用户名: 密码: 验证码:
碘氧化铋分级微纳结构的合成、表征和可见光光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺和环境污染是当前人类面临的重大挑战。光催化技术可以将低密度的太阳能转化为高密度的化学能和电能,直接利用太阳光降解和矿化水与空气中的各类污染物,并且能够实现光解水制氢。因此,光催化技术在环境净化和新能源开发方面具有广阔的发展前景。光催化技术的核心是光催化剂,目前发现的具有光催化活性的物质主要是金属氧化物和硫化物等半导体化合物。为了拓展光催化剂的光响应范围以便充分利用太阳光和进一步提高光催化效率,开发新型和高效的可见光光催化材料已经成为了当前的研究重点和热点。卤氧化铋BiOX ( X= F, Cl, Br, I)作为一类新型的光催化剂,由于具有特殊的层状结构和内部电场,能够有效地实现光生电子-空穴对的分离,从而显示出优异的光催化性能。BiOX的带隙随X从F到I逐渐减小,BiOI具有最小的带隙,呈现出极佳的可见光光催化活性。更有意思的是,除了BiOX外,Bi、O和X三种元素还能够以不同配比组成一系列更加复杂的化合物,由于BiOX系列的价带位置主要由X和O元素所决定,因此可以通过调配BiOX中非金属元素的配比来设计新型的具有合适能带结构的新材料。另一方面,光催化剂的微观结构,特别是尺寸、三维结构、表面形貌、晶面比例、孔道等对材料的性能、效率和应用具有极大的影响。本文的工作致力于新型碘氧化铋系列光催化剂的合成、表征和可见光光催化降解水中环境污染物的研究,特别注意通过使用不同的合成方法和实验参数对材料形貌和结构的控制合成,研究其形成机理,以及材料微结构对光催化活性的影响等。本论文的主要研究工作如下:
     1.使用乙醇-水混合溶剂,以氨水调节体系的pH值,在低温条件下合成了均匀的具有3D结构的BiOI微球。分别通过XRD、SEM、TEM、DRS、BET、TOC和光催化降解等手段对所合成材料的组成、结构、形貌、光学性质、比表面积和光催化性能等性质的表征和检测,探讨了BiOI 3D微球的形成机理。结果表明,3D BiOI微球由纳米片通过自组装形成,乙醇-水混合溶剂和体系pH值对3D结构的形成起重要作用。以苯酚作目标降解物,在可见光照射下,3D BiOI微球的光催化活性明显优于纯水体系合成的随机片状BiOI。这是由于3D BiOI微球具有小的带隙、高的比表面积和表面/体积比率,因而呈现出更高的可见光光催化活性。对降解产物的TOC分析表明,所合成材料在可见光条件下能够有效地矿化苯酚。更重要的是,所合成的材料可以很容易地回收和重复使用,因而具有良好的实际应用价值。
     2.使用多元醇法,在没有添加模板或表面活性剂的条件下成功地合成了一种具有分级微/纳米结构的新型碘氧铋材料。使用多种手段和技术对所合成材料进行了表征,XRD、XPS和TG的表征结果显示所合成的材料为Bi_7O_9I_3;SEM结果揭示了这种材料为平行四边形的微米级片状结构,这一微米片表面存在大量的高密度纳米片;DRS结果显示新材料的带隙略高于BiOI,具有强烈的可见光吸收。通过时间序列实验研究推测了Bi_7O_9I_3的结构和形貌的形成机理,结果显示其形成机理为Ostwald熟化过程。在可见光条件下,以苯酚为降解物研究Bi_7O_9I_3的光催化性能,结果显示材料具有良好的可见光光催化活性,这是由于所合成Bi_7O_9I_3具有合适的带隙、更强的氧化能力、高的比表面积、高的表面/体积比率和三维孔道等特性所决定的。回收实验表明,所合成的Bi_7O_9I_3材料可以方便地回收,具有良好的性能稳定性,具备实际应用前景。本实验首次通过简单的合成方法,一步地获得了具有复杂组成的、分级微/纳米结构的Bi_7O_9I_3材料,对于进一步理解和设计新型高效的卤氧化铋系光催化剂,具有重要的意义。
     3.使用一锅微波化学法,以乙二醇为溶剂,以Bi(NO_3)_3作铋源,分别加入KI和CTAB,在极短的反应时间(3分钟)内,成功地合成了结晶良好的,具有三维分级微纳结构的Bi_7O_9I_3片、BiOI微球和BiOBr花状结构。使用XRD、SEM等技术对所合成材料的组成、结构和形貌进行了相应的表征,讨论了其可能的形成机理,以及不同实验参数对产物的组成和形貌的影响。在可见光照射下,以苯酚作为目标模拟降解物研究了所合成材料的光催化活性,结果发现Bi_7O_9I_3存在最佳可见光光催化性能,其次为BiOI,BiOBr的性能最差。材料表现出来的这种光催化活性的差异,与其能带结构密切相关,合适的光催化剂应该具有相对较强的氧化能力和较强的光吸收能力,本实验表明,Bi_7O_9I_3和BiOI即属于这类材料,而又以Bi_7O_9I_3更佳。另一方面,三维分级微纳结构具有较大的比表面积、高的表面/体积比和抗团聚能力,以及大量的三维多孔通道等优势也是材料呈示出来的高的可见光活性的原因。所合成Bi_7O_9I_3材料易于回收,在多次重复使用后,其结构和性能基本不变,具有良好的实际应用价值。本实验对于合成复杂的分级微纳材料、通过调节非金属原子的配比从而调节半导体材料的能带结构和合成复杂的卤氧化物体系,具有极好的启发作用。
Energy shortage and environmental pollution are two major challenges currently faced by human beings. Semiconductor photocatalytic materials show great potential for solar energy conversion and environmental protection, and have been widely applied in air and water purification, H_2 production by water splitting as well as dye-sensitized solar cells, etc., which have attracted increasing attention over the past two decades. However, the performance of most photocatalysts requires to be further improved due to their narrow light-response range as well as low quantum efficiency. Therefore, design and development of new and highly efficient visible light photocatalytic materials have become the focus of current research.
     Recently, bismuth oxyhalides (BiOX, X = F, Cl, Br and I) have drawn much attention because of their possessing unique structure of alternate [Bi_2O_2]~(2+) sheets with the X- slabs and the internal electric fields between positive slabs and anionic slabs, which are more effective in improving the separation of photoinduced electron-hole pairs, and therefore have demonstrated excellent photocatalytic activities and are offering a new family of promising photocatalysts. Among them, BiOI has the strongest absorption in the visible light region because it has the smallest band gap (~1.8 eV). Except for the BiOI, there are other complex bismuth oxyiodide compounds, which have a different ratio of Bi to I, including Bi_2O_4I_5, Bi_7O_9I_3, -Bi_5O_7I andβ-Bi_5O_7I. Since the valence band in BiOX is mainly composed of Bi 6s, O 2p and X 5p orbits, while the conduction band is based on Bi 6s and Bi 6p orbits, the bandgap energy of bismuth oxyiodides may gradually increase by substitution of I with O in their structures, resulting in a lower bandgap than that of Bi_2O_3 (~2.8 eV). Consequently, all these kinds of bismuth oxyiodides are expected to demonstrate visible light photocatalytic activity and it is also interesting to obtain the different oxidation-reduction ability by tuning the ratio of Bi/I.
     In addition to its electronic and band structure of the semiconductor, microstructures of the materials, especially in size, three-dimensional structures, surface morphology, the ratio of crystal planes, porous and internal channels, are obviously influencing the performance, efficiency and applications of a specific photocatalyst. Generally, photocatalysts with three-dimensional (3D) micro/nano-structures based on the assembly of low-dimensional building blocks are expected to have enhanced photocatalytic performance although the synthesis of such complex superstructure remains a challenge for nanotechnology.
     In this dissertation, we focus on design and development of new and highly efficient bismuth oxyiodides as photocatalysts with visible light response and 3D hierarchical micro/nano-structures. The resulting materials were characterized carefully by various techniques, their structural formation mechanism was discussed in detail, and their photocatalytic activities were tested under the visible light irradiation.
     The main contents were shown as the following:
     1. Self-assembled three dimensional (3D) BiOI microspheres consisting of nanoplatelets were synthesized at low temperature using ethanol-water mixed solvent as reaction media and NH3·H2O as pH an adjustment. The as-prepared BiOI was characterized by XRD, SEM, TEM, UV-vis DRS, and BET. The possible formation mechanism for the architectures was discussed. It was found that the mixed solvents and alkali play key roles in the formation of the BiOI microspheres. The photocatalytic activity of the as-prepared sample was evaluated by degradation of phenol in water under visible light irradiation. The 3D BiOI microspheres show much higher photocatalytic activity than the random BiOI platelets. The TOC measurement after the degradation process indicated that phenol was effectively mineralized over the BiOI microspheres. In addition, the BiOI microspheres are stable during the reaction and can be used repeatedly. The high catalytic performance of the 3D BiOI microspheres comes from their narrow band gap, high surface area and high surface-to-volume ratio.
     2. A novel Bi_7O_9I_3 material with hierarchical nano/micro-architecture is successfully synthesized by a one-step, template and surfactant-free solution method. The as-prepared product was characterized by various techniques. XRD, XPS and TG measurements confirm that the composition of the as-fabricated sample is Bi_7O_9I_3. SEM and TEM observation reveals that the as-synthesized sample is microsized plate-like structure with dense nanosheets standing on their surfaces. The time-dependent morphology of the Bi_7O_9I_3 sample was investigated, and a possible formation mechanism of the hierarchical structure is proposed. More importantly, the Bi_7O_9I_3 exhibits an excellent photocatalytic activity than that of BiOI towards degradation of phenol under visible light irradiation. The high catalytic performance of the Bi_7O_9I_3 hierarchical structure comes from its electronic band structure, high surface area and high surface-to-volume ratio. In addition, the Bi_7O_9I_3 hierarchical architecture is stable during the reaction and can be used repeatedly. The present work not only gives insight into understanding the hierarchical growth behaviour of complex bismuth oxide iodides in a solution-phase synthetic system, but also provides a new way to improve the photocatalytic performance by designing desirable structures and morphologies.
     3. The hierarchical Bi_7O_9I_3 microplates, BiOI microspheres and BiOBr flowers were successfully synthesized via a facile, rapid and reliable microwave-assisted one-pot method, employing Bi(NO_3)_3·5H_2O, KI and CTAB as starting reagents without using any other additives. The as-prepared powders were characterized by XRD, SEM, and UV-vis DRS. The compositions, structures, morphologies and influential factors of the products were discussed based on the additional experiments. The photocatalytic activities of the as-prepared samples were evaluated towards the degradation of phenol solution under visible light irradiation. It was found that under the same conditions, Bi_7O_9I_3 microplates exhibited the best activity, BiOI microspheres showed the second and BiOBr flowers presented the worst. The high catalytic performance of the Bi_7O_9I_3 microplates comes from its relatively strong oxidative capacity, wider light-response range as well as hierarchical nano/micro-architecture. And its structure and activities remain unchanged after repeated four times. This work provides a facile, rapid, low-energy consumption route to prepare novel BiOX hierarchical architecture.
