用户名: 密码: 验证码:
铋系纳米光催化剂的制备、表征及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铋系光催化剂具有良好的催化性能,它们在可见光区均存在明显的吸收,这表明这些物质均可以响应可见光,因而具有可见光催化氧化处理有机污染物的能力。如何改善铋系光催化剂的制备方法,开发它们的良好性能是目前迫切需要解决的问题。Bi203是一类新型的光催化剂,与Ti02相比报道的比较少。由于Bi203的禁带宽度较窄(2.8 eV),可以吸收可见光受激发产生光生电子和空穴,可以被用来降解有机污染物。卤氧化铋BiOX (X=F、Cl、Br、I)是一种新型的半导体材料,它具有独特的电子结构、良好的光性能和催化性能。目前关于它的光催化应用方面的报道较少,研究表明卤氧化铋BiOX的光催化活性普遍优于商品TiO2(P25)的光催化活性,并且随着卤素原子序数的增加光催化活性也随之增强,即铋氧化碘BiOI的活性最高。
     基于此,本文首次选用微波法合成了不同晶型的Bi203及BiOI光催化剂,并系统的研究了光催化剂的制备及其光催化降解有机污染物的能力,主要包括以下几个方面的内容:
     一、利用微波法的反应速率快,效率高的特点合成前驱体微波产物,并利用X-射线衍射(XRD)、透射电镜扫描(TEM)、紫外可见漫反射光谱(DRS)对产物进行表征。XRD结果表明,通过不同温度煅烧提高产物结晶度,合成了不同晶型纳米级Bi203,煅烧温度300℃是合成β-Bi203的适宜温度,且随着煅烧温度的升高,更容易得到α-Bi2O3。TEM结果表明,热处理后结晶度改善。DRS谱图结果表明,a-Bi203带隙值为2.84 eV,p-Bi203的带隙值为2.77 eV,因此β相能够较好的利用可见光。以可见光下罗丹明B的降解为模型反应,研究了产物的光催化性能,证明β-Bi203的光催化活性比a-Bi203强。
     以Bi(NO3)3·5H2O和KI为主要原料,乙二醇与水为溶剂,在微波条件下合成由纳米片组成的微球BiOI光催化剂,以罗丹明B为模型污染物,研究其光催化性能。运用XRD、SEM、TEM、IR、DRS等技术对光催化剂的结构、形貌和光学性能进行研究,并与其光催化活性进行关联。首先将常温合成法作为对照实验,通过光催化性能测试证明微波产物性能高于常温搅拌产物。然后在不同溶剂体系中合成BiOI催化剂,选择最佳溶剂体系,在以上基础上分别对其中的实验参数如反应物摩尔配比、反应时间、反应功率等进行调整实验,探索合成BiOI光催化剂的最佳条件以获得最优性能的催化剂,同时研究了光催化反应的最佳用量。实验表明,微波合成BiOI较佳实验条件为,KI与Bi(NO3)3·5H2O的摩尔比为0.5:1,醇水配比为1:1,微波功率300 W,辐射10 min,通过简单快速的反应合成微球结构球状BiOI催化剂,微球由纳米片交叠而成,片层厚约为20nm,片的边长约为200nm,样品具有较大的比表面积,在可见光照射下2h对罗丹明B的降解率可达96%,光催化性能优越。
Bismuth-radicle nano-structural oxides have good catalytic properties, they have obvious absorption in the visible region, suggesting that these substances are able to respond to visible light, which deal with the visible light oxidation of organic pollutants. It is necessary to improve the preparation of bismuth-radicle nano-structural oxides and their development of good performance. Bi2O3 is a new type of photocatalyst, compared with TiO2.Since the narrow band gap of Bi2O3 (2.8 eV), absorb visible light generated by the photo-excited electrons and holes, Bi2O3 can be used to degrade organic pollutants. Halogen bismuth oxide BiOX (X=F, Cl, Br, I) are new type of semiconductor materials, which has a unique electronic structure, good optical properties and catalytic performance. The photocatalytic properties of BiOX riding better than commodities TiO2 (P25). With the atomic number of halogen photocatalytic activity gradually increased, the activity of bismuth oxide iodide BiOI is the highest in recent years, it hardly reported in the literature.
