合氧化物的结构、制备及其光催化性能[J].化学进展,2009,21,2100-2114
    [92]Chakoumakos, B. C. Systematics of the pyrochlore structure type, ideal A2B2X6Y[J]. J. Solid. State Chem.,1984,53,120-129.
    [93]Garza-Tovar L L, Torres-Martinez L M, Rodriguez D B. Photocatalytic degradation of methylene blue on Bi2MNbO7 (M=Al, Fe, In, Sm) sol-gel catalysts[J]. J. Mol. Catal. A,2006,247,283-290.
    [94]Tong Y P, Xue P P, Lu L D. Preparation and characterization of Y2Zr2O7 nanocrystals and their photocatalytic properties [J]. Mat. Sci. Eng. B,2008,150, 194-198.
    [95]Zhang L L, Zhong H, Zhang W G. Fabrication of Dy2Ti2O7 nanocrystalline at 700 degrees C and its photocatalytic activity[J]. J. Alloy. Compd.,2008,463,466-470.
    [96]Luan J F, Zou Z G, Lu M H. Growth, structural and photophysical properties of Bi2GaTa07[J]. J. Cryst. Growth,2004,273,241-247.
    [97]Luan J F, Hao X P, Zheng S R, Luan G Y. Structural, photophysical and photocatalytic properties of Bi2MTa07(M=La and Y)[J]. J. Mater. Sci.,2006,41, 8001-8012.
    [98]Luan J F, Zou Z G, Lu M H Structural and photocatalytic properties of the new solid photocatalyst In2BiTa07[J]. Res. Chem. Intermed.,2006,32,31-42.
    [99]Luan J E, Lu M H, Zheng S R. Optical, structural and photophysical properties of Ga2BiTaO7 compound[J]. J. Mater. Sci.,2005,40,4905-4909.
    [100]Zou Z G, Ye J H, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature,2001,414, 625-627
    [101]Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials,2010,9, 559-564
    [102]Tabata M, Maeda K, Higashi M, Lu D L, Takata T, Abe R, Domen K. Modified Ta3N5 Powder as a Photocatalyst for O-2 Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light[J]. Langmuir,2010,26,9161-9165
    [103]Chun W J, Ishikawa A, Fujisawa H, Takata T, Kondo J N, Hara M, Kawai M, Matsumoto Y. Domen K. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods[J]. J. Phys. Chem. B 2003,107, 1798-1803.
    [104]Hara M, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts[J]. Catal. Today,2003,78,555-560.
    [105]Sato J, Saito N, Yamada Y, Maeda K, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K, Inoue Y RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting[J]. J. Am. Chem. Soc.,2005,127,4150-4151.
    [106]Chevire F, Tessier F, Marchand R. Optical properties of the perovskite solid solution LaTiO2N-ATiO3(A= Sr, Ba)[J]. Eur. J. Inorg. Chem.,2006,6,1223-1230.
    [107]Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water-Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight[J]. Nature,2006,440, 295-295.
    [108]Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials.,2009,8:76-80
    [109]Chen X F, Zhang J S, Fu X Z, Antonietti M, Wang X C. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light[J]. J. Am. Chem. Soc.,2009,131:11658-11659
    [110]刘晶冰,张慧明,汪浩,张文熊.纳米钒酸铋的微波快速合成及光催化性能研究[J].无机化学学报,2008,24,770-780
    [111]Maruthamuthu P, Gurunathan K, Subramanian E, Sastri M. V. C. Visible light-induced hydrogen production from water with Pt/Bi2O3/RuO2 in presence of electron relay and photosensitizer[J]. Int. J. Hydrogen Energy.,1994,19,889-893
    [112]Zhang C, Zhu Y F. Synthesis of Square Bi2WO6Nanoplates as High-Activity Visible-Light-Driven Photocatalysts[J]. Chem. Mater.,2005,17,3537-3545
    [113]Zhang H P, Lv M K, Liu SW, Wang L Y, Xiu Z L, Zhou Y Y, Qiu Z F, Zhang A Y, Ma Q. Preparation and photocatalytic property of perovskite Bi4Ti3O12 films[J]. Mater. Chem. Phys.2009,114,716-721.
    [114]Tang J W, Ye J H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angew. Chem., Int. Ed. 2004,43,4463-4466.
