用户名: 密码: 验证码:
BiOCl薄膜的低温制备及其光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BiOX(X=Cl, Br, I)是一系列间接带隙半导体材料,由[Bi202]层与卤原子层交错形成层状四方氟氯铅矿(PbFCl)结构,为一类新型的光催化材料。BiOX有许多优点,如光催化活性好,性能稳定,所得产品比表面积较大,光催化水处理过程用量少、毒性小,与有机基体的相容性较好,可吸收太阳光等。因此,近年来BiOX吸引了研究者们的广泛关注。为了解决粉末催化剂固液分离难、回收利用难和实际应用难等问题,本文采用简单、实用、能耗低的固定化方法合成了BiOCl薄膜光催化剂,并考察了制备过程参数对薄膜光催化剂活性的影响,期望为光催化降解水中有机污染物技术的实际应用提供基础数据。
     分别采用醇解-涂覆法和电化学方法在低温条件下制备了BiOCl薄膜光催化剂,通过X-射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线能谱分析(EDS)、X-射线光电子能谱(XPS)及紫外-可见漫反射光谱(UV-vis DRS)等手段对薄膜的性质和形貌进行了表征;并以甲基橙为目标降解物,用紫外灯为光源,研究了制备条件对薄膜光催化活性的影响,得到如下研究结果:
     一、花球状BiOCl薄膜的醇解-涂覆法制备和光催化性能
     1.采用醇解-涂覆法制得了花球状BiOCl薄膜光催化剂,所制备的样品呈四方相晶体结构,无其他杂质为BiOCl纯相,表面呈现由纳米薄片组装而成的花球状微观结构,样品由Bi、0及C1三种元素构成,且元素组成比例与BiOCl的化学计量比相似,样品对紫外光有良好的吸收,该制备过程简单且无需高温焙烧。
     2.以甲基橙为目标降解物,在紫外光照射下考察了薄膜的光催化活性和稳定性。当醇解温度为60℃,采用乙二醇为溶剂,未经高温焙烧时制得的BiOCl薄膜催化剂具有最佳光催化活性,150min内对甲基橙的光催化降解率可达97%,重复使用4次之后,降解率仍大于94%,使用前后样品的XRD谱图也未发生明显改变,说明所制BiOCl薄膜光催化剂在紫外光下具有良好且稳定的光催化活性。
     3.通过对形成机理的简单推测,我们认为乙二醇溶剂可能有助于花球状结构的形成。通过考察外加捕获剂对BiOCl薄膜光催化活性的影响,得到在光催化降解甲基橙过程中,空穴(h+)可能起到关键作用。
     二、 BiOCl薄膜的室温电化学法制备及其光催化性能
     1.在室温条件下,先后通过阴极电沉积和阳极氧化法在Ti基体上制得了BiOCl薄膜;所制薄膜由四方相BiOCl构成,呈现交错的片状结构,对紫外光有良好的吸收;样品由Bi、O及Cl三种元素构成,且元素组成比例与BiOCl的化学计量比相似。
     2.不同的氧化电压和氧化时间对BiOCl的晶格取向、形貌、光催化活性和稳定性都有一定的影响。当氧化电压为2.0V,氧化时间为60min时,所制薄膜具有最佳光催化活性,此时薄膜的晶相结构有明显的110取向,呈现均匀整齐的片状结构;150min内对甲基橙的降解率可达98%,且制成的薄膜不易脱落。
     3.通过对降解过程中甲基橙溶液的紫外-可见全波扫描曲线的测定以及光解、吸附和光催化实验的对比研究,发现降解过程中所制BiOCl薄膜的光催化作用占主导地位,所制BiOCl薄膜经过5次循环使用,在紫外光下对甲基橙的降解活性仍可达90%,表明薄膜具有稳定的光催化活性。另外,所制薄膜在模拟太阳光下对甲基橙也有降解作用。
BiOX (X=Cl, Br, I), a series of indirect band gap semiconductor, is composed of a tetragonal PbFCl structure containing [Bi2O2] layer and X layer. It is a kind of novel photocatalyst. BiOX has many advantages, such as, high photocatalytic activity, stable chemical property, large specific surface area, low consumption in photocatalytic process, low toxicity, good compatibility to organic substance, excellent absorption to the sun light and so on. Therefore BiOX attracted more and more attentions in recent years. The powder catalyst expresses poor dispersion in solution and difficulties in separation and reuse, especially tiny particles with micro-nano structure. In order to solve the problems about the powder catalyst, we prepared BiOCl thin film photocatalyst in a simple, practical and low energy consumption method, tested the effects of the parameters in preparation process on the catalytic activity of BiOCl thin film, and expected to provide basic data to the practical application of photocatalytic degradation organic pollutants.