     In summary, microwave heating is an assisted-synthesis method to prepare Bi2O3 and BiOI powder photocatalyst, we examined their photocatalytic properties. This dissertation mainly includes:
     Bi2O3 have been successfully prepared by microwave irradiation process and subsequent thermal treatment. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (TEM), UV-Visible diffuse reflectance spectroscopy (DRS). The XRD results showed that the sample is well crystallized as the calcining temperature increased, the products changed fromβ-Bi2O3 to pure a-Bi2O3, so the calcination temperature 300℃is the appropriate temperature to synthesisβ-Bi2O3. The products are flaky, and the diameter become longer as the calcining temperature increased and the photocatalytic activities of the different crystal Bi2O3 were evaluated by the extent of decolorization of Rhodamine B under visible-light. The DRS spectra shows,α-Bi2O3 band gap is 2.84 eV,β-Bi2O3 band gap is 2.77 eV. The result shows that the photocatalytic activity ofβ-Bi2O3 is higher than a-Bi2O3.
     Nonospheres of BiOI photocatalyst were prepared by microwave irradiation method using Bi(NO3)3·5H2O and KI as the starting raw material, glycol and water as the solvent. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (TEM), Scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (DRS). At first, the room temperature mixing method as a control experiment, the photocatalytic performance tested by the product performance is higher than room temperature mixing of microwave products. Synthesized in different solvent system to select the best solvent system, above each of them on the basis of processing parameters such as molar ratio, reaction time, reaction to adjust the power and other experiments to explore the synthesis BiOI the best conditions for photocatalytic optimal performance of the catalyst. Photocatalytic reaction was also studied the optimum amount. Microwave Synthesis BiOI better experimental conditions, KI and Bi(NO3)3·5H2O molar ratio of 0.5:1, 1:1 alcohol-water ratio, microwave power 300 W, radiation 10 min. The microspheres are composed of nano-films, thickness of the film was about 20 nm, the length was about 200 nm. The result showed that BiOI has high catalytic activities towards the degradation of RhB under visible light irradiation.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [2]J. H. Cary, J. Lawrence, M. H. Tosine. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous solutions. Bull. Environ. Contam. Tox.,1976,16: 697-701.
    [3]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. J. Am. Chem. Soc,1977,99(1):303-304.
    [4]S. N. Frank, A. J. Bard. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes. J. Am. Chem. Soc.,1977,99(14): 4467-4475.
    [5]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem,1977,81:1484-14988.
    [6]M. R. Hoffmann, S. T. Martin, W. Choi, et al, Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95(1):69-96
    [7]A. Fujishima, T. N. Rao, Tryk D A. Titanium dioxide photocatalysis. Photochem. photobiol.C,2000,1(1):1-21.
    [8]J. M. Herrmann, C. Guillard, P. Pichat. Heterogeneous photocatalysis:an emerging technology for water treatment. Catalysis Today,1993,17:7-20.
    [9]L. B. Khalil, W. E. Moural, M. W. Rophael. Photocatalytic reduction of environmental pollutant Cr(VI)over some semiconductors under UV-visible light illumination. Appl. Cata. B:Eviron.,1998,17:267-273.
    [10]D. F. Ollis, H. Al-Ekabi. Photocatalytic purification and treatment of water and air. El sevier, Amsterdam,1993.
    [11]X. Z. Fu, W. A. Zeltner, M. A. Anderson. Applications in photocatalytic purification of air. Elsevier Science B.V.,1996,103:445-461.
    [12]L. S. Zhang, W. Z. Wang, J. Yang, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Appl. Catal. A:Gen.,2006,308: 105-110.
    [13]W. D. He, W. Qin, X. H. Wu, et al. The photocatalytic properties of bismuth oxide films prepared through the sol-gel method. Thin Solid Films,2007,515(13): 5362-5365.
    [14]M. R. Hoffman, S. T. Martin, W. Choi, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev,1995,95(1):69-96.
    [15]I.B. Bickley, C. T. Gonzalez, J. S. Lees, et al. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem.,1991,92(1):178-190.