引文
[1] Goodeve C F, Kitchener J A. Photosensitisation by titanium dioxide[J]. Trans. Faraday Soc., 1938, 34: 570-579
    [2] Plotnikow J. Allgemeine Photochemie[M]. de Gruyter, 1936
    [3]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238(5358): 37-38
    [4] Carey J H, Lawrence J, Tosine H M. Photodegradation of PCB's in the presence of titanium dioxide in aqueous suspension[J]. Bull. Environ. Contam. Toxicol, 1976, 16(6)
    [5] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96
    [6] Pirkanniemi K, Sillanpaa M. Heterogeneous water phase catalysis as an environmental application: a review[J]. Chemosphere, 2002, 48(10): 1047-1060
    [7] Mills A, Lehunte S. An overview of semiconductor photocatalysis[J]. J. Photoch. Photobio. A, 1997, 108(1): 1-35
    [8] Diebold U. The surface science of titanium dioxide[J]. Surf. Sci. Rep., 2003, 48(5-8): 53-229
    [9] Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. J. Photoch. Photobio. C, 2008, 9(1): 1-12
    [10] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. J. Phys. Chem., 1977, 81(15): 1484-1488
    [11] Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93(1): 341-357
    [12] Chong M N, Jin B, Chow C, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water. Res., 2010, 44(10): 2997-3027
    [13] Bhatkhande D S, Pangarkar V G, Beenackers A A. Photocatalytic degradation for environmental applications–a review[J]. J. Chem. Tech. Biotechnol., 2002, 77(1): 102-116
    [14] Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment[J]. J. Photoch. Photobio. C, 2005, 6(4): 264-273
    [15] Demeestere K, Dewulf J, Van Langenhove H. Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art[J]. Crit. Rev. Env. Sci. Tec., 2007, 37(6): 489-538
    [16] Mo J H, Zhang Y P, Xu Q J, et al. Photocatalytic purification of volatile organic compounds in indoor air: A literature review[J]. Atmos. Environ., 2009, 43(14): 2229-2246
    [17] Wang H, Wu Z, Zhao W, et al. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric[J]. Chemosphere, 2007, 66(1): 185-190
    [18]吴玉琪,靳治良,李越湘,等.半导体光催化剂制氢研究新进展[J].分子催化. 2010, 24(2): 171-194
    [19] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J. Photoch. Photobio. C, 2000, 1(1): 1-21
    [20] Matsuoka M, Kitano M, Takeuchi M, et al. Photocatalysis for new energy production - Recent advances in photocatalytic water splitting reactions for hydrogen production[J]. Catal. Today, 2007, 122(1-2): 51-61
    [21] Maeda K, Domen K. Photocatalytic Water Splitting: Recent Progress and Future Challenges[J]. J. Phys. Chem. Lett., 2010, 1(18): 2655-2661
    [22] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740
    [23] Gratzel M. Dye-sensitized solar cells[J]. J. Photochem. Photobiol. C, 2003, 4(2): 145-153
    [24] Goncalves L M, Bermudez V D, Ribeiro H A, et al. Dye-sensitized solar cells: A safe bet for the future.[J]. Energy Environ. Sci., 2008, 1(6): 655-667
    [25] Schmidt Mende L, Bach U, Humphry Baker R, et al. Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells[J]. Adv. Mater., 2005, 17(7): 813-815
    [26] Hirano K, Inoue K, Yatsu T. Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder[J]. J. Photochem. Photobiol. A, 1992, 64(2): 255-258
    [27] Hirano K, Asayama H, Hoshino A, et al. Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO2 suspensions[J]. J. Photochem. Photobiol. A, 1997, 110(3): 307-311
    [28] Ishitani O, Inoue C, Suzuki Y, et al. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2[J]. J. Photochem. Photobiol. A, 1993, 72(3): 269-271
    [29] Taoda H. Development of TiO2 photocatalysts suitable for practical use and their applications in environmental cleanup[J]. Res. Chem. Intermediat., 2008, 34(4): 417-426
    [30] Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J]. Fems. Microbiol. Lett., 1985, 29(1-2): 211-214
    [31] Wang Z, Cai W, Hong X, et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources[J]. Appl. Catal. B: Environ., 2005, 57(3): 223-231
    [32] Shie J L, Lee C H, Chiou C S, et al. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titaniumoxide photocatalyst[J]. J. Hazard. Mater., 2008, 155(1-2): 164-172
    [33] Yu H. T.,Quan X. Nano-Heterojunction Photocatalytic Materials in Environmental Pollution Controlling[J]. Prog. Chem. 2009, 21(2-3): 406-419.
    [34] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271
    [35] Livraghi S, Paganini M C, Giamello E, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light[J]. J. Am. Chem. Soc., 2006, 128(49): 15666-15671
    [36] Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Appl. Catal. B-Environ., 2007, 69(3-4): 138-144
    [37] Wu G, Nishikawa T, Ohtani B, et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response[J]. Chem. Mater., 2007, 19(18): 4530-4537
    [38] Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Appl. Catal. A: Gen., 2004, 265(1): 115-121
    [39] Su Y, Han S, Zhang X, et al. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes[J]. Mater. Chem. Phys., 2008, 110(2-3): 239-246
    [40] Yang K S, Dai Y, Huang B B. Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles[J]. J. Phys. Chem. C, 2007, 111(51): 18985-18994
    [41] Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity[J]. Chem. Commun., 2006, (10): 1115-1117
    [42] Zhou J K, Lv L, Yu J Q, et al. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light[J]. J. Phys. Chem. C, 2008, 112(14): 5316-5321
    [43] Hong X T, Wang Z P, Cai W M, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide[J]. Chem. Mater., 2005, 17(6): 1548-1552
    [44] Liu G, Sun C H, Yan X X, et al. Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms[J]. J. Mater. Chem., 2009, 19(18): 2822-2829
    [45] Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization[J]. Chem. Mater., 2005, 17(10): 2588-2595
    [46] Pelaez M, Falaras P, Likodimos V, et al. Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR[J]. Appl. Catal. B-Environ., 2010, 99(3-4Sp. Iss. SI): 378-387
    [47] Wang X P, Lim T T. Solvothermal synthesis of C-N codoped TiO2 and photocatalyticevaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor[J]. Appl. Catal. B-Environ., 2010, 100(1-2): 355-364
    [48] Rengifo-Herrera J A, Mielczarski E, Mielczarski J, et al. Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light[J]. Appl. Catal. B-Environ., 2008, 84(3-4): 448-456
    [49] Litter M I. Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems[J]. Appl. Catal. B-Environ., 1999, 23(2-3): 89-114
    [50] Ciesla P, Kocot P, Mytych P, et al. Homogeneous photocatalysis by transition metal complexes in the environment[J]. J. Mol. Catal. A-Chem., 2004, 224(1-2): 17-33
    [51] Fukuzumi S, Yasui K, Suenobu T, et al. Efficient catalysis of rare-earth metal ions in photoinduced electron-transfer oxidation of benzyl alcohols by a flavin analogue[J]. J. Phys. Chem. A, 2001, 105(46): 10501-10510
    [52] Xie Y B, Li P, Yuan C W. Visible-light excitated photocatalytic activity of rare earth metal-lon-doped titania[J]. J. Rare. Earth., 2002, 20(6): 619-625
    [53] Chen S Z, Xu S M, Xu G, et al. Application of rare earth elements in photocatalysts and the mechanism of action[J]. Rare. Metal. Mat. Eng., 2006, 35(4): 505-509
    [54] Xing M Y, Zhang J L, Chen F. Photocatalytic Performance of N-Doped TiO2 Adsorbed with Fe3+ Ions under Visible Light by a Redox Treatment[J]. J. Phys. Chem. C, 2009, 113(29): 12848-12853
    [55] Tan K Q, Zhang H R, Xie C F, et al. Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO2[J]. Catal. Commun., 2010, 11(5): 331-335
    [56] Xu J J, Ao Y H, Fu D G, et al. A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity[J]. J. Colloid. Interf. Sci., 2008, 328(2): 447-451
    [57] Ma Y F, Zhang J L, Tian B Z, et al. Synthesis and characterization of thermally stable Sm,N co-doped TiO2 with highly visible light activity[J]. J. Hazard. Mater., 2010, 182(1-3): 386-393
    [58] Ohno T, Murakami N, Tsubota T, et al. Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light[J]. Appl. Catal. A, 2008, 349(1-2): 70-75
    [59] He Z Q, Xu X, Song S, et al. A Visible Light-Driven Titanium Dioxide Photocatalyst Codoped with Lanthanum and Iodine: An Application in the Degradation of Oxalic Acid[J]. J. Phys. Chem. C, 2008, 112(42): 16431-16437
    [60] Cao G X, Li Y G, Zhang Q H, et al. Hierarchical Porous, Self-Supporting La- and F-Codoped TiO2 with High Durability for Continuous-Flow Visible Light Photocatalysis[J]. J. Am. Ceram. Soc., 2010, 93(5): 1252-1255
    [61] Tada H, Kiyonaga T, Naya S. Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide[J]. Chem. Soc. Rev., 2009, 38(7): 1849-1858
    [62] Munoz A G, Lewerenz H J. Advances in Photoelectrocatalysis with NanotopographicalPhotoelectrodes[J]. Chemphyschem., 2010, 11(8): 1603-1615
    [63] Kim S, Hwang S J, Choi W Y. Visible light active platinum-ion-doped TiO2 photocatalyst[J]. J. Phys. Chem. B, 2005, 109(51): 24260-24267
    [64] Khan M A, Akhtar M S, Woo S I, et al. Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water[J]. Catal. Commun., 2008, 10(1): 1-5
    [65] Chuang H Y, Chen D H. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles[J]. Nanotechnology, 2009, 20(10):105704-105713
    [66] Es-Souni M, Es-Souni M, Habouti S, et al. Brookite Formation in TiO2-Ag Nanocomposites and Visible-Light-Induced Templated Growth of Ag Nanostructures in TiO2[J]. Adv. Funct. Mater., 2010, 20(3): 377-385
    [67] Gaweda S, Stochel G, Szacilowski K. Photosensitization and Photocurrent Switching in Carminic Acid/Titanium Dioxide Hybrid Material[J]. J. Phys. Chem. C, 2008, 112(48): 19131-19141
    [68] Youngblood W J, Lee S, Maeda K, et al. Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors[J]. Accounts. Chem. Res., 2009, 42(12): 1966-1973
    [69] Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation[J]. J. Mol. Catal. A-Chem., 2006, 244(1-2): 25-32
    [70] Jang J S, Ji S M, Bae S W, et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (lambda >= 420 nm)[J]. J. Photoch. Photobio. A, 2007, 188(1): 112-119
    [71] Jing D W, Guo L J. WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation[J]. Catal. Commun., 2007, 8(5): 795-799
    [72] Stengl V, Bakardjieva S, Murafa N, et al. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis[J]. Micropor. Mesopor. Mater., 2008, 110(2-3): 370-378
    [73] Brahimi R, Bessekhouad Y, Bouguelia A, et al. Improvement of eosin visible light degradation using PbS-sensititized TiO2[J]. J. Photoch. Photobio. A, 2008, 194(2-3): 173-180