     BiOCl thin film was prepared by the alcoholysis-coating method and electrochemical method at low temperature. The obtained thin film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electronic energy spectrum (EDS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic activities of BiOCl thin films prepared in different conditions were also evaluated by the degradation of methyl orange (MO) in water under UV light irradiation. All the obtained results are listed as follows:
     Part I The preparation of flower-like BiOCl thin film via alcoholysis-coating method and its photocatalytic activity
     1. Flower-like BiOCl thin film was prepared in the alcoholysis-coating method, which is simple and does not need calcination. And the results showed that the obtained BiOCl film without calcination was composed of flower-like sphere structure with tetragonal phase and had a good absorption to ultraviolet. The sample was composed by Bi, O and Cl three elements, and had a ratio close to the stoichiometric ratio of BiOCl.
     2. The photocatalytic activity and stability of BiOCl thin film was evaluated by the degradation of MO in water under UV light irradiation. The degradation experimental results confirmed that the thin film prepared at low temperature expresses a high photocatalytic activity and can achieve a97%degradation to10mg/L MO solution after150min UV light irradiation. The photocatalytic activity still remained an above94%removal of MO after used four cycles, and the XRD spectra of the sample before and after use were not changed, which showed that the obtained BiOCl thin film expressed a good stability.
     3. A possible formation mechanism of BiOCl thin film was also inferred and the results suggested that the ethylene glycol solvent may contribute to the formation of flower-like sphere structure. Through investigate the influence of capture agent on the photocatalytic activity of BiOCl thin film, we get that hole (h+) may play the key role in photocatalytic degradation process of MO. Part II The preparation of BiOCl thin film at room temperature via electrochemical method and its photocatalytic activity
     1. BiOCl thin film was prepared on the Ti substrate through the cathodic deposition and anodic oxidation method at room temperature. The BiOCl thin film obtained at the best preparation condition was composed by nanoplates with tetragonal phase and had a good absorption to UV irradiation. The sample was composed by Bi, O and Cl three elements, and had a ratio close to the stoichiometric ratio of BiOCl.
     2. The oxidation voltage and oxidation time had the effect on the lattice orientation, morphology, photocatalytic activity and stability of BiOCl thin film. The results showed that when the Film1was oxided at2.0V for60min the obtained BiOCl thin film had an obvious110orientation, was composed by interlaced nanoplates, and performed the best photocatalytic activity (about98%in150min) and stability.
     3. In the degradation process, the UV-vis whole wave scanning curves of MO solution were determined. We also compared the roles of photolysis, adsorption and photocatalysis in the photocatalytic process. The results indicated that the MO in the solution was decomposed gradually in the photocatalytic process. The photocatalysis played the predominant role. The photocatalytic activity of the prepared BiOCl thin film still remained an about90%removal of MO after used five cycles, which showed the good stability of the BiOCl thin film. In addition, the MO could be decomposed slightly in presence of BiOCl thin film under the similated sunlight.
引文
[1]安丽,顾国维.采用活性炭纤维吸附水中三氯甲烷[J].同济大学学报,1996,24(2):193-198.
    [2]李君文.活性炭控制饮用水中有机致癌物三卤甲烷的研究进展[J].中国给水排水,1994,10(5):37-40.
    [3]刘东方,丁耘,李江华.混凝剂处理染料及其中间体废水应用[J].城市环境与城市生态,1997,10(2):11-14.
    [4]张洪林.难降解有机物的处理技术进展[J].水处理技术,1998,24(5):259-264.
    [5]Lin S H, Peng C F. Treatment of textile wastewater by electrical method [J]. Water Research,1994,128(2):277-283.
    [6]Fujihsima A, Honda K. Electrochemical photolysis of water at a semiconductor. Electrode [J]. Nature,1972,37(1):235-245.
    [7]'Nian J N, Hu C C, Teng H. Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination [J]. International Journal of Hydrogen Energy,2008,33(12):2897-2903.