    [16]W. D. He, W. Qin, X. H. Wu, etal. The photocatalytic properties of bismuth oxide films prepared through the sol-gel method. Thin Solid Films,2007,515(13): 5362-5365.
    [17]H. W. Kim. Synthesis and characterization of crystalline (3-Bi2O3 nanobelts, Thin Solid Films,2008,516(11):3665-3668.
    [18]B. J. Yang, M. S. Mo, H. M. Hu, A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur. J. Inorg. Chem.2004,9,1785-1787.
    [19]R. K. Jhaa, P. Renu, V. R. Ravic. Synthesis of bismuth oxide nanoparticles using bismuth nitrate and urea. Ceram. Int.,2005,31(3):495-497.
    [20]P. Salvador, G. M. L. Gareiag, F. Munoz. Contaet potentials of soluteion interfaees phase equilibrium and interfaeeial eleetriefields. Phys. Chem.,1992,96(25): 10349-10353.
    [21]T. Katsuyama, K. Hiruroa, K. Ogawa. Optical properties of Ga as nano-whiskers. Appl. Phys. Suppl.,1994,34(1):224-231.
    [22]支正良,汪信.环境中有机污染物的半导体光催化降解研究进展.环境污染与防治,1998,20(1):42-43.
    [23]陶跃武,赵梦月,陈士夫等.空气中有害物质的光催化去除.催化学报,2005,18(4):345-347.
    [24]J. M. Wu, T. W. Zhang. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. J. Photochem. Photobiol., A:Chem.,2004, 162(1):171-177.
    [25]J. Grzechulska, A. W. Morawski. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal. B:Environ.2002,36(1): 45-51.
    [26]吴合进.Ti02光催化剂固定及电场协助光催化:大连:中国科学院大连化学物理研究所,2000.
    [27]曹亚安,陈咏梅,管自生等.TiO2纳米粒子膜的表面态性质及其光催化活性的研究.感光科学与光化学,2005,17(2):100-102.
    [28]D. Dionysios, D. T. Makram, I. S. Baudin. Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuousmode photocatalytic reactor. Appl. Catal., B:Environ.,2004,50(4):259-269.
    [29]A. G. Rincon, P. Cesar. Effect of pH, inorganic ions, organic matter and H2O2 on E.coli K12 photocatalytic inactivation by TiO2. Appl. Catal., B:Environ.,2004,51(4): 283-302.
    [30]V. Sarria, P. Peringer. Solar degradation of 5-amino-6-methyl-2-Benzimidazolone by TiO2 and iron catalyst with H2O2 and O2 as electron acceptors. Energy,2004,29(5-6): 853-860.
    [31]K. Chhor, J. F. Bocquet, J. C. Colbeau. Comparative studies of phenol and salicylic acid photocatalytic degradation:influence of adsorbed oxygen. Mater. Chem. Phys., 2004,86(1):123-131.
    [32]史载锋,范益群,徐南平等.不同光源对光催化降解亚甲基蓝的影响.南京化工大学学报,2000,22:59-62.
    [33]D. M. Blake. Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reaction in aqueous solution. Sol. Ener. Mat.,1991,24:584-593.
    [34]K. Okamoto, Y. Yamamoto, H. Tanaka, et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 Powder. Bull. Chem Soc. Jpn.,1985,58(7): 2015-2022.
    [35]A. Kudo, H. Kato, J. Tsuji. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett.,2004,33(12):1534-1539.
    [36]Maruthamuthu, P.Gurunathan, K.Subramanian, E.Sastri, M.V.C. Visible light-inducedhydrogen production from water with Pt/Bi2O3/RuO2 in presence of electron relay and photosensitizer. Int. J. Hydrogen Energ.,1994,19(11):889-893.
    [37]P. Maruthamuthu, K. Gurunathan, E. Subramanian, et al. Int. J. Hydrogen Energ.,1993, 18(1):9-13.
    [38]P. Maruthamuthu, S. Muthu, M. V. C. Gurunathan, et al. Int. J. Hydrogen Energ.1992, 17:863-866.
    [39]H. P. Zhang, S.W. Wang, L. Y. Xiu, et al. Q. Chem. phys.2009,114(2-3):716-721.