    [74] Wang C J, Thompson R L, Baltrus J, et al. Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts[J]. J. Chem. Phys. Lett., 2010, 1(1): 48-53
    [75] Gomez H, Orellana F, Lizama H, et al. Study of phenol photodegradation with TiO2-WO3 coupled semiconductors activated by visible light[J]. J. Chil. Chem. Soc., 2006, 51(4): 1006-1009
    [76] Zhang P, Xu M X, Fang H B, et al. Low-temperature synthesis of InVO4 doped TiO2 sol and visible-light photocatalytic activities of InVO4-TiO2 films[J]. Mater. Lett., 2009,63(24-25): 2146-2148
    [77] Lan Y Q, Hu C, Hu X X, et al. Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation[J]. Appl. Catal. B-Environ., 2007, 73(3-4): 354-360
    [78] Li Y Z, Zhang H, Guo Z M, et al. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst[J]. Langmuir, 2008, 24(15): 8351-8357
    [79] Yu J G, Dai G P, Huang B B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 TiO2 Nanotube Arrays[J]. J. Phys. Chem. C, 2009, 113(37): 16394-16401
    [80] Li D, Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J]. J. Photoch. Photobio. A, 2003, 155(1-3): 171-178
    [81] Niu M, Huang F, Cui L, et al. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/ -Fe2O3 Semiconductor Nanoheterostructures[J]. ACS Nano, 2010, 4(2): 681-688
    [82] Xu L, Guan J, Gao L, et al. Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution[J]. Catal. Commun., 2011, 12(6): 548-552
    [83] Ge S, Jia H, Zhao H, et al. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures[J]. J. Mater. Chem., 2010, 20(15): 3052-3058
    [84] Abe R, Takami H, Murakami N, et al. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide[J]. J. Am. Chem. Soc., 2008, 130(25): 7780-7781
    [85] Yu J G, Qi L F. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity[J]. J. Hazard. Mater., 2009, 169(1-3): 221-227
    [86] Sadakane M, Sasaki K, Kunioku H, et al. Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation[J]. J. Mater. Chem., 2010, 20(9): 1811-1818
    [87] Zhou X M, Yang H C, Wang C X, et al. Visible Light Induced Photocatalytic Degradation Rhodamine B on One-Dimensional Iron Oxide Particles[J]. J. Phys. Chem. C, 2010, 114(40): 17051-17061
    [88] Xie H, Li Y Z, Jin S F, et al. Facile Fabrication of 3D-Ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity[J]. J. Phys. Chem. C, 2010, 114(21): 9706-9712
    [89] Murakami N, Matsuo T, Tsubota T, et al. Photocatalytic reaction over iron hydroxides: A novel visible-light responsive photocatalyst[J]. Catal. Commun., 2011,12(5):341-344
    [90] Hara M, Kondo T, Komoda M, et al. Cu2O as a photocatalyst for overall water splittingunder visible light irradiation[J]. Chem. Commun., 1998, (3): 357-358
    [91] Huang L, Peng F, Yu H, et al. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion[J]. Solid. State. Sci., 2009, 11(1): 129-138
    [92] Yu H, Yu J, Liu S, et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres[J]. Chem. Mater, 2007, 19(17): 4327-4334
    [93] Ai Z H, Zhang L Z, Lee S C, et al. Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity[J]. J. Phys. Chem. C, 2009, 113(49): 20896-20902
    [94] Reyes-Gil K R, Sun Y P, Reyes-Garcia E, et al. Characterization of Photoactive Centers in N-Doped In2O3 Visible Photocatalysts for Water Oxidation[J]. J. Phys. Chem. C, 2009, 113(28): 12558-12570
    [95] Shakir I, Shahid M, Kang D J. MoO3 and Cu0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis[J]. Chem. Commun., 2010, 46(24): 4324-4326
    [96] Ji P F, Zhang J L, Chen F, et al. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation[J]. Appl. Catal. B-Environ., 2009, 85(3-4): 148-154
    [97] Saravanan R, Shankar H, Prakash T, et al. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light[J]. Mater. Chem. Phys., 2011, 125(1-2): 277-280
    [98] Bao N, Shen L, Takata T, et al. Facile cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light[J]. J. Phys. Chem. C, 2007, 111(47): 17527-17534
    [99] Bao N Z, Shen L M, Takata T, et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible[J]. Chem. Mater., 2008, 20(1): 110-117
    [100] Sun M, Li D Z, Li W J, et al. New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation[J]. J. Phys. Chem. C, 2008, 112(46): 18076-18081
    [101] Fu X L, Wang X X, Chen Z X, et al. Photocatalytic performance of tetragonal and cubic beta-In2S3 for the water splitting under visible light irradiation[J]. Appl. Catal. B-Environ., 2010, 95(3-4): 393-399
    [102] Zhang Y C, Du Z N, Li S Y, et al. Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2 center dot 2H2O and S powders[J]. Appl. Catal. B-Environ., 2010, 95(1-2): 153-159
    [103] Muruganandham M, Kusumoto Y. Synthesis of N, C Codoped Hierarchical Porous Microsphere ZnS As a Visible Light-Responsive Photocatalyst[J]. J. Phys. Chem. C, 2009, 113(36): 16144-16150
    [104] Lei Z B, You W S, Liu M Y, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J]. Chem. Commun., 2003, (17): 2142-2143
    [105] Chen Z X, Li D Z, Zhang W J, et al. Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation[J]. J. Phys. Chem. C, 2009, 113(11): 4433-4440
    [106] Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun., 2002, (17): 1958-1959
    [107] Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures[J]. J. Am. Chem. Soc., 2004, 126(41): 13406-13413
    [108] Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions[J]. J. Phys. Chem. B, 2005, 109(15): 7323-7329
    [109] Zhang W, Zhong Z Y, Wang Y S, et al. Doped Solid Solution: (Zn0.95Cu0.05)(1-x)CdxS Nanocrystals with High Activity for H2 Evolution from Aqueous Solutions under Visible Light[J]. J. Phys. Chem. C, 2008, 112(45): 17635-17642
    [110] Shen S H, Zhao L, Zhou Z H, et al. Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation[J]. J. Phys. Chem. C, 2008, 112(41): 16148-16155
    [111] Liu G J, Zhao L, Ma L J, et al. Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1-x-yS catalyst[J]. Catal. Commun., 2008, 9(1): 126-130
    [112] Zhang X H, Du Y C, Zhou Z H, et al. A simplified method for synthesis of band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solution photocatalysts with high activity of photocatalytic H2 evolution under visible-light irradiation[J]. Int. J. Hydrogen. Energ., 2010, 35(8): 3313-3321
    [113] Kim C, Doh S J, Lee S G, et al. Visible-light absorptivity of a zincoxysulfide (ZnOxS1-x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation[J]. Appl. Catal. A, 2007, 330: 127-133
    [114] Hitoki G, Takata T, Kondo J N, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda <= 500 nm)[J]. Chem. Commun., 2002, (16): 1698-1699
    [115] Hara M, Nunoshige J, Takata T, et al. Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation[J]. Chem. Commun., 2003, (24): 3000-3001
    [116] Ito S, Thampi K R, Comte P, et al. Highly active meso-microporous TaON photocatalyst driven by visible light[J]. Chem. Commun., 2005, (2): 268-270
    [117] Yashima M, Lee Y, Domen K. Crystal structure and electron density of tantalum oxynitride, a visible light responsive photocatalyst[J]. Chem. Mater., 2007, 19(3): 588-593
    [118] Kou J H, Li Z S, Yuan Y P, et al. Visible-Light-Induced Photocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons over Tantalum Oxynitride Photocatalysts[J]. Environ. Sci. Technol., 2009, 43(8): 2919-2924
    [119] Hu C C, Teng H S. Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation[J]. J. Phys. Chem. C, 2010, 114(47): 20100-20106
    [120] Kasahara A, Nukumizu K, Takata T, et al. LaTiO2N as a visible-light (<= 600 nm)-driven photocatalyst (2)[J]. J. Phys. Chem. B, 2003, 107(3): 791-797
    [121] Mishima T, Matsuda M, Miyake M. Visible-light photocatalytic properties and electronic structure of Zr-based oxynitride, Zr2ON2, derived from nitridation of ZrO2[J]. Appl. Catal. A, 2007, 324: 77-82
    [122] Hisatomi T, Hasegawa K, Teramura K, et al. Zinc and titanium spinel oxynitride (ZnxTiOyNz) as a d(0)-d(10) complex photocatalyst with visible light activity[J]. Chem. Lett., 2007, 36(4): 558-559
    [123] Zhang Q H, Gao L. Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation[J]. Langmuir, 2004, 20(22): 9821-9827
    [124] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1): 76-80
    [125] Chen X, Zhang J, Fu X, et al. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light[J]. J. Am. Chem. Soc., 2009, 131(33): 11658-11659
    [126] Yan H J, Yang H X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation[J]. J. Alloy. Compd., 2011, 509(4): L26-L29
    [127] Fu B, Gao L, Yang S W. CNTs/Ta3N5 nanocomposite with enhanced photocatalytic activity under visible light irradiation[J]. J. Am. Ceram. Soc., 2007, 90(4): 1309-1311
    [128] Kim Y H, Irie H, Hashimoto K. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst[J]. Appl. Phys. Lett., 2008, 92(18):182107-182107.3
    [129] Gao Y T, Wang Y Q, Wang Y X. Photocatalytic hydrogen evolution from water on SiC under visible light irradiation[J]. React. Kinet. Catal. L., 2007, 91(1): 12-19
    [130] Wang P, Huang B B, Qin X Y, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Angew. Chem. Int. Edit., 2008, 47(41): 7931-7933
    [131] Wang P, Huang B B, Zhang X Y, et al. Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr[J]. Chem. Eur. J., 2009, 15(8): 1821-1824
    [132] Li Y Y, Ding Y. Porous AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic Properties[J]. J. Phys. Chem. C, 2010, 114(7): 3175-3179
    [133] Zhang L S, Wong K H, Yip H Y, et al. Effective Photocatalytic Disinfection of E. coli K-12 Using AgBr-Ag-Bi2WO6 Nanojunction System Irradiated by Visible Light: The Role of Diffusing Hydroxyl Radicals[J]. Environ. Sci. Technol., 2010, 44(4): 1392-1398
    [134] Yu J G, Dai G P, Huang B B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 TiO2 Nanotube Arrays[J]. J. Phys. Chem. C, 2009, 113(37): 16394-16401
    [135] Wang P, Huang B B, Qin X Y, et al. Ag/AgBr/WO3 center dot H2O: Visible-Light Photocatalyst for Bacteria Destruction[J]. Inorg. Chem., 2009, 48(22): 10697-10702
    [136] Ai Z H, Zhang L Z, Lee S C. Efficient Visible Light Photocatalytic Oxidation of NO on Aerosol Flow-Synthesized Nanocrystalline InVO4 Hollow Microspheres[J]. J. Phys. Chem. C, 2010, 114(43): 18594-18600
    [137] Huang C M, Pan G T, Li Y, et al. Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag3VO4 and Ag4V2O7 under visible light irradiation[J]. Appl. Catal. A, 2009, 358(2): 164-172
    [138] Ding J J, Sun S, Bao J, et al. Synthesis of CaIn2O4 Rods and Its Photocatalytic Performance Under Visible-light Irradiation[J]. Catal. Lett., 2009, 130(1-2): 147-153