    [115]Wu X H, Qin W, Li L, Guo Y, Xie Z Y. Photocatalytic property of nanostructured Fe3+-doped Bi2O3 films[J]. Catal. Commun.,2009,10,600-604
    [116]吕伟,吴莉莉,徐润春,吴佑实,盖红德,邹科.二维纳米结构-氧化铋纳米片的制备与表征[J].山东大学学报(工学版),2008,38,109-112
    [117]Zhang L S, Wang W Z, Yang J, Chen Z G, Zhang W Q, Zhou L, Liu S W. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Appl. Catal., A,2006,308,105-110
    [118]Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Bi2O3 Hierarchical Nanostructures:Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis[J]. Chem. Eur. J.,2009,15,1776-1782
    [119]Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers[J]. J. Colloid Interface Sci.,2009,333,242-248
    [120]Li L, Yang YW, Li G H, Zhang L D. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes[J]. Small,2006,2: 548-553
    [121]Wu X H, Qin W, He W D. Thin bismuth oxide films prepared through the sol-gel method as photocatalyst[J]. J. Mol. Catal. A,2007,261:167-171
    [122]Soitah N, Yang C H. Effect of Fe3+doping on structural, optical and electrical properties delta-Bi2O3 thin films[J]. Curr. Appl. Phys.,2010,10:724-728
    [123]Gurunathan K. Photocatalytic hydrogen production using transition metal ions-doped gamma-Bi2O3 semiconductor particles[J]. Int. Hydrogen. Energ.,2004,29, 933-940
    [124]Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3:A strategy for the design of efficient combined photocatalysts[J]. J. Phys. Chem. C,2007,111,18288-18293
    [125]Wang L G, Zhang J Y, Li C Z, Zhu H L, Wang W W, Wang T M. Synthesis, Characterization and Photocatalytic Activity of TiO2 Film/Bi2O3 Microgrid Heterojunction[J]. J. Mater. Sci. Technol.,2011,27,59-63
    [126]许效红,姚伟峰,张寅,周爱秋,侯云,王民.钛酸铋系化合物的光催化性能研究[J].化学学报,2005,63,5-10
    [127]Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang Z Y, Jiang M H. Visible-light photocatalytic activity of the metastable Bi2oTi032 synthesized by a high-temperature quenching method[J]. J. Solid State Chem.,2009,182,2274-2278
    [128]Bian Z F, Ren J, Zhu J, Wang S H, Lu Y F, Li H X, Self-assembly of BixTi1-xO2 visible photocatalyst with core-shell structure and enhanced activity[J], Appl. Catal., B,2009,89,577-582
    [129]Kudo A, Hijii S. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+with 6s2 Configuration and do Transition Metal ions[J]. Chem. Lett.,1999,28,1103-1104
    [130]Zhang C, Zhu Y. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts[J]. Chem. Mater.,2005,17:3537-3545
    [131]Fu H, Zhang L, Yao W, Zhu Y. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Appl. Catal., B,2006,66: 100-110
    [132]Fu H, Zhang S, Xu T, Zhu Y, Chen J. Photocatalytic Degradation of RhB by Fluorinated Bi2WO6 and Distributions of the Intermediate Products[J]. Environ. Sci. Technol.,2008,42:2085-2091
    [133]Zhou L, Wang W Z, Zhang L S, Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M=W, Mo) photocatalysts[J]. J. Mol. Catal. A:Chem., 2007,268,195-200.
    [134]Wu L, Bi J H, Li Z H, Wang X X, Fu X Z. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis[J]. Catal. Today 2008,131,15-20.
    [135]Zhang L S, Wang W Z, Zhou L, Xu H L. Bi2WO6 Nano-and Microstructures: Shape Control and Associated Visible-Light-Driven Photocatalytic Activities [J]. Small.,2007,3,1618-1625.
    [136]Yu J G, Xiong J F, Cheng B, Yu Y, Wang J B. Hydrothermal Preparation and Visible-Light Photocatalytic Activity of Bi2WO6 Powders [J]. J. Solid State Chem., 2005,178,1968-1972.
    [137]Li Y Y, Liu J P, Huang X T, Li G Y. Hydrothermal synthesis of Bi2WO6 uniform hierarchical micro sphere s[J]. Cryst. Growth Des.,2007,7,1350-1355.
    [138]Liu S W, Yu J G. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers [J]. J. Solid State Chem.,2008, 181,1048-1055.
    [139]Zhang L W, Xu T G, Zhao X, Zhu Y F, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities [J]. Appl. Catal. B,2010,98,138-146
    [140]Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J]. Catal. Commun., 2010,11,647-650
    [141]Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. Facile solvothermal synthesis of hierarchical flower-like Bi2Mo06 hollow spheres as high performance visible-light driven photocatalysts[J]. J. Mater. Chem.,2011,21, 887-892
    [142]Liu W, Yu Y Q, Cao L X, Su G, Liu X Y, Zhang L, Wang Y G. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation[J]. J. Hazard. Mater.,2010,181,1102-1108
    [143]Shang M, Wang W Z, Ren J, Sun S M, Zhang L. A novel BiVO4 hierarchical nanostructure:controllable synthesis, growth mechanism, and application in photocatalysis[J]. CrystEngComm,2010,12,1754-1758
    [144]Shang M, Wang W Z, Zhou L, Sun S M, Yin W Z. Nanosized BiVO4 with high visible-light-induced photocatalytic activity:Ultrasonic-assisted synthesis and protective effect of surfactant [J]. J. Hazard. Mater.,2009,172,338-344
    [145]Yu J Q, Zhang Y, Kudo A. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process[J]. J. Solid State Chem.,2009,182,223-228
    [146]Li H B, Liu G C, Duan X C. Monoclinic BiVO4 with regular morphologies: Hydrothermal synthesis, characterization and photocatalytic properties [J]. Mater. Chem. Phys.,2009,115,9-13
    [147]Zhang H M, Liu J B, Wang H. Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystals and research on photocatalytic properties under visible light irradiation[J]. J. Nanopart Res.,2008,10,767-774
    [148]Shan Z C, Xia Y J, Yang Y X. Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5[J]. Mater. Lett.,2009,63,75-77
    [149]Yao W F, Wang H, Xu X H, Cheng X E, Huang J, Shang S X, Yang X N, Wang M. Photocatalytic property of bismuth titanate Bi12TiO20 crystals[J]. Appl. Catal. A, 2003,243,185-190
    [150]He C H, Gu M Y. Photocatalytic activity of bismuth germinate Bi12GeO20 powders[J]. Scripta Mater.,2006,54,1221-1225
    [151]He C H, Gu M. Y. Preparation, characterization and photocatalytic properties of Bi12SiO20 powders[J]. Scripta Mater.,2006,55,481-484