    [40]J. Tang, J. H. Ye. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed.2004,43,4463-4466.
    [41]W. F. Yao, H. Wang, X. H. Xu. Synthesis and photocatalytic property of Bismuth titanate Bi4Ti3O12. Mater. Lett.,2003,57(5):1899-1902.
    [42]W. F. Yao, H. Wang, X. H. Xu. Characterization and photocatalytic properties of Ba doped Bii2TiO20.Mol. Catal., A,2003,202(2):305.
    [43]许效红,姚伟峰,张寅等.钛酸铋系化合物的光催化性能研究.化学学报.2005,63(1):5-10
    [44]N. Thanabodeekij, E. Gulari, S. Wongkasemjit. Bi12TiO20 synthesized directly from bismuth(Ⅲ) nitrate pentahydrate and titanium glycolate and its activity. Powder Technol.,2005,160(3):203-208.
    [45]H. B. Fu, C. S. Pan, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B,2005,109:22432-22439.
    [46]H. D. Xie, D. Z. Shen, et al. Microwave hydrothermal synthesis and visible-light photocatalytic activity of Bi2WO6 nanoplates. Mater. Chem. Phys.,2007,103(2-3): 334-339.
    [47]X. Zhao, T. G. Xu, et al. Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Appl. Cataly., B Environ.,2007,72(1-2):92-97.
    [48]L. Zhou, W. Z. Wang, et al. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M=W,Mo) photocatalysts. J. Mol. Catal., A:Chem.,2007,268(1-2): 195-200.
    [49]J. P. Li, X. Zhang, et al. Efficient visible light degradation of rhodamine B by a photoelectrochemical process based on a Bi2WO6 nanoplate film electrode. J. Phys. Chem. C,2007,111:6832-6836.
    [50]Z. He, C. Sun, et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation:Mechanism and pathway. J. Hazard. Mater.,2008,162(2-3):477-1486.
    [51]H. B. Fu, W. Q Yao, et al. The enhanced photoactivity of nanosized Bi2WO6 catalyst for the degradation of 4-chlorophenol. Mater. Res. Bull.,2008,43(10):2617-2625.
    [52]L. Wu, J. H. Bi, et al. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catalysis Today,2008, 131(1-4):15-20.
    [53]J. G. Yu, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem.2005,178(6):1968-1972.
    [54]H. B. Fu, C. S. Pan. Synthesis,characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Mater. Res. Bull.,2007,42(4): 696-706.
    [55]H. B. Fu, L. W. Zhang, W. Q. Yao. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Environmental,2006,66:100-110.
    [56]H. B. Fu, S. C. Zhang. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol,2008,42(6): 2085-2091.
    [57]Q. Xiao, J. Zhang, et al. Photocatalytic degradation of methylene blue over Co304/Bi2W06 composite under visible light irradiation. Catal. Commun.,2008,9(6): 1247-1253.
    [58]J. Wu, F. Duan, et al. Synthesis of Bi2WO6 nanoplate-built hierarchical nestlike structures with visible-light-induced photocatalytic activity. J. Phys. Chem. C,2007, 111(34):12866-12871.
    [59]S. W. Liu, J. G. Yu. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers. J. Solid State Chem.,2008, 181(5):1048-1055.
    [60]Y. H. Shi, S. H. Feng, C. S. Cao. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Mater. Lett.,2000,44(2):215-18.
    [61]T. Hiroaki, N. Takashi, O. Soichiro, et al. Crystal growth of bismuth tungstate Bi2WO6 by slow cooling method using borate fluxes. Eur. Ceram. Soc.,2005,25 (12): 2731-2734.
    [62]叶启亮,周文勇,孙浩等.异佛尔酮及氧化异佛尔酮合成工艺的研究进展.化工进展,2002,21(10):718-722.
    [63]金胜明,唐漠堂,阳卫军.从氯盐体系制备丙烯氨氧化用催化剂(Ⅲ)-含锡催化剂的活性评价.中南工业大学学报,2001,32(4):367-370.