    [139] Huang X L, Lv J, Li Z S, et al. Electronic structure and visible-light-driven photocatalytic performance of Cd2SnO4[J]. J. Alloy. Compd., 2010, 507(2): 341-344
    [140] Maruyama Y, Irie H, Hashimoto K. Visible light sensitive photocatalyst, delafossite structured alpha-AgGaO2[J]. J. Phys. Chem. B, 2006, 110(46): 23274-23278
    [141] Singh J, Uma S. Efficient Photocatalytic Degradation of Organic Compounds by Ilmenite AgSbO3 under Visible and UV Light Irradiation[J]. J. Phys. Chem. C, 2009, 113(28): 12483-12488
    [142] Jia L S, Li J J, Fang W P, et al. Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method[J]. Catal. Commun., 2009, 10(8): 1230-1234
    [143] Li Y Y, Yao S S, Wen W, et al. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3[J]. J. Alloy. Compd., 2010, 491(1-2): 560-564
    [144] Jiang Y Y, Sui X T, Ning G L, et al. Effect of Chelating Agent on Morphology and Visible-light Photocatalytic Performance of CuAl2O4 Powders[J]. Rare. Metal. Mat. Eng., 2010, 39(2): 438-441
    [145] Jiang L, Wang Q Z, Li C L, et al. ZrW2O8 photocatalyst and its visible-light sensitization via sulfur anion doping for water splitting[J]. Int. J. Hydrogen. Energ., 2010, 35(13): 7043-7050
    [146] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. J. Phys. Chem. B, 2002, 106(19): 5029-5034
    [147] Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation[J]. J. Phys. Chem. B, 2004, 108(26): 8992-8995
    [148] Ohno T, Tsubota T, Nakamura Y, et al. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light[J]. Appl. Catal. A, 2005, 288(1-2): 74-79
    [149] Sulaeman U, Yin S, Sato T. Visible light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of SrTiO3[J]. Appl. Catal. B-Environ., 2011, 102(1-2): 286-290
    [150] Nishimoto S, Matsuda M, Miyake M. Photocatalytic activities of rh-doped CaTiO3under visible light irradiation[J]. Chem. Lett., 2006, 35(3): 308-309
    [151] Shu X, He J, Chen D. Visible-light-induced photocatalyst based on nickel titanate nanoparticles[J]. Ind. Eng. Chem. Res., 2008, 47(14): 4750-4753
    [152] Xu S H, Feng D L, Shangguan W F. Preparations and Photocatalytic Properties of Visible-Light-Active Zinc Ferrite-Doped TiO2 Photocatalyst[J]. J. Phys. Chem. C, 2009, 113(6): 2463-2467
    [153] Hou Y, Li X Y, Zhao Q D, et al. Electrochemically Assisted Photocatalytic Degradation of 4-Chlorophenol by ZnFe2O4-Modified TiO2 Nanotube Array Electrode under Visible Light Irradiation[J]. Environ. Sci. Technol., 2010, 44(13): 5098-5103
    [154] Lv H J, Ma L, Zeng P, et al. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light[J]. J. Mater. Chem., 2010, 20(18): 3665-3672
    [155] Chen C H, Liang Y H, Zhang W D. ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation[J]. J. Alloy. Compd., 2010, 501(1): 168-172
    [156] Li S D, Jing L Q, Fu W, et al. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation[J]. Mater. Res. Bull., 2007, 42(2): 203-212
    [157] Parida K M, Reddy K H, Martha S, et al. Fabrication of nanocrystalline LaFeO3: An efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition[J]. Int. J. Hydrogen. Energ., 2010, 35(22Sp. Iss. SI): 12161-12168
    [158] Unal U, Matsumoto Y, Tamoto N, et al. Visible light photoelectrochemical activity of K4Nb6O17 intercalated with photoactive complexes by electrostatic self-assembly deposition[J]. J. Solid. State. Chem., 2006, 179(1): 33-40
    [159] Maeda K, Eguchi M, Youngblood W J, et al. Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation[J]. Chem. Mater., 2008, 20(21): 6770-6778
    [160] Shi H F, Li X K, Iwai H, et al. 2-Propanol photodegradation over nitrogen-doped NaNbO3 powders under visible-light irradiation[J]. J. Phys. Chem. Solids., 2009, 70(6): 931-935
    [161] Cho I S, Kim D W, Noh T H, et al. Preparation of N-Doped CaNb2O6 Nanoplates with Ellipsoid-Like Morphology and Their Photocatalytic Activities Under Visible-Light Irradiation[J]. J. Nanosci. Nanotechno., 2010, 10(2): 1196-1202
    [162] Zhang L Z, Djerdj I, Cao M H, et al. Nonaqueous sol-gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst[J]. Adv. Mater., 2007, 19(16): 2083
    [163] Cho I S, Lee S, Noh J H, et al. Visible-Light-Induced Photocatalytic Activity in FeNbO4 Nanoparticles[J]. J. Phys. Chem. C, 2008, 112(47): 18393-18398
    [164] Li G Q, Yan S C, Wang Z Q, et al. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3[J]. Dalton. Trans., 2009(40): 8519-8524
    [165] Fan X X, Gao J, Wang Y, et al. Effect of crystal growth on mesoporous Pb3Nb4O13formation, and their photocatalytic activity under visible-light irradiation[J]. J. Mater. Chem., 2010, 20(14): 2865-2869
    [166] Zhang L P, Yuan S, Hu F, et al. Bismuth (V)-Containing Semiconductor Compounds and Their Applications in Heterogeneous Photocatalysis[J]. Prog. Chem., 2010, 22(9): 1729-1734
    [167] Li E J, Chen L, Zhang Q A, et al. Bismuth-Containing Semiconductor Photocatalysts[J]. Prog. Chem., 2010, 22(12): 2282-2289
    [168] Zhang L S, Wang W Z, Yang J O, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Appl. Catal. A, 2006, 308: 105-110
    [169] Zhou L, Wang W Z, Xu H L, et al. Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis[J]. Chem. Eur. J., 2009, 15(7): 1776-1782
    [170] Cheng H F, Huang B B, Lu J B, et al. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs[J]. Phys. Chem. Chem. Phys., 2010, 12(47): 15468-15475
    [171] Gurunathan K. Photocatalytic hydrogen production using transition metal ions-doped gamma-Bi2O3 semiconductor particles[J]. Int. J. Hydrogen. Energ., 2004, 29(9): 933-940
    [172] Hameed A, Montini T, Gombac V, et al. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite[J]. J. Am. Chem. Soc., 2008, 130(30): 9658
    [173] Hameed A, Gombac V, Montini T, et al. Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites[J]. Chem. Phys. Lett., 2009, 472(4-6): 212-216
    [174] Neppolian B, Kim Y, Ashokkumar M, et al. Preparation and properties of visible light responsive ZrTiO4/Bi2O3 photocatalysts for 4-chlorophenol decomposition[J]. J. Hazard. Mater., 2010, 182(1-3): 557-562
    [175] Zhu J A, Wang S H, Wang J U, et al. Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots[J]. Appl. Catal. B-Environ., 2011, 102(1-2): 120-125
    [176] Li E J, Xia K, Yin S F, et al. Preparation, characterization and photocatalytic activity of Bi2O3-MgO composites[J]. Mater. Chem. Phys., 2011, 125(1-2): 236-241
    [177] Kudo A, Hijii S. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions[J]. Chem. Lett., 1999, 10: 1103-1104
    [178] Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal. Lett., 2004, 92(1-2): 53-56
    [179] Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Appl. Catal. B-Environ., 2006, 66(1-2): 100-110
    [180] Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chem. Mater., 2005, 17(13): 3537-3545
    [181] Shang M, Wang W Z, Ren J, et al. A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning[J]. J. Mater. Chem., 2009, 19(34): 6213-6218
    [182] Zhang L W, Wang Y J, Cheng H Y, et al. Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts[J]. Adv. Mater., 2009, 21(12): 1286
    [183] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity[J]. J. Phys. Chem. C, 2007, 111(34): 12866-12871
    [184] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6 nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities[J]. Small., 2007, 3(9): 1618-1625
    [185] Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. J. Mater. Chem., 2007, 17(24): 2526-2532
    [186] Cao X F, Zhang L, Chen X T, et al. Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties[J]. CrystEngComm, 2011, 13(1): 306-311
    [187] Chen Z, Qian L W, Zhu J, et al. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity[J]. CrystEngComm, 2010, 12(7): 2100-2106
    [188] Huang Y, Ai Z H, Ho W K, et al. Ultrasonic Spray Pyrolysis Synthesis of Porous Bi2WO6 Microspheres and Their Visible-Light-Induced Photocatalytic Removal of NO[J]. J. Phys. Chem. C, 2010, 114(14): 6342-6349
    [189] Dai X J, Luo Y S, Zhang W D, et al. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area[J]. Dalton. Trans., 2010, 39(14): 3426-3432
    [190] Shang M, Wang W Z, Zhang L, et al. 3D Bi2WO6/TiO2 Hierarchical Heterostructure: Controllable Synthesis and Enhanced Visible Photocatalytic Degradation Performances[J]. J. Phys. Chem. C, 2009, 113(33): 14727-14731
    [191] Chen Y L, Cao X X, Kuang J D, et al. The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres[J]. Catal. Commun., 2010, 12(4): 247-250
    [192] Li Y Y, Liu J P, Huang X T, et al. Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light[J]. Dalton. Trans., 2010, 39(14): 3420-3425
    [193] Xiao Q, Zhang J, Xiao C, et al. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation[J]. Catal. Commun., 2008, 9(6): 1247-1253
    [194] Ren J, Wang W Z, Sun S M, et al. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Appl. Catal. B-Environ., 2009, 92(1-2): 50-55
    [195] Zhang L S, Wong K H, Yip H Y, et al. Effective Photocatalytic Disinfection of E. coli K-12 Using AgBr-Ag-Bi2WO6 Nanojunction System Irradiated by Visible Light: The Role of Diffusing Hydroxyl Radicals[J]. Environ. Sci. Technol., 2010, 44(4): 1392-1398
    [196] Jiang L, Wang L Z, Zhang J L. A direct route for the synthesis of nanometer-sized Bi2WO6 particles loaded on a spherical MCM-48 mesoporous molecular sieve[J]. Chem. Commun., 2010, 46(42): 8067-8069
    [197] Bi J H, Wu L, Li H, et al. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies[J]. Acta Mater., 2007, 55(14): 4699-4705
    [198] Zhang L W, Xu T G, Zhao X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Appl. Catal. B-Environ., 2010, 98(3-4): 138-146
    [199] Xu X W, Ni Q Y. Synthesis and characterization of novel Bi2MoO6/NaY materials and photocatalytic activities under visible light irradiation[J]. Catal. Commun., 2010, 11(5): 359-363
    [200]Yin W, Wang W, Sun S. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J]. Catal. Commun., 2010, 11(7): 647-650
    [201] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chem. Mater., 2001, 13(12): 4624-4628
    [202] Yu J Q, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4[J]. Adv. Funct. Mater., 2006, 16(16): 2163-2169
    [203] Xi G C, Ye J H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties[J]. Chem. Commun., 2010, 46(11): 1893-1895
    [204] Shang M, Wang W Z, Ren J, et al. A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis[J]. CrystEngComm, 2010, 12(6): 1754-1758