    [152]Thanabodeekij N, Gulari E, Wongkasemjit S. Bi12TiO20 synthesized directly from bismuth (Ⅲ) nitrate pentahydrate and titanium glycolate and its activity [J]. Powder Technol.,2005,160,203-208
    [153]Chen C, Cheng J R, Yu S W, Che L J, Meng Z Y. Hydrothermal synthesis of perovskite bismuth ferrite crystallites[J]. J. Cryst. Growth,2006,291,135-139
    [154]Luo J H, Maggard P A. Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3[J]. Adv. Mater.,2006,18,514-517
    [155]Ghosh S, Dasgupta S, Sen A, Maiti H S. Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method[J]. Mater. Res. Bull.,2005,40, 2073-2079
    [156]Park T J, Mao Y B, Wong S S. Synthesis and characterization of multiferroic BiFeO3 nanotubes[J] Chem. Commun.,2004,2708-2709
    [157]Yao W F, Xu X H, Zhou J T, Yang X N, Zhang Y, Shang S X, Wang H, Huang B B. Photocatalytic property of sillenite Bi24A1039 crystals [J]. J. Mol. Catal. A,2004, 212,323-328
    [158]Hou L R, Yuan C Z, Peng Y. Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38Zn058[J]. J. Mol. Catal. A,2006,252,132-135
    [159]魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂[J].化学进展,2009,21,1734-1741
    [160]Chang X F, Huang J, Tan Q Y, Wang M, Ji G B, Deng S B, Yu G. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation[J]. Catal. Commun.,2009,10,1957-1961
    [161]An H Z, Du Y, Wang T M, Wang C, Hao W C, Zhang J Y. Photocatalytic properties of BiOX (X= Cl, Br, and I)[J]. Rare Met.,2008,27,243-250
    [162]Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P. Synthesis and photocatalytic properties of BiOCl nanowire arrays[J]. Mater. Lett., 2010,64,115-118
    [163]Zheng Y, Duan F, Chen M Q, Xie Y. Synthetic Bi2O2CO3 nanostructures:Novel photocatalyst with controlled special surface exposed[J]. J. Mol. Catal. A,2010,317, 34-40
    [164]Li L S, Cao R G, Wang Z J, Li J J, Qi L M. Template Synthesis of Hierarchical Bi2E3 (E=S, Se, Te) Core-Shell Microspheres and Their Electrochemical and Photoresponsive Properties[J]. J. Phys. Chem. C,2009,113,18075-18081
    [165]Chen R G, Bi J H, Wu L, Wang W J, Li Z H, Fu X Z. Template-Free Hydrothermal Synthesis and Photocatalytic Performances of Novel Bi2SiO5 Nanosheets[J]. Inorg. Chem.,2009,48,9072-9076
    [166]Perera S, Zelenski N A, Pho R E, Gillan E G. Rapid and exothermic solid-state synthesis of metal oxyhalides and their solid solutions via energetic metathesis reactions[J] J. Solid State Chem.,2007,180,2916-2925
    [167]Xiao X, Zhang W D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity[J]. J. Mater. Chem.,2010,20, 5866-5870
    [168]Kijima N, Matano K, Saito M, Oikawa T, Konishi T, Yasuda H, Sato T, Yoshimura Y. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst[J]. Appl. Catal. A,2000,206,237-244
    [169]Henle J, Simon P, Frenzel A, Scholz S, Kaskel S. Nanosized BiOX (X=Cl, Br, I) Particles Synthesized in Reverse Microemulsions[J]. Chem. Mater.2007,19,366-373
    [170]Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. J. Hazard. Mater., 2009,167,803-809
    [171]Zhang J., Shi F J, Lin J, Chen D F, Gao J M, Huang Z X, Ding X X, Tang C C, Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst[J]. Chem. Mater.,2008,20,2937-2941
    [172]Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X=Cl, Br, I) Nanoplate Microspheres [J]. J. Phys. Chem. C 2008,112,747-753
    [173]Zhang L, Cao X F, Chen X T, Xue Z L. BiOBr hierarchical microspheres: Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties [J]. J. Colloid Interface Sci.,2011,354,630-636
    [174]张锁江,徐春明,吕兴梅,周青.离子液体与绿色化学[M].北京:科学出版社,2009
    [175]张锁江吕兴梅等编著.离子液体-从基础研究到工业应用[M].北京:科学出版社,2006
    [176]Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chem. Soc. Rev.,2008,37,123-150
    [177]Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull. Acad. Imper. Sci.,1914,8,405-422
    [178]Hurley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts[J]. J. Electrochem. Soc.,1951,98,203-206
    [179]Hurley F H, Wier T P. The electrodeposition of aluminium from nonaqueous solutions at room temperature [J]. J. Electrochem. Soc.,1951,98,207-212
    [180]Wilks J S, Zaworwrwtko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J. Chem. Soc. Chem. Commun., 1992,965-967
    [181]Fuller J, Carlin R T, Delong H C, Haworth D Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate-model for room-temperature molten-salts[J]. J. Chem. Soc. Chem. Commun.,1994,299-300
    [182]Rogers R D, Seddon K R. Ionic liquids-Solvents of the future?[J]. Science, 2003,302,792-793
    [183]Grillo V A, Seddon E J, Grant C M, Aromi G, Bollinger J C, Folting K, Christou G. Bis(beta-diketonate) ligands for the synthesis of bimetallic complexes of Ti-III, V-III, Mn-III and Fe-III with a triple-helix structure[J]. J. Chem. Tech. Biotechnol., 1997,68,351-356
    [184]Larsen A S, Holbrey J D, Tham F S, Christopher A R. Designing Ionic Liquids: Imidazolium Melts with Inert Carborane Anions[J]. J. Am. Chem. Soc.,2002,122(30), 7264-7272
    [185]Zhao D B, Wu M, Kou Y, Min E. Ionic liquids:applications in catalysis[J]. Catal. Today,2002,74,157-189
    [186]赵东滨,寇元.室温离子液体:合成、性质及应用[J].大学化学,2002,17,42-43
    [187]张国栋,陈晓,靖波.室温离子液体中的有序分子组合体[J].化学进展,2006,18,1085-1091
    [188]Binnemans K. Ionic Liquid Crystals[J]. Chem. Rev.,2005,105,4148-4204
    [189]Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem. Rev.,1999,99 (8),2071-2084
    [190]马春宏,朱红,王良,姜大雨,闫永胜,王庆伟.离子液体在萃取分离中的应用进展[J].冶金分析,2010,30,29-36
    [191]Plaquevent J C, Levillain J, Guillen F, Malhiac C, Gaumont A Claude. Ionic Liquids:New Targets and Media for a-Amino Acid and Peptide Chemistry [J]. Chem. Rev.,2008,108 (12),5035-5060
    [192]Ma Z, Yu J H, Dai S. Preparation of Inorganic Materials Using Ionic Liquids [J]. Adv. Mater.,2010,22,261-285
    [193]Fei Z F, Geldbach T J, Zhao D B. From dysfunction to bis-function:On the design and applications of functionalised ionic liquids[J]. Chem. Eur. J.,2006,12, 2123-2130
    [194]Parvulescu V I, Hardacre C. Catalysis in Ionic Liquids[J]. Chem. Rev.,2007, 107,2615-2665
    [195]Welton T. Ionic liquids in catalysis[J]. Coord. Chem. Rev.2004,248, 2459-2477.