    [64]杨汉培,范以宁,林明等.铋铝复合氧化物催化剂的结构及其对丙烷选择氧化反应的催化性能.催化学报,2001,22(6):515-519.
    [65]J. F. Dorrian, R. E. Newnham, D. K. Sndth. Crystal structure of Bi4Ti3O12. ferroelectric.1971,(3):17-27.
    [66]S. S. Ikegazni, I. Ueda. Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn. J. Appl. Phys.,1974,13(10):1572-1577.
    [67]阐艳梅,靳喜海,王佩玲等.共沉淀法制备钛酸铋超细粉体.无机材料学报,2002,17(1):51-55.
    [68]秦小梅,赵骤,左良等.固相法制备含铋层状结构PBN压电陶瓷.东北大学,学 报(自然科学版),2002,23(12):1147-1150.
    [69]李茹民,董国君,张密林.添加剂对天然磁铁矿直接合成永磁铁氧体的影响.哈尔滨工程大学学报,2002,23(3):136-138.
    [70]洪伟良,赵凤起,刘剑洪等.纳米PbO和Bi203粉的制备及对推进剂燃烧性能的影响.火炸药学报,2001,24(3):7-9.
    [71]陈丹平,姜雄伟,朱从善Bi2O3-Li2O玻璃的结拘研究.无机材料学报,2002,17(2):202-209.
    [72]W. H. Dumbaugh, J. C. Lapp. Heavy-metal oxide glasses. J. Am. Ceram. Soc.1992, 75:2315-2326.
    [73]N. N. Greenwood, A. Earnshaw,元素化学.李学同,孙玲,单辉等译.北京:高等教育出版社,1996:262-263.
    [74]Y. Xu, M. A. Schoonen. The absolute energy position of conduction and valence bands of selected semiconducting minerals. Am. Mineral,2000,85(3-4):543-556.
    [75]日本化学会编.现代无机化学手册(第三卷).北京:化学工业出版社,1988:48-49.
    [76]汪立果.湿法生产氧化秘.化学世界,1984,25(2):42-43.
    [77]IO. M. Ioxmh.含铋铅物料的水治处理.有色金属(苏)1990,9(5):18-20.
    [78]Botar Alexandru, Craescu, IoanA. Preparation of pure bismuth trioxide from Bismuth or a bismuth-lead alloy. RO97,055.30 Jan 1986.
    [79]郑国渠,曹华珍,唐漠堂.氯氧锡制备高纯氧化铋过程中除氯的研究.有色金属,2001,53(2):52-54.
    [80]陈代荣,谢经雷.Bi(OR)3作前驱体合成Bi203微粉.山东大学学报(自然科学版),1997,32(1):88-93.
    [81]W. Wang, Y. Zhou, S. Chen. Synthesis and characterization of nanosized SrBi2Ta2O9 powder by a novel sol-gel process. Mater. Res. Bull.,2002,37 (15):2517-2524.
    [82]韩俊鹤,欧慧灵,廖鹏等.表面修饰的Bi203纳米微粒的光学特性.河南大学学报(自然科学版),2001,31(3):14-16.
    [83]何伟明,甄强,潘庆谊等.反向滴定法制备超细氧化铋粉体的研究.功能材料,2003,34(6):702-703,706.
    [84]李青文,李娟,夏熙.纳米Bi203微粒的固相合成及其电化学性能的研究.化学学报,1999,29(5):491-495.
    [85]杨群保,李永祥,殷庆瑞等.Bi203晶须的水热合成研究.无机材料学报,2002,17(5):979-984.
    [86]J. C. Yu, X. A. Wu, L. Z. Zhang, et al. Synthesis and characterization of porousm agnesium. J. Phys. Chem. B,2004,108(1):64-70.
    [87]陈世柱,尹志民.快速制备纳米级金属氧化物的喷雾燃烧法.湖南有色金属,1998,14(1):24-27.
    [88]Madier, Lutz, Pratsinis, et al. Bismuth oxide nano-particles by flame spray pyrolysis. J. Am. Ceram. Soc.,2002,85(7):1713-1718.
    [89]W. Li. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys., 2006,99(1):174-180.