    [205] Liu W, Yu Y Q, Cao L X, et al. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation[J]. J. Hazard. Mater., 2010, 181(1-3): 1102-1108
    [206] Zhang Z J, Wang W Z, Shang M, et al. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst[J]. Catal. Commun., 2010, 11(11): 982-986
    [207] Castillo N C, Heel A, Graule T, et al. Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity[J]. Appl. Catal. B-Environ., 2010, 95(3-4): 335-347
    [208] Shang M, Wang W Z, Zhou L, et al. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant[J]. J. Hazard. Mater., 2009, 172(1): 338-344
    [209] Liu H M, Nakamura R, Nakato Y. Promoted photo-oxidation reactivity of particulate BiVO4 photocatalyst prepared by a photoassisted sol-gel method[J]. J. Electrochem. Soc., 2005, 152(11): G856-G861
    [210] Ke D N, Peng T Y, Ma L, et al. Photocatalytic water splitting for O-2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions[J]. Appl. Catal. A, 2008, 350(1): 111-117
    [211] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. J. Am. Chem. Soc., 1999, 121(49): 11459-11467
    [212] Ge L. Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J]. J. Mol. Catal. A-Chem., 2008, 282(1-2): 62-66
    [213] Ge L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation[J]. Mater. Chem. Phys., 2008, 107(2-3): 465-470
    [214] Zhang A P, Zhang J Z. Characterization and photocatalytic properties of Au/BiVO4 composites[J]. J. Alloy. Compd., 2010, 491(1-2): 631-635
    [215] Kohtani S, Hiro J, Yamamoto N, et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation[J]. Catal. Commun., 2005, 6(3): 185-189
    [216] Xu H, Li H M, Wu C D, et al. Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO4[J]. Mater. Sci. Eng. B, 2008, 147(1): 52-56
    [217] Zhou B, Zhao X, Liu H J, et al. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions[J]. Appl. Catal. B-Environ., 2010, 99(1-2): 214-221
    [218] Xu H, Li H M, Wu C D, et al. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4[J]. J. Hazard. Mater., 2008, 153(1-2): 877-884
    [219] Lee D K, Cho I S, Lee S, et al. Effects of carbon content on the photocatalytic activity of C/BiVO4 composites under visible light irradiation[J]. Mater. Chem. Phys., 2010, 119(1-2): 106-111
    [220] Xu H, Wu C D, Li H M, et al. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J]. Appl. Surf. Sci., 2009, 256(3): 597-602
    [221] Zhang A P, Zhang J Z. Effects of europium doping on the photocatalytic behavior of BiVO4[J]. J. Hazard. Mater., 2010, 173(1-3): 265-272
    [222] Long M C, Cai W M, Kisch H. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-CO3O4[J]. J. Phys. Chem. C, 2008, 112(2): 548-554
    [223] Ji T H, Yang F, Zhou J Y, et al. Visible-Light Responding BiVO4/TiO2 Nanocomposite Photocatalyst[J]. Spectrosc. Spect. Anal., 2010, 30(7): 1944-1947
    [224] Shang M, Wang W Z, Sun S M, et al. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/BiVO4[J]. J. Phys. Chem. C, 2009, 113(47): 20228-20233
    [225] Li L Z, Yan B. BiVO4/Bi2O3 submicrometer sphere composite: Microstructure and photocatalytic activity under visible-light irradiation[J]. J. Alloy. Compd., 2009, 476(1-2): 624-628
    [226] Chatchai P, Murakami Y, Kishioka S Y, et al. Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation[J]. Electrochim. Acta, 2009, 54(3): 1147-1152
    [227] Hou J G, Qu Y F, Krsmanovic D, et al. Hierarchical assemblies of bismuth titanate complex architectures and their visible-light photocatalytic activities[J]. J. Mater. Chem., 2010, 20(12): 2418-2423
    [228] Zhu X Q, Zhang J L, Chen F. Study on visible light photocatalytic activity and mechanism of spherical Bi12TiO20 nanoparticles prepared by low-power hydrothermal method[J]. Appl. Catal. B-Environ., 2011, 102(1-2): 316-322
    [229] Kong L D, Chen H H, Hua W M, et al. Mesoporous bismuth titanate with visible-light photocatalytic activity[J]. Chem. Commun., 2008, (40): 4977-4979
    [230] Zhou T F, Hu J C. Mass Production and Photocatalytic Activity of Highly Crystalline Metastable Single-Phase Bi20TiO32 Nanosheets[J]. Environ. Sci. Technol., 2010, 44(22): 8698-8703
    [231] Murugesan S, Subramanian V. Robust synthesis of bismuth titanate pyrochlore nanorods and their photocatalytic applications[J]. Chem. Commun., 2009, (34): 5109-5111
    [232] Yao W F, Wang H, Xu X H, et al. Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12[J]. Mater. Lett., 2003, 57(13-14): 1899-1902
    [233] Kidchob T, Malfatti L, Marongiu D, et al. Sol-Gel Processing of Bi2Ti2O7 and Bi2Ti4O11 Films with Photocatalytic Activity[J]. J. Am. Ceram. Soc., 2010, 93(9): 2897-2902
    [234] Gao F, Chen X Y, Yin K B, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles[J]. Adv. Mater., 2007, 19(19): 2889
    [235] Li S, Lin Y H, Zhang B P, et al. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors[J]. J. Phys. Chem. C, 2010, 114(7): 2903-2908
    [236] Sun S M, Wang W Z, Zhang L, et al. Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions[J]. J. Phys. Chem. C, 2009, 113(29): 12826-12831
    [237] Ruan Q J, Zhang W D. Tunable Morphology of Bi2Fe4O9 Crystals for Photocatalytic Oxidation[J]. J. Phys. Chem. C, 2009, 113(10): 4168-4173
    [238] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angew. Chem. Int. Edit., 2004, 43(34): 4463-4466
    [239] Shan Z C, Xia Y J, Yang Y X, et al. Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5[J]. Mater. Lett., 2009, 63(1): 75-77
    [240] Yang Y Q, Zhang G K, Yu S J, et al. Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9[J]. Chem. Eng. J., 2010, 162(1): 171-177
    [241] Kako T, Zou Z G, Katagiri M, et al. Decomposition of organic compounds over NaBiO3 under visible light irradiation[J]. Chem. Mater., 2007, 19(2): 198-202
    [242] Chang X F, Ji G B, Sui Q, et al. Rapid photocatalytic degradation of PCP-Na over NaBiO3 driven by visible light irradiation[J]. J. Hazard. Mater., 2009, 166(2-3): 728-733
    [243] Peng F, Chen C, Yu H, et al. Preparation of NaxBayBiO3·nH2O and their photooxidation characteristic under visible-light irradiation[J]. Mater. Chem. Phys., 2009, 116(1): 294-299
    [244] Tang J W, Zou Z G, Ye J H. Efficient photocatalysis on BaBiO3 driven by visible light[J]. J. Phys. Chem. C, 2007, 111(34): 12779-12785
    [245] Tang J W, Ye J. Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20[J]. Chem. Phys. Lett., 2005, 410(1-3): 104-107
    [246] Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater., 2008, 20(9): 2937-2941
    [247] Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. J. Hazard. Mater., 2009, 167(1-3): 803-809
    [248] Ai Z H, Ho W K, Lee S C, et al. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light[J]. Environ. Sci. Technol., 2009, 43(11): 4143-4150
    [249] Zhang L, Cao X F, Chen X T, et al. BiOBr hierarchical microspheres: Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J]. J. Colloid. Interf. Sci., 2011, 354(2): 630-636
    [250] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008, 112(3): 747-753
    [251] Zhang X, Zhang L Z. Electronic and Band Structure Tuning of Ternary Semiconductor Photocatalysts by Self Doping: The Case of BiOI[J]. J. Phys. Chem. C, 2010, 114(42): 18198-18206
    [252] Xia J X, Yin S, Li H M, et al. Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid[J]. Langmuir, 2011, 27(3): 1200-1206
    [253] Wang W D, Huang F Q, Lin X P. xBiOI-(1-x)BiOCl as efficient visible-light-driven photocatalysts[J]. Scripta Mater., 2007, 56(8): 669-672
    [254] Wang W D, Huang F Q, Lin X P, et al. Visible-fight-responsive photocatalysts xBiOBr-(1-x)BiOI[J]. Catal. Commun., 2008, 9(1): 8-12
    [255] Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J]. J. Catal., 2009, 262(1): 144-149
    [256] Zhang X, Zhang L Z, Xie T F, et al. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures[J]. J. Phys. Chem. C, 2009, 113(17): 7371-7378
    [257] Cheng H F, Huang B B, Dai Y, et al. One-Step Synthesis of the Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances[J]. Langmuir, 2010, 26(9): 6618-6624
    [258] Zhang L, Wang W Z, Zhou L, et al. Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst[J]. Appl. Catal. B-Environ., 2009, 90(3-4): 458-462
    [259] Suryanarayana C. Nanocrystalline materials[J]. Int. Mater. Rev., 1995, 40(2): 41-64
    [260] Gleiter H. Nanostructured materials: Basic concepts and microstructure[J]. Acta Mater., 2000, 48(1): 1-29
    [261]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社, 2002.
    [262]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [263] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005, 105(4): 1025-1102
    [264] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev., 1989, 89(8): 1861-1873
    [265] Denton R, Mühlschlegel B, Scalapino D J. Electronic heat capacity and susceptibility of small metal particles[J]. Phys. Rev. Lett., 1971, 26(12): 707-711
    [266] Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives[J]. Chem. Mater., 2001, 13(11): 3843-3858
    [267] Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies[J]. Annu. Rev. Mater. Sci., 2000, 30: 545-610
    [268] Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev., 2004, 104(9): 3893-3946
    [269] Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology[J]. Prog. Cryst. Growth Charact. Mater., 2007, 53(2): 117-166
    [270] Rajamathi M, Seshadri R. Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions[J]. Curr. Opin. Solid. St. M., 2002, 6(4): 337-345
    [271] Niederberger M. Nonaqueous sol-gel routes to metal oxide nanoparticles[J]. Accounts. Chem. Res., 2007, 40(9): 793-800
    [272] Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nanomaterials using the sol-gel process[J]. Accounts. Chem. Res., 2007, 40(9): 810-818
    [273] Lopez-Quintela M A. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control* 1[J]. Curr. Opin. Colloid. Interface sci., 2003, 8(2): 137-144
    [274] Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions[J].Adv. Colloid. Interfac., 2004, 110(1-2): 49-74
    [275] Patel K, Kapoor S, Dave D P, et al. Synthesis of Au, Au/Ag, Au/Pt and Au/Pd nanoparticles using the microwave-polyol method[J]. Res. Chem. Intermediat., 2006, 32(2): 103-113
    [276] Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence[J]. Nano. Lett., 2003, 3(7): 955-960
    [277] Tompsett G A, Conner W C, Yngvesson K S. Microwave synthesis of nanoporous materials[J]. Chemphyschem., 2006, 7(2): 296-319
    [278] Gedanken A. Using sonochemistry for the fabrication of nanomaterials[J]. Ultrason. Sonochem., 2004, 11(2): 47-55
    [279]张克从,张乐德.晶体生长科学与技术[M].北京:科学出版社, 1997.