    [196]Hubbard C D, Illner P, Eldik R V. Understanding chemical reaction mechanisms in ionic liquids:successes and challenges [J]. Chem. Soc. Rev.,2011,40,272-290
    [197]Dai S, Ju Y H, Gao H J, Lin J S, Pennycook S J, Barnes C E. Preparation of silica aerogel using ionic liquids as solvents[J]. Chem. Commun.,2000,243-244
    [198]Aiken J D, Finke R G. A review of modern transition-metal nanoclusters:their synthesis, characterization, and applications in catalysis[J]. J. Mol. Catal. A,1999, 145,1-44
    [199]Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts?[J]. Chem. Rev.,2002,102,3757-3778
    [200]Astruc D, Lu F, Aranzaes J R. Nanoparticles as Recyclable Catalysts:The Frontier between Homogeneous and Heterogeneous Catalysis [J]. Angew. Chem. Int. Ed.,2005,44,7852-7872
    [201]Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation:Heck reaction at ambient conditions in room temperature ionic liquids[J]. Chem. Commun.2001,1544-1545
    [202]Hamill N A, Hardacre C, McMath S E J. In situ XAFS investigation of palladium species present during the Heck reaction in room temperature ionic liquids[J]. Green Chem.,2002,4,139-142
    [203]Dupont J, Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc.,2002,124,4228-4229
    [204]Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R, Dupont J. The Use of Imidazolium Ionic Liquids for the Formation and Stabilization of Ir0 and Rh0 Nanoparticles:Efficient Catalysts for the Hydrogenation of Arenes[J]. Chem. Eur. J., 2003,9,3263-3269.
    [205]Bruss A J, Gelesky M A, Machado G, Dupont J. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins[J], J. Mol. Catal. A,2006, 252,212-218
    [206]Silveira E T, Umpierre A P, Rossi L M, Machado G, Morais J, Soares G V, Baumvol I L R, Teixeira S R, Fichtner P F P, Dupont J. The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids[J]. Chem. Eur. J.,2004,10,3734-3740
    [207]Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini C. C, Chauvin Y, Chaudret B, Basset J. M. Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles:effect of the temperature and stirring[J]. J. Mater. Chem., 2007,17,3290-3292
    [208]Scheeren C W, Machado G, Teixeira S R, Morais J, Domingos J B, Dupont J. Synthesis and Characterization of Pt(0) Nanoparticles in Imidazolium Ionic Liquids[J]. J. Phys. Chem. B,2006,110,13011-13020
    [209]Scheeren C W, Machado G, Dupont J, Fichtner P F P, Texeira S R. Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids:Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions[J]. Inorg. Chem.,2003,42,4738-4742
    [210]Umpierre A P, Machado G, Fecher G H, Morais J, Dupont J, Selective Hydrogenation of 1,3-Butadiene to 1-Butene by Pd(0) Nanoparticles Embedded in Imidazolium Ionic Liquids[J]. Adv. Synth. Catal.,2005,347,1404-1412
    [211]Durand J, Teuma E, Malbosc F, Kihn Y, Gomez M. Palladium nanoparticles immobilized in ionic liquid:An outstanding catalyst for the Suzuki C-C coupling[J] Catal. Commun.,2008,9,273-275
    [212]Singh P, Katyal A, Kalra R, Chandra R. Copper nanoparticles in ionic liquid:An easy and efficient catalyst for the coupling of thiazolidine-2,4-dione, aromatic aldehyde and ammonium acetate[J] Catal. Commun.,2008,9,1618-1623
    [213]Singh P, Kumari K, Katyal A, Kalra R, Chandra R. Copper Nanoparticles in Ionic Liquid:An Easy and Efficient Catalyst for Selective Carba-Michael Addition Reaction[J]. Catal. Lett.,2009,127,119-125
    [214]Migowski P, Machado G, Texeira S R, Alves M C M, Morais J, Traverse A, Dupont J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids[J]. Phys. Chem. Chem. Phys.,2007,9,4814-4821
    [215]An J, Wang D S, Luo Q Z, Yuan X Y. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid[J]. Mater. Sci. Eng. C 2009,29,1984-1989
    [216]Redel E, Thomann R, Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors[J]. Chem. Commun.,2008,1789-1791
    [217]Redel E, Kramer J, Thomann R, Janiak C, Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene[J]. J. Organomet. Chem., 2009,694,1069-1075
    [218]Iida M, Baba C, Inoue M, Yoshida H, Taguchi E, Furusho H. Ionic Liquids of Bis(alkylethylenediamine)silver(I) Salts and the Formation of Silver(O) Nanoparticles from the Ionic Liquid System[J]. Chem. Eur. J.,2008,14,5047-5056
    [219]Dahl J A, Maddux B L S, Hutchison J E. Toward Greener Nanosynthesis[J]. Chem. Rev.,2007,107,2228-2269
    [220]Itoh H, Naka K, Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation[J]. J. Am. Chem. Soc.,2004,126,3026 -3027
    [221]Kim K S, Demberelnyamba D, Lee H, Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids[J]. Langmuir, 2004,20,556-560
    [222]Kim K S, Demberelnyamba N D, Yeon S W, Choi S, Cha J H, Lee H. One-phase preparation of palladium nanoparticles using thiol-functionalized ionic liquid[J]. Korean J. Chem. Eng.,2005,22,717-720
    [223]Tatumi R, Fujihara H. Remarkably stable gold nanoparticles functionalized with a zwitter ionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid[J].. Chem. Commun.,2005,83-85
    [224]张晟卯,张春丽,张经纬等.室温离子液体中银纳米微粒的制备与结构表征[J].物理化学学报,2004,20(5):554-556