    [90]W. D. He, W. Qin, X. H. Wu, et al. The photocatalytic properties of bismuth oxide films prepared through the sol-gel method. Thin Solid Films,2007,515(13): 5362-5365.
    [91]邹文,郝维昌,信心等.不同晶型三氧化二铋可见光光催化降解罗丹明的研究.无机化学学报,2009,25(11):1971-1976.
    [92]丁鹏,杜尧国,徐自立.微乳法制备的纳米Bi203对苯系物光催化活性.吉林大学学报,2004,42(3):451-454.
    [93]A. Hameed, V. Gombac, T. Montini, etal. Photoeatalytic activity of zine modified Bi2O3. Chem. Phys. Lett.,2009,483 (4-6):254-261.
    [94]J. M. Xie, X. M. Lu, M. Chen, etal. The synthesis charaeterization and photoeatalytic activity of V(V),Pb(11), Ag(I) and Co(11)-doped Bi2O3. Dyes and Pigments,2008, 77(1):43-47.
    [95]Y. Wang, Y. Y. Wen, H. M. Ding, etal. Improved structural stability of titaniumdoped P-Bi2O3 during visible-lightactivated photoeatalytic Proeesses. J. Mater. Sci.,2010, 45(5):1385-1392.
    [96]张川.Bi2W06催化剂的合成及其光催化性能研究:[清华大学硕士学位论文].北京:清华大学化学系分析化学专业,2006,1-17.
    [97]N. Kijima, K. Matano, M. Saito, et al. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst. Appl. Catal. A-Gen.,2000,206:237-244.
    [98]W. L. Huang, Q. S. Zhu. Comput. Mater. Sci.,2008,43:1101-1108.
    [99]W. L. Huang, Q. S. Zhu. DFT calculations on the electronic structures of BiOX(X=F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states. J. Comput. Chem., 2009,30(2):183-190.
    [100]魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂.化学进展.2009,21(9):1734-1741.
    [101]K. L. Zhang, C. M. Liu, F. Q. Huang, etal. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal., B,2006,68(3-4): 125-129.
    [102]W. D. Wang, F. Q. Huang, X. P. Lin. xBiOI-(1-x)BiOCl as efficient visible-light-driven photocatalysts. Scr. Mater.,2007,56(8):669-672.
    [103]W. D. Wang, F. Q. Huang, X. P. Lin, etal., Visible-fight-responsive photocatalysts xBiOBr-(1-x)BiOI. Catal. Commun.,2008,9(1):8-12.
    [104]K. L. Zhang, C. M. Liu, F. Q. Huang, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B-Environ.,2006, 68(3-4):125-129.
    [105]X. P. Lin, Z. C. Shan, K. Q. Li, etal. Photocatalytic activity of a novel Bi-based oxychloride catalyst Nao.5Bi1.5O2Cl. Solid State Sci.,2007,9(10):944-949.
    [106]X. P. Lin, T. Huang, F. Q. Huang, et al. Photocatalytic activity of a bi-based oxychloride Bi3O4Cl. J. Phys. Chem. B,2006,110(48):24629-24634.
    [107]W. D. Wang, F. Q. Huang, X. P. Lin, et al. Catal. Commun.,2008,9:8-12.
    [108]S. M. Sun, W. Z. Wang, L. Zhang, et al. Visible Light-Induced efficient contamin ant removal by Bi5O7I. Environ. Sci. Technol.,2009,43(6):2005-2010.
    [109]J. Zhang, F. J. Shi, J. Lin, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater.,2008,20(9):2937-2941.
    [110]A. Kudo, K. Ueda, H. Kato, et al. Photocatalytic O2 evolution under visible light irradiation BiVO4 in aqueous AgNO3 solution. Catal. Lett.,1998,53(2):229-230.
    [111]A. K. Bhattacharya, K. K. Mallick, A. Hartfidge. Phase transition in BiV04. J. Mater. Lett.,1997,30:7-13.
    [112]S. Tokunage, H. Kato, A. Kudo. Selective preparation of monoclinic and tetrago nal BiV04 with seheelite structure and their photocatalytic properties. J. Chem. Mater., 2001,13(12):4624-4628.