    [280]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社, 1999.
    [281] Levi A C, Kotrla M. Theory and simulation of crystal growth[J]. J. Phys.: Condens. Matter., 1997, 9: 299-344
    [282] Gilmer G H, Bennema P. Simulation of crystal growth with surface diffusion[J]. J. Apl. Phys., 1972, 43(4): 1347-1360
    [283] Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic–inorganic interface[J]. Nature, 2005, 437(7059): 664-670
    [284] Hu J S, Zhong L S, Song W G, et al. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal[J]. Adv. Mater., 2008, 20(15): 2977-2982
    [285] Soler-Illia G, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chem. Rev., 2002, 102(11): 4093-4138
    [286] Ikkala O, Ten Brinke G. Hierarchical self-assembly in polymeric complexes: Towards functional materials[J]. Chem. Commun., 2004, (19): 2131-2137
    [287] Snyder M A, Tsapatsis M. Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes[J]. Angew. Chem. Int. Ed., 2007, 46(40): 7560-7573
    [288] Keizer H M, Sijbesma R P. Hierarchical self-assembly of columnar aggregates[J]. Chem. Soc. Rev., 2005, 34(3): 226-234
    [289] Zhang D F, Niu L Y, Guo L. Solution Synthesis Strategies for Hierarchical Nanostructures[J]. Acta Phys. Chim. Sin, 2010, 26(11): 2865-2876
    [290] Yu J G, Liu W, Yu H G. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J]. Cryst. Growth Des., 2008, 8(3): 930-934
    [291] Li Y, Sasaki T, Shimizu Y, et al. Hexagonal-Close-Packed, Hierarchical Amorphous TiO2 Nanocolumn Arrays: Transferability, Enhanced Photocatalytic Activity, andSuperamphiphilicity without UV Irradiation[J]. J. Am. Chem. Soc., 2008, 130(44): 14755-14762
    [292] Li L, Koshizaki N. Vertically aligned and ordered hematite hierarchical columnar arrays for applications in field-emission, superhydrophilicity, and photocatalysis[J]. J. Mater. Chem., 2010, 20(15): 2972-2978
    [293] Dai X J, Luo Y S, Zhang W D, et al. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area[J]. Dalton. Trans., 2010, 39(14): 3426-3432
    [294] Xue H, Li Z H, Dong H, et al. 3D Hierarchical Architectures of Sr2Sb2O7: Hydrothermal Syntheses, Formation Mechanisms, and Application in Aqueous-Phase Photocatalysis[J]. Cryst. Growth Des., 2008, 8(12): 4469-4475
    [295] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity[J]. J. Phys. Chem. C, 2007, 111(34): 12866-12871
    [296] Cao S W, Zhu Y J. Hierarchically nanostructured (alpha-Fe2O3 hollow spheres: Preparation, growth mechanism, photocatalytic property, and application in water treatment[J]. J. Phys. Chem. C, 2008, 112(16): 6253-6257
    [297] Choi H, Sofranko A C, Dionysiou D D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction[J]. Adv. Funct. Mater., 2006, 16(8): 1067-1074
    [298] Zhang L Z, Yu J C. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity[J]. Chem. Commun., 2003, (16): 2078-2079
    [299] Jang Y H, Kochuveedu S T, Cha M A, et al. Synthesis and photocatalytic properties of hierarchical metal nanoparticles/ZnO thin films hetero nanostructures assisted by diblock copolymer inverse micellar nanotemplates[J]. J. Colloid. Interf. Sci., 2010, 345(1): 125-130
    [300] Zhao Y F, Wei M, Lu J, et al. Biotemplated Hierarchical Nanostructure of Layered Double Hydroxides with Improved Photocatalysis Performance[J]. ACS Nano, 2009, 3(12): 4009-4016
    [301] Xiong S L, Xi B J, Qian Y T. CdS Hierarchical Nanostructures with Tunable Morphologies: Preparation and Photocatalytic Properties[J]. J. Phys. Chem. C, 2010, 114(33): 14029-14035
    [302] Wu Q Z, Chen X, Zhang P, et al. Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities[J]. Cryst. Growth Des., 2008, 8(8): 3010-3018
    [303] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization[J]. Phys. Rev. Lett, 1999, 82: 1345-1349
    [304] Tian G H, Chen Y J, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J]. J. Mater. Chem., 2011, 21(3): 887-892
    [305] Shang M, Wang W Z, Ren J, et al. A novel BiVO4 hierarchical nanostructure:controllable synthesis, growth mechanism, and application in photocatalysis[J]. CrystEngComm, 2010, 12(6): 1754-1758
    [306] Ma D K, Huang S M, Chen W X, et al. Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability[J]. J. Phys. Chem. C, 2009, 113(11): 4369-4374
    [307] Hou J G, Qu Y F, Krsmanovic D, et al. Hierarchical assemblies of bismuth titanate complex architectures and their visible-light photocatalytic activities[J]. J. Mater. Chem., 2010, 20(12): 2418-2423
    [308] Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania[J]. Adv. Funct. Mater., 2007, 17(12): 1984-1990
    [309] Li B X, Wang Y F. Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures[J]. J. Phys. Chem. C, 2010, 114(2): 890-896
    [310] Yu J G, Qi L F. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity[J]. J. Hazard. Mater., 2009, 169(1-3): 221-227
    [311] Song X F, Gao L. Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties[J]. J. Phys. Chem. C, 2008, 112(39): 15299-15305
    [312] Cao S W, Zhu Y J, Cheng G F, et al. Preparation and photocatalytic property of alpha-Fe2O3 hollow core/shell hierarchical nanostructures[J]. J. Phys. Chem. Solids., 2010, 71(12): 1680-1683
    [313] Apte S K, Garaje S N, Bolade R D, et al. Hierarchical nanostructures of CdIn2S4 via hydrothermal and microwave methods: efficient solar-light-driven photocatalysts[J]. J. Mater. Chem., 2010, 20(29): 6095-6102
    [314] Muruganandham M, Kusumoto Y. Synthesis of N, C Codoped Hierarchical Porous Microsphere ZnS As a Visible Light-Responsive Photocatalyst[J]. J. Phys. Chem. C, 2009, 113(36): 16144-16150
    [315] Zhao Q R, Xie Y, Zhang Z G, et al. Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity[J]. Cryst. Growth Des., 2007, 7(1): 153-158
    [316] Zhang Y W, Liu C, Pang G S, et al. Hydrothermal Synthesis of a CaNb2O6 Hierarchical Micro/Nanostructure and Its Enhanced Photocatalytic Activity[J]. Eur. J. Inorg. Chem., 2010(8): 1275-1282
    [317] Zhou Y X, Yao H B, Zhang Q, et al. Hierarchical FeWO4 Microcrystals: Solvothermal Synthesis and Their Photocatalytic and Magnetic Properties[J]. Inorg. Chem., 2009, 48(3): 1082-1090
    [318] Wang W W, Zhu Y J, Yang L X. ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties[J]. Adv. Funct. Mater., 2007, 17(1): 59-64
    [319] Yu J G, Wang W G, Cheng B. Synthesis and Enhanced Photocatalytic Activity of a Hierarchical Porous Flowerlike p-n Junction NiO/TiO2 Photocatalyst[J]. Chem. Asian J., 2010, 5(12): 2499-2506
    [320] Li Y X, Chen G, Wang Q, et al. Hierarchical ZnS-In2S3-CuS Nanospheres with Nanoporous Structure: Facile Synthesis, Growth Mechanism, and Excellent Photocatalytic Activity[J]. Adv. Funct. Mater., 2010, 20(19): 3390-3398
    [321] Chen Z, Qian L W, Zhu J, et al. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity[J]. CrystEngComm, 2010, 12(7): 2100-2106
    [322] Zhou L, Wang W Z, Xu H L, et al. Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis[J]. Chem. Eur. J., 2009, 15(7): 1776-1782
    [323] Sinha A K, Basu M, Pradhan M, et al. Fabrication of Large-Scale Hierarchical ZnO Hollow Spheroids for Hydrophobicity and Photocatalysis[J]. Chem. Eur. J., 2010, 16(26): 7865-7874
    [324] Gong J Y, Cai Z A, Zhang D E, et al. Fabrication of zinc sulphide hierarchical hollow spheres with photocatalytic property by a mild organic acid-assisted route[J]. Micro. Nano. Lett., 2010, 5(3): 171-174
    [325] Shang M, Wang W Z, Zhang L, et al. 3D Bi2WO6/TiO2 Hierarchical Heterostructure: Controllable Synthesis and Enhanced Visible Photocatalytic Degradation Performances[J]. J. Phys. Chem. C, 2009, 113(33): 14727-14731
    [326] Cao T P, Li Y J, Wang C H, et al. Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance[J]. J. Sol-gel. Sci. Techn., 2010, 55(1): 105-110
    [327] Lu F, Cai W P, Zhang Y G. ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance[J]. Adv. Funct. Mater., 2008, 18(7): 1047-1056
    [328] Jia T, Wang W M, Long F, et al. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2 Hierarchical Architectures Assembled by Nanocones[J]. J. Phys. Chem. C, 2009, 113(21): 9071-9077
    [329]周玉,武高辉.材料分析测试技术一材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社, 2003.
    [330]赵文宽,耿承延等.仪器分析[M].北京:高等教育出版社, 2000.
    [331]等黄惠忠.纳米材料分析[M].北京:化学工业出版社, 2003.
    [332]吴刚.材料结构表征及应用[M].北京:化学工业出版社, 2002.