    [225]Zhao D B, Fei Z F, Geldbach T J, Scopelliti R, Dyson P J. Nitrile-functionalized pyridinium ionic liquids:Synthesis, characterization, and their application in carbon-Carbon coupling reactions[J]. J. Am. Chem. Soc.2004,126,15876-15882
    [226]Wang Z J, Zhang Q X, Kuehner D, Ivaska A, Niu L. Green synthesis of 1-2 nm gold nanoparticles stabilized by amine-terminated ionic liquid and their electrocatalytic activity in oxygen reduction[J]. Green Chem.,2008,10,907-909
    [227]Choi S, Kim K S, Yeon S H, Cha J H, Lee H, Kim C J, Yoo I D. Fabrication of silver nanoparticles via self-regulated reduction by 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate[J]. Korean J. Chem. Eng.,2007,24,856-859
    [228]Dinda E, Si S, Kotal A, Mandal T K. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium[J]. Chem. Eur. J.,2008,14,5528-5537
    [229]Wang Y, Yang H. Synthesis of CoPt Nanorods in Ionic Liquids[J]. J. Am. Chem. Soc,2005,127,5316-5317
    [230]Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids[J]. J. Phys. Chem. B, 2005,109,14445-14448
    [231]Kim T Y, Kim W J, Hong S H, Kim J E, Suh K S. Ionic-Liquid-Assisted Formation of Silver Nano wires Angew[J]. Chem. Int. Ed.,2009,48,1-5
    [232]Li Z G, Friedrich A, Taubert A. Gold microcrystal synthesis via reduction of HAuCl4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride[J]. J. Mater. Chem.,2008,18,1008-1014
    [233]Qin Y, Song Y, Sun N J, Zhao N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry [J]. Chem. Mater.,2008,20,3965-3972
    [234]Kumar A, Murugesan S, Pushparaj V, Xie J, Soldano C, John G, Nalamasu O, Ajayan P M, Linhardt R J. Conducting organic-metallic composite submicrometer rods based on ionic liquids[J]. Small,2007,3,429-433
    [235]Scariot M, Silva D O, Scholten J D, Machado G, Teixeira S R, Novak M A, Ebeling G, Dupont J. Cobalt Nanocubes in Ionic Liquids:Synthesis and Properties [J]. Angew. Chem. Int. Ed.,2008,47,9075-9087
    [236]Xu L, Xia J X, Li H M, Li H N, Wang K, Yin S. Ionic liquid assisted solvothermal synthesis of Cu polyhedron-pattern nanostructures and their application as enhanced nanoelectrocatalyst for glucose[J]. Eur. J. Inorg. Chem.,2011,2011, 1361-1365
    [237]Ken-ichi Okazaki, Tomonori Kiyama, Kaori Hirahara, Nobuo Tanaka, Susumu Kuwabata, Tsukasa Torimoto Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique[J]. Chem. Commun.,2008,691-693
    [238]Electrodeposition from Ionic Liquids[M], (Eds:F. Endres, A. P. Abbot, D. R. MacFarlane), Wiley-VCH, Weinheim 2008
    [239]Zhu Y J, Wang W W, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids[J]. Angew. Chem. Int. Ed.2004,43,1410-1414
    [240]Zhang F B, Li H L. Synthesis of hollow carbon microspheres in ionic liquids and their electrochemical capacitance characteristics [J]. Mater. Chem. Phys.2006,98, 456-458
    [241]Lee J S, Wang X Q, Luo H M, Baker G A, Dai S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids[J]. J. Am. Chem. Soc.2009,131,4596-4597
    [242]Paraknowitsch J P, Zhang J, Su D S, Thomas A, Antonietti M. ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Adv. Mater.2010,22,87-92
    [243]Nakashima T, Kimizuka N, Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids[J]. J. Am. Chem. Soc.,2003,125,9968-6387
    [244]Zhou Y, Antonietti M, Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates [J]. J. Am. Chem. Soc,2003,125,14960-4961
    [245]Yoo K, Choi H, Dionysiou D D. Ionic liquid assisted preparation of nanostructured TiO2 particles[J]. Chem. Commun.,2004,2000-2001
    [246]Wang W W, Zhu Y J. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt[J]. Inorg. Chem. Commun.,2004,7,1003-1005
    [247]Cao J M, Wang J, Fang B Q, Chang X, Zheng M B, Wang H Y. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid[J]. Chem. Lett.,2004,33,1332-1333.
    [248]Wang J, Cao J M, Fang B Q, Lu P, Deng S G, Wang H Y. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids[J]. Mater. Lett.,2005,59,1405-1408.
    [249]Zhou X, Xie Z X, Jiang Z Y, Kuang Q, Zhang S H, Xu T, Huang R B, Zheng L S. Formation of ZnO hexagonal micro-pyramids:a successful control of the exposed polar surfaces with the assistance of an ionic liquid[J]. Chem. Commun.,2005, 5572-5574.
    [250]Zhu H G, Huang J F, Pan Z W, Dai S. Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors [J]. Chem. Mater.,2006,18,4473-4477
    [251]Li Z H, Gessner A, Richters J P, Kalden J, Voss T, Kubel C, Taubert A. Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP)[J]. Adv. Mater.,2008,20, 1279-1285
    [252]Li Z H, Shkilnyy A, Taubert A. Room Temperature ZnO Mesocrystal Formation in the Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide[J]. Cryst. Growth Des.,2008,8,4526-4532
    [253]Wang W W, Zhu Y J. Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods[J]. Mater. Res. Bull.,2005,40,1929-1935
    [254]Zou D B, Xu C, Luo H, Wang L, Ying T K. Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature [J].Mater. Lett.,2008,62, 1976-1978
    [255]Li Z X, Li L L, Yuan Q, Feng W, Xu J, Sun L D, Song W G, Yan C H. Sustainable and Facile Route to Nearly Monodisperse Spherical Aggregates of CeO2 Nanocrystals with Ionic Liquids and Their Catalytic Activities for CO Oxidation[J]. J. Phys. Chem. C,2008,112,18405-18411.