    [113]B. P. Xie, H. X. Zhang, P. X. Cai, etal. Simultaneous photocatalytic reduction of Cr(Ⅵ) and oxidation of phenol over monoclinic BiVO4 under visible light irrad-iation. Chemosphere,2006,63(5):956-963.
    [114]M. C. Long, W. M. Cai, J. Cai. etal. Efficient photocatalytic degradation of phenol over CO3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B,2006, 110(10):20211-20216.
    [115]L. Zhang, D. R. Chen, X. L. Jiao. Monoclinic structured BiV04 nanosheets:hydro thermal prepargion, formation mechanism, andcoloristic and photocatalytic properties. J. Phys. Chem. B,2006,110:2668-2673.
    [116]S. Kohtani, M. Tomohiro, K. Tokumura.etal. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and agloaded BiVO4. Appl. Catal., B,2005, 58(3-4):265-272.
    [117]H. M. Zhang, J. B. Liu, H. Wang. Rapid microwave-assisted synthesis of phase controlled BiV04 nanocrystals and research on photocatalytic properties under visible light irradiation. J. Nanopart Res.,2008,10:767-774.
    [118]Z. C. Shan, Y. J. Xia, Y. X. Yang, et al. Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi205. Mater. Lett.,2009,63:75-77.
    [119]李红花,李坤威,汪浩α-Bi2Mo3O12和γ-BiMoO6的水热合成及可见光催化性能.无机化学学报,2009,3(25):512-516.
    [120]D. S. Wu, C. Y. Han, S. Y. Wang, et al. Microwave-Assisted. Solution synthesis of SnO nanocrystallites. Mater. Lett.,2002,53(3):155-159.
    [121]S. J. Kim, S. D. Park, Y. H. Jeong. Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOC12 Solution. J. Am. Ceram. Soc.1999,82(4):927-932.
    [122]W. X. Tu, H. F. Liu. Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater.,2000,12(2):564-567.
    [123]G. Roussy, J. M. Thiebaut, M. Souiri, etal. Doped catalysts irradiated by microwaves. Catalysis Today.,1994,21(2):349-355.
    [124]Y. Xu, M. A. Schoonen. The absolute energy position of conduction and valence bands of selected semiconducting minerals. Am. Mineral,2000,85(3-4):543-556.
    [125]W. D. He, W. Qin, X. H. Wu, et al. The photocatalytic properties of bismuth oxide films prepared through the sol-gel method. Thin Solid Films,2007,515(13): 5362-5365.
    [126]L. Leontie, M. Caraman, M. Alexe, et al. Structural and optical characteristics of bismuth oxide thin films. Surf. Sci.,2002,507(1-3):480-485.
    [127]H. Abdul, M. Tiziano, G. Valentina. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 2008,130: 9658-9659.
    [128]W. Li. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys., 2006,99(1):174-180.
    [129]王云燕,秦毅红,周伟,等.共沸蒸馏法制备Bi2O3微细粉的研究.涂料工业,2001,31(1):13-17.
    [130]J. C. Yu, X. A. Wu, L. Z. Zhang, et al. Synthesis and characterization of porousm agnesium. J. Phys. Chem. B,2004,108(1):64-70.
    [131]H. W. Kim. Synthesis and characterization of crystalline (β-Bi2O3 nanobelts. Thin Solid Films,2008,516:3665-3668.
    [132]B. J. Yang, M. S. Mo, H. M. Hu, A Rational Self-Sacrificing Template Route to β-Bi2O3 Nanotube Arrays, Eur. J. Inorg. Chem.,2004,9:1785-1787.
    [133]R. K. Jhaa, P. Renu, V. Ravic. Synthesis of bismuth oxide nanoparticles using bismuth nitrate and urea. Ceram. Int.,2005,31(3):495-497.
    [134]王辉,朱俊杰.微波介电加热法制备纳米粒子的研究进展.无机化学学报,2002,18(4):329-334
    [135]Q. Q. Huang, S. N. Zhang, C. X. Cai*, B Zhou*. Microwave-assisted syntheses of α-and (β-Bi2O3 nanoparticles and their photocatalytic activity. Mater. Lett.,2011,65: 986-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700