    [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38
    [2] Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96
    [3] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007, 107(7): 2891-2959
    [4] Hong X T, Wang Z P, Cai W M, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide[J]. Chem. Mater., 2005, 17(6): 1548-1552
    [5] Ma D K, Huang S M, Chen W X, et al. Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability[J]. J. Phys. Chem. C, 2009, 113(11): 4369-4374
    [6] Shang M, Wang W Z, Xu H L. New Bi2WO6 Nanocages with High Visible-Light-Driven Photocatalytic Activities Prepared in Refluxing EG[J]. Cryst. Growth Des., 2009, 9(2): 991-996
    [7] Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Appl. Catal. B-Environ., 2006, 66(1-2): 100-110
    [8] Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chem. Mater., 2005, 17(13): 3537-3545
    [9] Martinez-De La Cruz A, Alfaro S O, Cuellar E L, et al. Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor[J]. Catal. Today, 2007, 129(1-2): 194-199
    [10] Bi J H, Wu L, Li H, et al. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies[J]. Acta Mater., 2007, 55(14): 4699-4705
    [11] Ren L, Ma L L, Jin L, et al. Template-free synthesis of BiVO4 nanostructures: II. Relationship between various microstructures for monoclinic BiVO4 and their photocatalytic activity for the degradation of rhodamine B under visible light[J]. Nanotechnology, 2009, 20(40): 405602-405610
    [12] Li G S, Zhang D Q, Yu J C. Ordered mesoporous BiVO4 through nanocasting: A superior visible light-driven photocatalyst[J]. Chem. Mater., 2008, 20(12): 3983-3992
    [13] Dunkle S S, Helmich R J, Suslick K S. BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis[J]. J. Phys. Chem. C, 2009, 113(28): 11980-11983
    [14] Yao W F, Wang H, Xu X H, et al. Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12[J]. Mater. Lett., 2003, 57(13-14): 1899-1902
    [15] Kim J, Chung I, Choy J, et al. Macromolecular Nanoplatelet of Aurivillius-type Layered Perovskite Oxide, Bi4Ti3O12[J]. Chem. Mater., 2001, 13(9): 2759-2761
    [16] Ruan Q J, Zhang W D. Tunable Morphology of Bi2Fe4O9 Crystals for Photocatalytic Oxidation[J]. J. Phys. Chem. C, 2009, 113(10): 4168-4173
    [17] Zhang K L, Liu C M, Huang F Q, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Appl. Catal. B-Environ., 2006, 68(3-4): 125-129
    [18] Deng Z T, Chen D, Peng B, et al. From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro- and nanostructures: Synthesis and characterization[J]. Cryst. Growth Des., 2008, 8(8): 2995-3003
    [19] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008, 112(3): 747-753
    [20] An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX (X = Cl, Br, and I)[J]. Rare Metals, 2008, 27(3): 243-250
    [21] Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater., 2008, 20(9): 2937-2941
    [22] Fang F, Chen L, Wu L M. Syntheses, Morphologies and Properties of BiOI Nanolamellas and BiSI Nanorods[J]. Chinese J. Struc. Chem., 2009, 28(11): 1399-1406
    [23] Lei Y Q, Wang G H, Song S Y, et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J]. CrystEngComm, 2009, 11(9): 1857-1862
    [24] Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. J. Hazard. Mater., 2009, 167(1-3): 803-809
    [25] Al Z H, Ho W K, Lee S C, et al. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light[J]. Environ. Sci. Technol., 2009, 43(11): 4143-4150
    [26] Su W Y, Wang J, Huang Y X, et al. Synthesis and catalytic performances of a novel photocatalyst BiOF[J]. Scripta Mater., 2010, 62(6): 345-348
    [27] Wu S J, Wang C, Cui Y F, et al. Synthesis and photocatalytic properties of BiOCl nanowire arrays[J]. Mater. Lett., 2010, 64(2): 115-118
    [28] Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions[J]. Chem. Mater., 2007, 19(3): 366-373
    [29] Zhang X, Zhang L Z, Xie T F, et al. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures[J]. J. Phys. Chem. C, 2009, 113(17): 7371-7378
    [30] Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation[J]. Catal. Commun., 2009, 10(15): 1957-1961
    [31] Cong H P, Yu S H. Shape Control of Cobalt Carbonate Particles by a Hydrothermal Process in a Mixed Solvent: An Efficient Precursor to Nanoporous Cobalt Oxide Architectures and Their Sensing Property[J]. Cryst. Growth Des., 2009, 9(1): 210-217
    [32] Zhang H J, Wu J, Zhou L P, et al. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents[J]. Langmuir, 2007, 23(3): 1107-1113
    [33] Chen S F, Yu S H, Jiang J, et al. Polymorph Discrimination of CaCO3 Mineral in an Ethanol/Water Solution: Formation of Complex Vaterite Superstructures and Aragonite Rods[J]. Chem. Mater., 2006, 18(1): 115-122
    [34] Du Y P, Zhang Y W, Sun L D, et al. Atomically Efficient Synthesis of Self-assembled Monodisperse and Ultrathin Lanthanide Oxychloride Nanoplates[J]. J. Am. Chem. Soc., 2009, 131(9): 3162-3163
    [35] Chang X, Huang J, Cheng C, et al. BiOX (X= Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance[J]. Catal. Commun., 2010, 11(5): 460-464
    [36] Tang J W, Zou Z G, Ye J H. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation[J]. Angew. Chem. Int. Ed., 2004, 43(34): 4463-4466
    [1] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009, 38(1): 253-278
    [2] Pirkanniemi K, Sillanpaa M. Heterogeneous water phase catalysis as an environmental application: a review[J]. Chemosphere, 2002, 48(10): 1047-1060
    [3] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96
    [4] Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide[J]. Prog. Solid State Chem., 2004, 32(1-2): 33-177
    [5] Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: A historical overview and future prospects[J]. Jpn. J. Appl. Phys., 2005, 44(12): 8269-8285
    [6] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007, 107(7): 2891-2959
    [7] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal., 2003, 216(1-2): 505-516
    [8] Chatterjee D, Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants[J]. J. Photoch. Photobio. C, 2005, 6(2-3): 186-205
    [9] Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627
    [10] Soler-Illia G J D A, Sanchez C, Lebeau B, et al. Chemical Strategies To Design Textured Materials:? from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures[J]. Chem. Rev., 2002, 102(11): 4093-4138
    [11] Li Y, Zheng M, Ma L, et al. Fabrication of Hierarchical ZnO Architectures and Their Superhydrophobic Surfaces with Strong Adhesive Force[J]. Inorg. Chem., 2008, 47(8): 3140-3143
    [12] Wang W, Zhen L, Xu C, et al. Room Temperature Synthesis of Hierarchical SrCO3 Architectures by a Surfactant-Free Aqueous Solution Route[J]. Cryst. Growth Des., 2008, 8(5): 1734-1740
    [13] Song X, Gao L. Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties[J]. J. Phys. Chem. C, 2008, 112(39): 15299-15305
    [14] Ma D, Huang S, Chen W, et al. Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability[J]. J. Phys. Chem. C, 2009, 113(11): 4369-4374
    [15] Wu Q, Chen X, Zhang P, et al. Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities[J]. Cryst. Growth Des., 2008, 8(8): 3010-3018
    [16] Su W Y, Wang J A, Huang Y X, et al. Synthesis and catalytic performances of a novelphotocatalyst BiOF[J]. Scripta Mater., 2010, 62(6): 345-348
    [17] Zhu L P, Liao G H, Bing N C, et al. Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization[J]. CrystEngComm, 2010, 12(11): 3791-3796
    [18] Song J M, Mao C J, Niu H L, et al. Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties[J]. CrystEngComm, 2010, 12(11): 3875-3881
    [19] Ma J M, Liu X D, Lian J B, et al. Ionothermal Synthesis of BiOCl Nanostructures via a Long-Chain Ionic Liquid Precursor Route[J]. Cryst. Growth Des., 2010, 10(6): 2522-2527
    [20] Jiang Z, Yang F, Yang G D, et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. J. Photoch. Photobio. A, 2010, 212(1): 8-13
    [21] Ai Z H, Ho W K, Lee S C, et al. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light[J]. Environ. Sci. Technol., 2009, 43(11): 4143-4150
    [22] Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater., 2008, 20(9): 2937-2941
    [23] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008, 112(3): 747-753
    [24] Lei Y Q, Wang G H, Song S Y, et al. Room temperature, template-free synthesis of BiOI hierarchical structures: Visible-light photocatalytic and electrochemical hydrogen storage properties[J]. Dalton. Trans., 2010, 39(13): 3273-3278
    [25] Xiao X, Zhang W D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity[J]. J. Mater. Chem., 2010, 20(28): 5866-5870
    [26] Zhang X, Zhang L Z. Electronic and Band Structure Tuning of Ternary Semiconductor Photocatalysts by Self Doping: The Case of BiOI[J]. J. Phys. Chem. C, 2010, 114(42): 18198-18206
    [27] Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation[J]. Catal. Commun., 2009, 10(15): 1957-1961
    [28] Keller E, Kr?mer V, Schmidt M, et al. The crystal structure of Bi4O5I2 and its relation to the structure of Bi4O5Br2[J]. Z. Kristallogr., 2002, 217(6): 256-264
    [29] Schmidt M, Oppermann H, Bruckner H, et al. Untersuchungen zum System Bi2O3/BiI3[J]. Z. anorg. allg. Chem., 1997, 623(12): 1945-1953
    [30] Rittner P, Oppermann H. Zur Calorimetrie der Bismutoxidhalogenide. III Bismutoxidiodide[J]. Z. anorg. allg. Chem., 1992, 617(11): 131-135
    [31] Keller E, Kr?mer V. Bi5O7Br and its structural relation to -Bi5O7I[J]. Acta Cryst. C, 2007, 63(12): i109-i111
    [32] Eggenweiler U, Ketterer J, Keller E, et al. The crystal structure of -Bi5O7I[J]. Z. Kristallogr., 2001, 216(4): 230-233
    [33] Ketterer J, Keller E, Kr?mer V. Crystal structure of bismuth oxide iodide,β-Bi5O7I[J]. Z. Kristallogr., 1985, 172(1-2): 63-70
    [34] Huang W L, Zhu Q S. Electronic structures of relaxed BiOX (X = F, Cl, Br, I) photocatalysts[J]. Comp. Mater. Sci., 2008, 43(4): 1101-1108
    [35] Huang W L, Zhu Q S. DFT Calculations on the Electronic Structures of BiOX (X = F, Cl, Br, I) Photocatalysts With and Without Semicore Bi 5d States[J]. J. Comput. Chem., 2009, 30(2): 183-190
    [36] Anandan S, Lee G, Chen P, et al. Removal of Orange II Dye in Water by Visible Light Assisted Photocatalytic Ozonation Using Bi2O3 and Au/Bi2O3 Nanorods[J]. Ind. Eng. Chem. Res., 2010, 49(20): 9729-9737
    [37] Hameed A, Montini T, Gombac V, et al. Surface Phases and Photocatalytic Activity Correlation of Bi2O3/Bi2O4-x Nanocomposite[J]. J. Am. Chem. Soc., 2008, 130(30): 9658-9659
    [38] Sun S, Wang W, Zhang L, et al. Visible Light-Induced Efficient Contaminant Removal by Bi5O7I[J]. Environ. Sci. Technol., 2009, 43(6): 2005-2010
    [39] Yu C, Fan C, Yu J C, et al. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV-light irradiation[J]. Mater. Res. Bull., 2011, 46(1): 140-146