    [8]Su X D, Zhao J Z, Li Y L, etc. Solution synthesis of Cu2O/TiO2 core-shell nanocomposites [J]. Colloids and Surfaces A:Physicochemal Energy Aspects,2009,349: 151-155.
    [9]赵智,叶红齐,唐新德,等.可见光响应催化剂Nd2InNb07的制备、表征光催化性能研究[J].应用化工,2009,38(11):1613-1616.
    [10]魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂[J].化学进展,2009,21(9):1734-1741.
    [11]李亚栋,王军伟,邓洪.一种合成氯氧铋纳米珠光颜料的方法[P].CN1730568A,2006-02-08.
    [12]王云燕,彭文杰,柴立元,等.硝酸铋转化水解法制备片状BiOCl粉末的研究[J].湖南冶金,2003,31(3):20-24.
    [13]安惠中,王聪,张俊英,等.复合蓄能光催化材料BiOCl/Sr4Al14O25:Eu2+, Dy3+的研究[J].稀有金属材料与工程,2008,37(10):1714-1718.
    [14]Zhang J, Shi F J, Lin J, etc. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst [J]. Chemical Material,2008,20(9),2937-2941.
    [15]Zhang Liu, Xiaoxin Xu, Jianzhang Fang, etc. Microemulsion Synthesis, Characterization of Bismuth Oxyiodine/Titanium Dioxide Hybrid Nanoparticles with Outstanding Photocatalytic Performance under Visible Light Irradiation [J]. Applied Surface Science, 2012,258(8):3771-3778.
    [16]Chang X F, Yu G, Huang J, etc. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy [J]. Catalysis Today, 2010,153(3-4):193-199.
    [17]Chang X F, Huang J, Cheng C, Sui Q, etc. BiOX (X=Cl,Br, I) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance [J]. Catalysis Communications,2010,11(5):460-464.
    [18]Chang X F, Huang J, Tan Q Y, etc. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation [J]. Catalysis Communications,2009, 10(15):1957-1961.
    [19]Wang W D, Huang F Q, Lin X P. xBiOI-(1-x)BiOCl as efficient visible-light-driven photocatalysts [J]. Scripta Materialist,2007,56(8):669-672.
    [20]朱蕾.Ti02的掺杂改性及Bi (Nb) OCl体系光催化剂的研究[D],上海:上海交通大学,2009.
    [21]Yu C L, Yu J C, Fan C F, etc. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation [J]. Materials Science and Engineering B,2010,166(3):213-219.
    [22]Shi Z Q, Wang Y, Fan C M, etc. Preparation and photocatalytic activity of BiOCl catalyst [J]. Trans. Nonferrous Met. Soc. China,2011,21(10):2254-2258.
    [23]樊彩梅,王艳,李双志,等.一种BiOBr/BiOCl复合光催化剂的制备及应用方法.CN102068998A,公开日2011-05-25.
    [24]Chai S Y, Yong J K, Jung M H, etc. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst [J]. Journal of Catalysis,2009,262(2):144-149.
    [25]An H Z, Du Y, Wang T M, etc. Photocatalytic properties of BiOX (X=Cl, Br, and I) [J]. RARE METALS,2008,27(3):243-250.
    [26]Zhang L, Cao X F, Chen X T, etc. BiOBr hierarchical microspheres:Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties [J]. Journal of Colloid and Interface Science,2011,354(2):630-636.
    [27]Sanaa S K, Vladimir U, Yulia K, etc. A new family of BiO(ClxBri_x) visible light sensitive photocatalysts [J]. Catalysis Communications,2011,12(14):1136-1141.
    [28]Feng Y C, Li L, Li J W, etc. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene [J]. Journal of Hazardous Materials,2011,192(2): 538-544.
    [29]Xia J X, YinS, Li H M, etc. Enhanced photo catalytic activity of bismuth oxyiodine (BiOI) porousmicrospheres synthesized via reactable ionic liquid-assisted solvothermal method [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2011,387:23-28.
    [30]Parea B, Sarwan B, Jonnalagadda S B. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition [J]. Applied Surface Science,2011,258(1):247-253.
    [31]Zhu L F, He C, Huang Y L, etc. Enhanced photocatalytic disinfection of E.coli 8099 using Ag/BiOI composite under visible light irradiation [J]. Separation and Purification Technology,2011.