    [256]Miao S D, Liu Z M, Miao Z J, Han B X, Ding K L, An G M, Xie Y. Ionic liquid-mediated synthesis of crystalline CeO2 mesoporous films and their application in aerobic oxidation of benzyl alcohol[J]. Micropor. Mesopor. Mater.,2009,117, 386-390
    [257]Li L L, Zhang W M, Yuan Q, Li Z X, Fang C J, Sun L D, Wan L J, Yan C H. Room Temperature Ionic Liquids Assisted Green Synthesis of Nanocrystalline Porous SnO2 and Their Gas Sensor Behaviors[J]. Cryst. Growth Des.,2008,8,4165-4172
    [258]Wang W W, Zhu Y J, Cheng G F, Huang Y H, Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers[J]. Mater. Lett.,2006,60,609-612
    [259]Zhang M, Xu X D, Zhang M L. Hydrothennal synthesis of sheaf-like CuO via ionic liquids[J]. Mater. Lett.,2008,62,385-388
    [260]Xia J X, Li H M, Luo Z J, Wang K, Yin S, Yan Y S. Ionic liquid-assisted hydro thermal synthesis of three-dimensional hierarchical CuO peachstone-like architectures[J]. Appl. Surf. Sci.,2010,256,1871-1877
    [261]Xia J X, Li H M, Luo Z J, Shi H, Wang K, Shu H M, Yan Y S. Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room temperature ionic liquids[J]. J. Phys. Chem. Solids,2009,70,1461-1464
    [262]Taubert A, Uhlmann A, Hedderich A, Kirchhoff K, CuO Particles from Ionic Liquid/Water Mixtures:Evidence for Growth via Cu(OH)2 Nanorod Assembly and Fusion[J]. Inorg. Chem.2008,47,10758-10764
    [263]Li H, Liu R, Zhao R X, Zheng Y F, Chen W X, Xu Z D. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids[J]. Cryst. Growth Des.,2006,6,2795-2798
    [264]Wang Y, Maksimuk S, Shen R, Yang H, Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid[J]. Green Chem., 2007,9,1051-1056
    [265]Cao S W, Zhu Y J. Iron oxide hollow spheres:Micro wave-hydro thermal Ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties [J]. Acta Mater.,2009,57,2154-2165
    [266]Lian J. B, Duan X C, Ma J M, Peng P, Kim T, Zheng W J. Hematite (a-Fe2O3) with Various Morphologies:Ionic Liquid-Assisted Synthesis, Formation Mechanism, and Properties[J]. ACS Nano,2009,3,3749-3761
    [267]Zhao M W, Li N, Zheng L Q, Li G Z, Yu L. Synthesis of well-dispersed NiO nanoparticles with a room temperature ionic liquid[J]. J. Dispersion Sci. Technol. 2008,29,1103-1105
    [268]Dong W S, Lin F Q, Liu C L, Li M Y. Synthesis of ZrO2 nanowires by ionic-liquid route [J]. J. Colloid Interface Sci.,2009,333,734-740
    [269]Chen L J, Zhang S M, Wu Z S, Zhang Z J, Dang H X. Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid[J]. Mater. Lett.2005,59, 3119-3121
    [270]Park H, Yang S H, Jun Y S, Hong W H, Kang J K. Facile route to synthesize large-mesoporous gamma-alumina by room temperature ionic liquids[J]. Chem. Mater.,2007,19,535-542
    [271]Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M= Bi, Sb) nanorods using an ionic liquid[J]. J. Phys. Chem. B,2005,109,4361-4364.
    [272]Jiang J, Yu S H, Yao W T, Ge H, Zhang G Z. Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route:Synthesis, formation mechanism, and properties [J]. Chem. Mater.2005,17,6094-6100.
    [273]Xu C, Wang L, Zou D B, Ying T K. Ionic liquid-assisted synthesis of hierarchical CuS nanostructures at room temperature [J]. Mater. Lett.,2008,62, 3181-3184
    [274]Wu Y Z, Hao X P, Yang J X, Tian F, Jiang M H. Ultrasound-assisted synthesis of nanocrystalline ZnS in the ionic liquid [BMIM] center dot BF4[J]. Mater.Lett., 2006,60,2764-2766
    [275]Ma L, Chen W X, Li H, Xu Z D. Synthesis and characterization of MoS2 nanostructures with different morphologies via an ionic liquid-assisted hydrothermal route Mater[J]. Chem. Phys.,2009,116,400-405
    [276]Zhao X L, Wang C X, Hao X P, Yang J X, Wu Y Z, Tian Y P, Tao X T, Jiang M H. Synthesis of PbS nanocubes using an ionic liquid as the solvent[J]. Mater. Lett., 2007,61,4791-4793.