    [40] Li Y, Yao H, Wang J, et al. Influence of the precipitation pH on the compositions and properties of Bi-based oxyiodide photocatalysts[J]. Mater. Res. Bull., 2011, 46(2): 292-296
    [41] Zhao Z, Liu F, Zhao L, et al. Preparation and XPS study of X-ray photochromic transparent BiOI/nylon11 composite film[J]. Appl. Phys. A, 2010, DOI: 10.1007/s00339-010-6038-9
    [42] Yu C L, Yu J C, Fan C F, et al. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation[J]. Mater. Sci. Eng. B, 2010, 166(3): 213-219
    [43] Peng F, Chen C, Yu H, et al. Preparation of NaxBayBiO3·nH2O and their photooxidation characteristic under visible-light irradiation[J]. Mater. Chem. Phys., 2009, 116(1): 294-299
    [44] Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X= Cl, Br, I) particles synthesized in reverse microemulsions[J]. Chem. Mater, 2007, 19(3): 366-373
    [45] Burda C, Chen X, Narayanan R, et al. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem. Rev., 2005, 105(4): 1025-1102
    [46] Yao J H, Elder K R, Guo H, et al. Ostwald ripening in two and three dimensions[J]. Phys. Rev. B, 1992, 45(14): 8173-8176
    [47] Chang X F, Huang J, Cheng C, et al. BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance[J]. Catal. Commun.,2010, 11(5): 460-464
    [48] Fang F, Chen L, Wu L M. Syntheses, Morphologies and Properties of BiOI Nanolamellas and BiSI Nanorods[J]. Chinese J. Struct. Chem., 2009, 28(11): 1399-1406
    [49] An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX (X = Cl, Br, and I)[J]. Rare Metals, 2008, 27(3): 243-250
    [50] Xia J X, Yin S, Li H M, et al. Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid[J]. Langmuir, 2011, 27(3): 1200-1206
    [51] Ruan Q J, Zhang W D. Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation[J]. J. Phys. Chem. C, 2009, 113(10): 4168-4173
    [52] Sene J J, Zeltner W A, Anderson M A. Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials[J]. J. Phys. Chem. B, 2003, 107(7): 1597-1603
    [53] Henglein A, Gutierrez M. Photochemistry of colloidal metal sulfides. 5. Fluorescence and chemical reactions of ZnS and ZnS/CdS co-colloids[J]. Ber. Bunsenges. Phys. Chem., 1983, 87(10): 852-858
    [54] Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. Am. Mineral., 2000, 85(3-4): 543
    [55] Long M, Cai W, Cai J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B, 2006, 110(41): 20211-20216
    [56] Butler M A, Ginley D S. Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities[J]. J. Electrochem. Soc., 1978, 125: 228-232
    [57] Li Y, Wang J, Yao H, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities[J]. Catal. Commun., 2010, 12(7): 660-664
    [58] Li G, Zhang D, Yu J C. Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst[J]. Chem. Mater., 2008, 20(12): 3983-3992
    [59] Bell A T. The Impact of Nanoscience on Heterogeneous Catalysis[J]. Science, 2003, 299(5613): 1688-1691
    [1] Goodenough J B, Hamnett A, Dare-Edwards M P, et al. Inorganic materials for photoelectrolysis[J]. Surf. Sci., 1980, 101(1-3): 531-540
    [2] Blasse G, Dirksen G J, de Korte P. Materials with cationic valence and conduction bands for photoelectrolysis of water[J]. Mater. Res. Bull., 1981, 16(8): 991-998
    [3] Cheng H, Huang B, Lu J, et al. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs[J]. Phys. Chem. Chem. Phys., 2010, 12(47): 15468-15475
    [4] Anandan S, Lee G, Chen P, et al. Removal of Orange II Dye in Water by Visible Light Assisted Photocatalytic Ozonation Using Bi2O3 and Au/Bi2O3 Nanorods[J]. Ind. Eng. Chem. Res., 2010, 49(20): 9729-9737
    [5] Chen Z, Qian L, Zhu J, et al. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity[J]. CrystEngComm, 2010, 12(7): 2100-2106
    [6] Huang Y, Ai Z, Ho W, et al. Ultrasonic Spray Pyrolysis Synthesis of Porous Bi2WO6 Microspheres and Their Visible-Light-Induced Photocatalytic Removal of NO[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6342-6349
    [7] Li G, Zhang D, Yu J C, et al. An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking Down Nitric Oxide[J]. Environ. Sci. Technol., 2010, 44(11): 4276-4281
    [8] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J]. J. Mater. Chem., 2011, 21(3): 887-892
    [9] Xi G, Ye J. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties[J]. Chem. Commun., 2010, 46(11): 1893-1895
    [10] Ke D, Peng T, Ma L, et al. Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light[J]. Inorg. Chem., 2009, 48(11): 4685-4691
    [11] Kong L, Chen H, Hua W, et al. Mesoporous bismuth titanate with visible-light photocatalytic activity[J]. Chem. Commun., 2008, (40): 4977-4979
    [12] Ruan Q J, Zhang W D. Tunable Morphology of Bi2Fe4O9 Crystals for Photocatalytic Oxidation[J]. J. Phys. Chem. C, 2009, 113(10): 4168-4173
    [13] Su W Y, Wang J A, Huang Y X, et al. Synthesis and catalytic performances of a novel photocatalyst BiOF[J]. Scripta Mater., 2010, 62(6): 345-348
    [14] Zhu L P, Liao G H, Bing N C, et al. Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization[J]. CrystEngComm, 2010, 12(11): 3791-3796
    [15] Song J M, Mao C J, Niu H L, et al. Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and theirphotocatalytic properties[J]. CrystEngComm, 2010, 12(11): 3875-3881
    [16] Ma J M, Liu X D, Lian J B, et al. Ionothermal Synthesis of BiOCl Nanostructures via a Long-Chain Ionic Liquid Precursor Route[J]. Cryst. Growth Des., 2010, 10(6): 2522-2527
    [17] Jiang Z, Yang F, Yang G D, et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. J. Photoch. Photobio. A, 2010, 212(1): 8-13
    [18] Ai Z H, Ho W K, Lee S C, et al. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light[J]. Environ. Sci. Technol., 2009, 43(11): 4143-4150
    [19] Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater., 2008, 20(9): 2937-2941
    [20] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008, 112(3): 747-753
    [21] Lei Y Q, Wang G H, Song S Y, et al. Room temperature, template-free synthesis of BiOI hierarchical structures: Visible-light photocatalytic and electrochemical hydrogen storage properties[J]. Dalton. Trans., 2010, 39(13): 3273-3278
    [22] Xiao X, Zhang W D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity[J]. J. Mater. Chem., 2010, 20(28): 5866-5870
    [23] Zhang X, Zhang L Z. Electronic and Band Structure Tuning of Ternary Semiconductor Photocatalysts by Self Doping: The Case of BiOI[J]. J. Phys. Chem. C, 2010, 114(42): 18198-18206
    [24] Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008, 112(3): 747-753
    [25] An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX (X = Cl, Br, and I)[J]. Rare Metals, 2008, 27(3): 243-250
    [26] Chen Y, Wen M, Wu Q. Stepwise blossoming of BiOBr nanoplate-assembled microflowers and their visible-light photocatalytic activities[J]. CrystEngComm, 2011, 13(8): 3035-3039
    [27] Xia J, Yin S, Li H, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton. T., 2011, 40(19): 5249-5258
    [28] Li Y, Yao H, Wang J, et al. Influence of the precipitation pH on the compositions and properties of Bi-based oxyiodide photocatalysts[J]. Mater. Res. Bull., 2011, 46(2): 292-296
    [29] Sun S, Wang W, Zhang L, et al. Visible Light-Induced Efficient Contaminant Removal by Bi5O7I[J]. Environ. Sci. Technol., 2009, 43(6): 2005-2010
    [30] Wang J, Li Y. Synthesis of single-crystalline nanobelts of ternary bismuth oxide bromide with different compositions[J]. Chem. Commun., 2003, (18): 2320-2321
    [31] Deng H, Wang J, Peng Q, et al. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes[J]. Chem., Eur. J., 2005, 11(22): 6519-6524
    [32] Lin X, Huang T, Huang F, et al. Photocatalytic Activity of a Bi-Based Oxychloride Bi3O4Cl[J]. J. Phys. Chem. B, 2006, 110(48): 24629-24634
    [33] Tompsett G A, Conner W C, Yngvesson K S. Microwave synthesis of nanoporous materials[J]. Chemphyschem, 2006, 7(2): 296-319
    [34] Polshettiwar V, Nadagouda M N, Varma R S. Microwave-Assisted Chemistry: a Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials[J]. Aust. J. Chem., 2009, 62(1): 16-26
    [35] Das S, Mukhopadhyay A K, Datta S, et al. Prospects of microwave processing: An overview[J]. Bull. Mater. Sci., 2009, 32(1): 1-13
    [36] Lu Q, Gao F, Komarneni S. Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods[J]. J. Am. Chem. Soc, 2004, 126(1): 54-55
    [37] Ma M G, Zhu J F, Sun R C, et al. Microwave-assisted synthesis of hierarchical Bi2O3 spheres assembled from nanosheets with pore structure[J]. Mater. Lett., 2010, 63(13): 1524-1527
    [38] Cao X F, Zhang L, Chen X T, et al. Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties[J]. CrystEngComm, 2010, 13(1): 306-311
    [39] Li G, Zhang D, Yu J C, et al. An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking Down Nitric Oxide[J]. Environ. Sci. Technol., 2010, 44(11): 4276-4281
    [40] Xie H, Shen D, Wang X, et al. Microwave hydrothermal synthesis and visible-light photocatalytic activity of [gamma]-Bi2MoO6 nanoplates[J]. Mater. Chem. Phys., 2008, 110(2-3): 332-336
    [41] Joshi U A, Jang J S, Borse P H, et al. Microwave synthesis of single-crystalline perovskite BiFeO nanocubes for photoelectrode and photocatalytic applications[J]. Appl. Phys. Lett., 2008, 92(24): 242106-242106.3
    [42] Zhang L, Cao X F, Chen X T, et al. BiOBr hierarchical microspheres: microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J]. J. Colloid. Interf. Sci., 2010
    [43] Schmidt M, Oppermann H, Bruckner H, et al. Untersuchungen zum System Bi2O3/BiI3[J]. Z. anorg. allg. Chem., 1997, 623(12): 1945-1953
    [44] Rittner P, Oppermann H. Zur Calorimetrie der Bismutoxidhalogenide. III Bismutoxidiodide[J]. Z. anorg. allg. Chem., 1992, 617(11): 131-135
    [45] Xia J, Yin S, Li H, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. DaltonTrans., 2011,354(2): 630-636
    [46] Chang X F, Huang J, Cheng C, et al. BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance[J]. Catal. Commun., 2010, 11(5): 460-464
    [47] Jiang Z, Yang F, Yang G, et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. J. Photochem. Photobiol. A: Chem., 2010, 212(1): 8-13
    [48] Shang M, Wang W, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. J. Hazard. Mater., 2009, 167(1-3): 803-809
    [49] Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. Am. Mineral., 2000, 85(3-4): 543-556
    [50] Long M, Cai W, Cai J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B, 2006, 110(41): 20211-20216
    [51] Butler M A, Ginley D S. Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities[J]. J. Electrochem. Soc., 1978, 125: 228-232
    [52] Li Y, Wang J, Yao H, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities[J]. Catal. Commun., 2011, 12(7): 660-664
    [53] Jia Z, Wang F, Xin F, et al. Simple Solvothermal Routes to Synthesize 3D BiOBrxI1-x Microspheres and Their Visible-Light-Induced Photocatalytic Properties[J]. Ind. Eng. Chem. Res., 2011, DOI: 10.1021/ie102310a

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700