    [32]Zhang L, Wang W Z, Zhou L, etc. Fe3O4 coupled BiOCl:A highly efficient magnetic photocatalyst [J]. Applied Catalysis B:Environmental,2009,90(3-4):458-462.
    [33]Sanaa S K, Vladimir U, Ella M, etc. New efficient visible light photocatalyst based on heterojunction of BiOCl-bismuth oxyhydrate [J]. Applied Catalysis A:General,2011.
    [34]Xiong W, Zhao Q D, Li X Y, etc. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity [J]. Catalysis Communications,2011,16(1):229-233.
    [35]Shamaila S, Ahmed Khan Leghari Sajjad, Chen F, etc. WO3/BiOCl, a novel heterojunction as visible light photocatalyst [J]. Journal of Colloid and Interface Science, 2011,356(2):465-472.
    [36]曹四海,郭传飞,刘前.一种微米纳米尺度BiOCl薄膜材料及其制备方法[P].CN101724839A,公开日2010-06-09.
    [37]Cao S H, Guo C F, Lv Y, etc. A novel BiOCl film with flowerlike hierarchical structures and its optical properties [J]. Nanotechnology,2009,20:275702 (7pp).
    [38]张礼知,王克伟,贾法龙.一种片状碘氧化铋纳米薄膜的制备方法[P].CN101857382,公开日2010-10-13.
    [39]Wu S J, Wang C, Cui Y F, etc. Synthesis and photocatalytic properties of BiOCl nanowire arrays [J]. Materials Letters,2010,64(2):115-118.
    [40]Hao R, Xiao X, Zuo X X, etc. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres [J]. Journal of Hazardous Materials,2012.
    [41]谢宝平.mBiVO4的选择性制备及其可见光催化活性增强的研究[D].广州:中山大学,2006.
    [42]Di Vece M, Laursena A B, Becha L, etc. Quenching of TiO2 photo catalysis by silver nanoparticles [J]. Journal of Photochemistry and Photobiology A:Chemistry,2012, 230(1):10-14.
    [43]Jang J W, Park J W. Photocatalytic performance of TiO2 films produced with combination of oxygen-plasma and rapid thermal annealing [J]. Thin Solid Films,2011, 520(1):193-198.
    [44]Zhou F L, Li X J, Shu J, etc. Synthesis and visible light photo-electrochemical behaviors of In2O3-sensitized ZnO nanowire array film [J]. Journal of Photochemistry and Photobiology A:Chemistry,2011,219 (1):132-138.
    [45]王艳,任衍燕,郝春燕,等.掺锑二氧化锡电极光电催化降解甲基橙的研究[J].太原科技大学学报,2009,30(4):350-354.
    [46]赵永勋,杨碚芳,傅正平Ag/TiO2有序多孔复合薄膜的合成及其可见光光催化活性[J].中国科学技术大学学报,2011,41(5):414-512.
    [47]田琳琳,姚兰芳,许瑞清,等.铋铁共掺纳米TiO2复合薄膜的制备及光催化性能[J].人工晶体学报,2011,40(3):710-716.
    [48]Zhou F L, Li X J, Shu J, etc. Synthesis and visible light photo-electrochemical behaviors of In2O3-sensitized ZnO nanowire array film [J]. Journal of Photochemistry and Photobiology A:Chemistry,2011,219(1):132-138.
    [49]庄惠芳,赖跃坤,李静,等.氮掺杂Ti02纳米管阵列的制备及其可见光光电催化活性研究[J].电化学,2007,13(3):284-290.
    [50]赵慧敏,陈越,全燮,等.Zn掺杂Ti02纳米管电极制备及其对五氯酚的光电催化降解[J].科学通报,2007,52(3):158-163.
    [51]万斌,陈鸣波,周细应,等.Ag/TiO2纳米管的制备及其光催化性能[J].稀有金属材料与工程,2009,38(1):2012-2019.
    [52]樊彩梅,张小超,李双志,等.一种卤氧铋光催化环保涂料及其制备方法[P].CN102229769A,公开日2011-11-02.
    [53]A. Veresa, T. Rica, L. Janovak, etc. Silver and gold modified plasmonic TiO2 hybrid films for photocatalytic decomposition of ethanol under visible light [J]. Catalysis Today, 2012,181(1):156-162.
    [54]周晓.稀土元素掺杂纳米Ti02光电催化降解甲基橙的研究[D].广东 广东工业大学,2009.