    [277]Liu X D, Ma J M, Peng P, Zheng W J. One-Pot Hydrothermal Synthesis of ZnSe Hollow Nanospheres from an Ionic Liquid Precursor [J]. Langmuir 2010,26, 9968-9973
    [278]Jiang Y, Zhu Y J, Cheng G F. Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid[J]. Cryst. Growth Des.,2006,6,2174-2176
    [279]Liu X D, Peng P, Ma J M, Zheng W J. Preparation of novel CdSe microstructure by modified hydrothermal method[J]. Mater. Lett.,2009,63,673-675
    [280]Jiang Y, Zhu Y J. Bi2Te3 nanostructures prepared by microwave heating[J]. J. Cryst. Growth,2007,306,351-355
    [281]Taubert A. CuCl nanoplatelets from an ionic liquid-crystal precursor[J]. Angew. Chem. Int. Ed.,2004,43,5380-5382
    [282]Taubert A. (Sub)micron CaF2 cubes and hollow rods from ionic liquid emulsions[J]. Acta Chim. Slov.,2005,52,168-170
    [283]Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides[J]. Chem. Mater.,2006,18,3162-3168
    [284]Zhang C, Chen J, Zhou Y C, Li D Q. Ionic liquid-based "all-in-one" synthesis and photoluminescence properties of lanthanide fluorides[J]. J. Phys. Chem. C,2008, 112,10083-10088
    [285]Hou Y W, Kong A G, Zhao X H, Zhu H Y, Shan Y K. Synthesis of high surface area mesoporous carbonates in novel ionic liquid[J]. Mater. Lett.,2009,63, 1061-1064
    [286]Sun Y, Zheng W J. Ultrathin SmVO4 nanosheets:ionic liquid-assisted hydrothermal synthesis, characterization, formation mechanism and optical property[J]. Dalton Trans.,2010,39,7098-7103
    [287]Zhang C, Chen J. Facile EG/ionic liquid interfacial synthesis of uniform RE3+ doped NaYF4 nanocubes[J]. Chem. Commun.,2010,46,592-594
    [288]Biihler G, Feldmann C. Microwave-assisted synthesis of luminescent LaPO4:Ce, Tb nanocrystals in ionic liquids[J]. Angew. Chem. Int. Ed.2006,45,4864-4867
    [289]Buhler G, Stay M, Feldmann C. Ionic liquid-based approach to doped nanoscale oxides:LaPO4:RE (RE= Ce, Tb, Eu) and In2O3:Sn (ITO)[J]. Green Chem.2007,9, 924-926
    [290]Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon J M. Ionothermal Synthesis of Tailor-Made LiFePO4 Powders for Li-Ion Battery Applications[J]. Chem. Mater.2009,21,1096-1107
    [291]Cao S W, Zhu Y J, Cheng G F, Huang Y H. ZnFe2O4 nanoparticles: Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol[J]. J. Hazard. Mater.,2009,171,431-435
    [292]Zhou Y, Antonietti M. Preparation of Highly Ordered Monolithie Super-Microporous Lamellar Silica with a Room-Temperature Ionic Liquid as Template via the Nanocasting Technique [J]. Adv. Mater,2003,15:1452-1455
    [293]Attard G S, Glyde J C, Coltner C G. Liquid-Crystalline Phase as Templates for the Synthesis of Mesoporous Silica[J]. Nature,1995,378:366-368
    [294]Zhou Y, Antonietti M. A Series of Highly Ordered, Super-Microporous, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids[J]. Chem. Mater.,2004, 16,544-550
    [295]Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure[J]. Chem. Commun.,2003,2564-2565
    [296]Kuang D B, Brezesinski T, Smarsly B. Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates[J]. J.Am.Chem.Soc.,2004, 126,10534-10535
    [297]Zhou Y, Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique[J]. Nano Lett,2004,4,477-481
    [298]Trewyn B G, Whitman C M, Lin V S Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents [J]. Nano Lett.,2004,4,2139-2143
    [299]Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R. E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature,2004,430,1012-1016
    [300]Ma H J, Tian Z J, Xu R S, Wang B C, Wei Y, Wang L, Xu Y P, Zhang W P, Lin L W. Effect of water on the ionothermal synthesis of molecular sieves [J]. J. Am. Chem. Soc.,2008,130,8120-8121
    [301]Parnham E R, Morris R E. The Ionothermal Synthesis of Cobalt Aluminophosphate Zeolite Frameworks [J]. J. Am. Chem. Soc.,2006,128,2204-2205
    [302]Wang L, Xu Y P, Wang B C, S. Wang J, Yu J Y, Tian Z J, Lin L W. Ionothermal Synthesis of Magnesium-Containing Aluminophosphate Molecular Sieves and their Catalytic Performance [J]. Chem. Eur. J.,2008,14,10551-10555
    [303]Wang L, Xu Y P, Wei Y, Duan J C, Chen A B, Wang B C, Ma H J, Z. Tian J, Lin L W. Structure-directing role of amines in the ionothermal synthesis[J]. J. Am. Chem. Soc.,2006,128,7432-7433
    [304]Xing H Z, Li J Y, Yan W F, Chen P, Jin Z, Yu J H, Dai S, Xu R R. Cotemplating ionothermal synthesis of a new open-framework aluminophosphate with unique Al/P ratio of 6/7[J]. Chem. Mater.,2008,20,4179-4181
    [305]Xu Y P, Tian Z J, Wang S J, Hu Y, Wang L, Wang B C, Ma Y C, Hou L, Yu J Y, Lin L W. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves[J]. Angew. Chem. Int. Ed.,2006,45,3965-3970
    [306]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293,269-271
    [307]Wang W D, Huang F Q, Lin X P, Yang J H. Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI[J]. Catal. Commun.,2008,9,8-12
    [308]Zhao K, Zhang X, Zhang L Z. The first BiOI-based solar cells[J]. Electrochem. Commun.2009,11,612-615
    [309]Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X= Cl, Br, I) Nanoplate Microspheres[J]. J. Phys. Chem. C,2008,112,747-753
    [310]Lei Y Q, Wang G H, Song S Y, Fan W Q, Pang M, Tang J K, Zhang H J. Room temperature, template-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and electrochemical hydrogen storage properties [J]. Dalton Trans,2010, 39,3273-3278
    [311]Ding K L, Miao Z J, Liu Z M, Zhang Z F, Han B X, An G M, Miao S D, Xie Y. Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process[J]. J. Am. Chem. Soc.,2007,129,6362-6363
    [312]Wang W W, Zhu Y. Synthesis of PbCrO4 and Pb2Cr05 Rods via a Microwave-Assisted Ionic Liquid Method[J]. J. Cryst. Growth Des.,2005,5,505-507
    [313]Ge L, Jing X Y, Wang J, Jamil S B, Liu Q, Song D L, Wang J, Xie Y, Yang P P, Zhang M L. Ionic Liquid-Assisted Synthesis of CuS Nestlike Hollow Spheres Assembled by Micro flakes Using an Oil-Water Interface Route [J]. Cryst. Growth Des., 2010,10,1688-1692
    [314]Yuan J, Bai X T, Zhao M W, Zheng L Q. C12mimBr Ionic Liquid/SDS Vesicle Formation and Use As Template for the Synthesis of Hollow Silica Spheres[J]. Langmuir,2010,26,11726-11731
    [315]Bowers J, Butts C P, Martin P J. Vergara-Gutierrez, M. C. Aggregation Behavior of Aqueous Solutions of Ionic Liquids[J]. Langmuir,2004,20,2191-2198
    [316]Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst [J]. Appl. Catal. B, 2006,68,125-129
    [317]Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchically macro/mesoporpous titania[J]. Adv. Funct. Mater.,2007,17,1984-1990
    [318]Yu J G, Zhang L J, Cheng B, Su Y R. Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania[J]. J. Phys. Chem. C,2007,111,10582-10589
    [319]Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y. One-Step Synthesis of the Nanostructured Agl/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances [J]. Langmuir,2010,26,6618-6624
    [320]Jared L A, Veronica P, Erik C H, Valerie V S, Daniel W A. Surfactant solvation effects and micelle formation in ionic liquids[J]. Chem. Commun.,2003,2444-2445
    [321]Wang J W, Li Y D. Synthesis of single-crystalline nanobelts of ternary bismuth oxide bromide with different compositions [J]. Chem. Commun.,2003,2320-2321.