    [55]胡煜艳,钱清华,刘畅,等.焙烧温度对K2Ti6013薄膜光电化学和光催化的影响[J].中国有色金属学报,2007,17(10):1711-1719.
    [56]Zhao B, Chen W Y. Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity [J]. Journal of Physics and Chemistry of Solids,2011,72(11):1312-1318.
    [57]杨娟,戴俊,缪娟,等.纳米Ti02薄膜电极光电催化降解染料RhB的研究[J].化学研究与应用,2009,21(2):277-282.
    [58]Talebian N, Nilforoushan M R, Zargar E B. Enhanced antibacterial performance of hybrid semiconductor nanomaterials:ZnO/SnO nanocomposite thin films [J]. Applied Surface Science,2011,258(1):547-555.
    [59]胡晓宏,刘艳华,于琳宇,等.多孔纳米Ti02薄膜的制备及其光催化脱除NO的研[J].西安交通大学学报,2008,42(1):87-91.
    [60]Kaneva N, Stambolova I, Blaskov V, etc. A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol-gel method [J]. Surface & Coatings Technology,2011, doi:10.1016/j.surfcoat.2011.10.020.
    [61]Zhou J B, Cheng Y, Yu J G. Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films [J]. Journal of Photochemistry and Photobiology A:Chemistry,2011,223(2-3):82-87.
    [62]Dom R, Sivakumar G, Hebalkar N Y, etc. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying [J]. Materials Research Bulletin,2012.
    [63]Kaneva N V, Dimitrov D T, Dushkin C D. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light [J]. Applied Surface Science,2011, 257(18):8113-8120.
    [64]Liu P S, Xia F J, Chen Y M, etc. An anatase film with improved structure of titanium dioxide modified by carbon black [J]. Materials Letters,2012,72:5-8.
    [65]Lu N, Zhao Y H, Liu H B, etc. Design of polyoxometallate-titania composite film (H3PW12O40/TiO2) for the degradation of an aqueous dye Rhodamine B under the simulated sunlight irradiation [J]. Journal of Hazardous Materials,2012,199-200:1-8.
    [66]Zhang W J, Bai J W. Synthesis and photocatalytic properties of porous TiO2 films prepared by ODA/sol-gel method [J]. Applied Surface Science,2012,258(7): 2607-2611.
    [67]Li X Y, Hou Y, Zhao Q D, etc. Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol [J]. Chemosphere,2011,82: 581-586.
    [68]邝淑云.复合二氧化钛纳米管的制备及光电催化性能研究[D].湖南:湖南大学,2009.
    [69]Dudita M, Bogatu C, Enesca A, etc. The influence of the additives composition and concentration on the properties of SnOx thin films used in photocatalysis [J]. Materials Letters,2011,65(14):2185-2189.
    [70]Wang H J, Sun Y Y, Cao Y, etc. Porous zinc oxide films:Controlled synthesis, cytotoxicity and photocatalytic activity [J]. Chemical Engineering Journal,2011,178: 8-14.
    [71]Zhang S S, Qiu J X, Han J S, etc. A facile one-step preparation of hierarchically structured T1O2 nanotube array photoanodes with enhanced photocatalytic activity [J]. Electrochemistry Communications,2011,13(11):1151-1154.
    [72]He J, Luo Q, Cai Q Z, etc. Microstrucrure and photocatalytic properties of WO3/TiO2 composite films by plasma electrolytic oxidation [J]. Materials Chemistry and Physics, 2011,129(1-2):242-248.
    [73]Leftheriotis G, Yianoulis P. Development of electrodeposited WO3 films with modified surface morphology and improved electrochromic properties [J]. Solid State Ionics,2008, 179(38):2192-2197.
    [74]陈玉叶.薄膜型W03/Cu20复合光催化剂的制备与应用[D].辽宁:沈阳理工大学,2011.
    [75]Li G T, Yip H Y, Hu C, etc. Preparation of grape-like Bi2O3/Ti photoanode and its visible light activity [J]. Materials Research Bulletin,2011,46(2):153-157.
    [76]Mukherjee N, Show B, Maji S K, etc. CuO nano-whiskers:electrodeposition, raman analysis, photoluminescence study and photocatalytic activity [J]. Materials Letters,2011, 65(21-22):3248-3250.
    [77]Lu Y, Chen S, Quan X, etc. Fabrication of a TiO2/Au nanorod array for enhanced photocatalysis [J]. Chines Journal of Catalysis,2011,32(12):1838-1843.