    [322]Deng H, Wang J W, Peng Q, Wang X, Li Y D. Controlled Hydrothermal Synthesis of Bismuth oxyhalide nanobelts and nanotubes[J]. Chem.-Eur. J.,2005,11, 6519-6524
    [323]Ai Z H, Ho W K, Lee S C, Zhang L Z. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light[J]. Environ. Sci. Technol.,2009,43,4143-4150
    [324]Sun Y, Zheng W J. Ultrathin SmVO4 nanosheets:ionic liquid-assisted hydrothermal synthesis, characterization, formation mechanism and optical property[J]. Dalton Trans.,2010,39,7098-7103
    [325]Dong W S, Li M Y, Liu CL, Lin F Q, Liu Z T. Novel ionic liquid assisted synthesis of SnO2 microspheres[J]. J. Colloid Interface Sci.,2008,319,115-122
    [326]Rodil E, Aldous L, Hardacre C, Lagunas M C. Preparation of AgX (X= Cl, I) nanoparticles using ionic liquids[J]. Nanotechnology 2008,19,105603/1-105603/8
    [327]Sirieix-Plenet J, Gaillon L, Letellier P. Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decy1-3-methylimidazolium bromide and water:Potentiometric and conductimetric studies[J]. Talanta,2004,63,979-986
    [328]Chen C C, Zhao W, Li J Y, Zhao J C, Hidaka H, Serpone N. Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2 Dispersion[J]. Environ. Sci. Technol.,2002, 36,3604-3611
    [329]Lei P X, Chen C C, Yang J, Ma W H, Zhao J C, Zang L. Degradation of Dye Pollutants by Immobilized Polyoxometalate with H2O2 under Visible-Light Irradiation[J]. Environ. Sci. Technol.,2005,39,8466-8474
    [330]Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Photocatalytic Degradation of RhB by Fluorinated Bi2WO6 and Distributions of the Intermediate Products[J]. Environ. Sci. Technol.,2008,42,2085-2091
    [331]Wang X C, Yu J C, Ho C M, Hou Y D, Fu X Z. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania[J]. Langmuir,2005,21,2552-2559
    [332]Yu X X, Yu J G, Cheng B, Jaroniec M. Synthesis of Hierarchical Flower-like AlOOH and TiO2AlOOH Superstructures and their Enhanced Photocatalytic Properties[J]. J. Phys. Chem. C,2009,113,17527-17535
    [333]Gondal R A, Chang X F, Yamani Z H. UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution[J]. Chem. Eng. J.,2010,165,250-257
    [334]Zhang X L, Zhang Z, Xie T F, Wang D J. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures[J]. J. Phys. Chem. C,2009,113,7371-7378
    [335]Yu C L, Yu J C, Fan C F, Wen H R, Hu S J. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation[J]. Mater. Sci. Eng. B,2010,166,213-219
    [336]Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J]. J. Catal.,2009, 262,144-149
    [337]Wang X, Zhuang J, Peng Q, Li Y D. A general strategy for nanocrystal synthesis[J]. Nature,2005,437,121-124.
    [338]Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides[J]. Science, 2001,291,1947-1949
    [339]Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization[J]. Nature,1999,402, 393-395
    [340]Park S, Lim J H, Chung S W, Mirkin C A. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles[J]. Science,2004,303,348-351
    [341]Cofen H, Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures[J]. Angew. Chem., Int. Ed.,2003,42, 2350-2365
    [342]Shi H T, Qi L M, Ma J M, Cheng H M. Polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles[J]. J. Am. Chem. Soc.,2003, 125,3450-3451
    [343]Liu B, Zeng H C. Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process[J]. J. Am. Chem. Soc.,2004,126,16744-16746
    [344]Murray C B, Kagan C R, Bawendi M G. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices[J]. Science, 1995,270,1335-1338
    [345]Wu J, Duan F, Zheng Y, Xie Y. Synthesis of Bi2WO6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity[J]. J. Phys. Chem. C,2007,111,12866-12871
    [346]Amano F, Nogami K, Abe R, Ohtani B. Preparation and Characterization of Bismuth Tungstate Polycrystalline Flake-Ball Particles for Photocatalytic Reactions[J]. J. Phys. Chem. C,2008,112,9320-9326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700