    [78]Wei S Q, Ma Y Y, Chen Y Y, etc. Fabrication of W03/Cu20 composite films and their photocatalytic activity [J]. Journal of Hazardous Materials,2011,194:243-249.
    [79]Ouyang J L, Chang M L, Zhang Y Y, etc. CdSe-sensitized TiO2 nanotube array film fabricated by ultrasonic-assisted electrochemical deposition and subsequently wrapped with TiO2 thin layer for the visible light photoelectrocatalysis [J]. Thin Solid Films,2012, 520(7):2994-2999.
    [80]谢冰,章少华,李前奔,等.电泳法制备二氧化钛光催化薄膜[J].稀有金属材料与工程,2007,36(S1):939-941.
    [81]Tian L, Zhao Y F, He S, etc. Immobilized Cu-Cr layered double hydroxide films with visible-light responsive photocatalysis for organic pollutants [J]. Chemical Engineering Journal,2012.
    [82]周昊,有机聚合物调制器电极设计与工艺[D],福建:东南大学2009.
    [83]吴达.二氧化钛薄膜光电催化法处理难降解有机废水[D].辽宁:东北大学,2006.
    [84]Huang C H, Tsao C C, Hsu C Y. Study on the photocatalytic activities of TiO2 films prepared by reactive RF sputtering [J]. Ceramics International,2011,37(7):2781-2788.
    [85]Kumar K J, Raju N R C, Subrahmanyam A. Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering [J]. Applied Surface Science,2011,257(7):3075-3080.
    [86]Kumar K J, Raju N R C, Subrahmanyam A. Properties of pulsed reactive DC magnetron sputtered tantalum oxide (Ta2O5) thin films for photocatalysis [J]. Surface & Coatings Technology,2011,205:S261-S264.
    [87]Kamiko, Aotani K, Suenaga R, etc. Ag surfactant effects of TiO2 films prepared by sputter deposition [J]. Vacuum,2011,86(4):438-442.
    [88]黄佳木,赵磊,蔡小平,等.非晶态TiO2-Ag薄膜的光催化性能研究[J].功能材料,2007,38(6):1049-1052.
    [89]Cojocarua B, Stefan N, Elena S P, etc. Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering [J]. Applied Catalysis B:Environmental,2011,107:140-149.
    [90]Serio S, Melo Jorge M E, Nunes Y, etc. Incorporation of N in TiO2 films grown by DC-reactive magnetron sputtering [J]. Nuclear Instruments and Methods in Physics Research B,2012,273:109-112.
    [91]Wang M C, Lin H J, Wang C H, etc. Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films [J]. Ceramics International,2012, 38(1):195-200.
    [92]Li C Z, Zhang J Y, Yang J A, etc. Methods to improve the photocatalytic activity of immobilized ZnO/Bi2O3 composite [J]. Applied Catalysis A:General,2011,402:80-86.
    [93]Kaariainen M L, Cameron D C. The importance of the majority carrier polarity and p-n junction in titanium dioxide films to their photoactivity and photocatalytic properties [J]. Surface Science,2012,606(5-6):L22-L25.
    [94]Gong B, Peng Q, Na J S, etc. Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats:Synthesis using atomic layer deposition and hydrothermal crystal growth [J]. Applied Catalysis A:General,2011,407:211-216.
    [95]Hyun O S, Chae W S, Kim K D, etc. Nanoporous TiO2/SiO2 prepared by atomic layer deposition as adsorbents of methylene blue in aqueous solutions [J]. Chemical Engineering Journal,2012,183:381-386.
    [96]Brault P. Plasma deposition of catalytic thin films:Experiments, applications, molecular modeling [J]. Surface & Coatings Technology,2011,205:S15-S23.
    [97]He J, Cai Q Z, Xiao F, etc. Plasma electrolytic oxidation preparation and characterization of SnO2 film [J]. Journal of Alloys and Compounds,2011,509(3):L11-L13.
    [98]Yen C C, Wang D Y, Chang L S, etc. Characterization and photocatalytic activity of Fe-and N-co-deposited TiO2 and first-principles study for electronic structure [J]. Journal of Solid State Chemistry,2011,184(8):2053-2060.
    [99]Lu Z D, Jiang X H, Zhou B, etc. Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation [J]. Applied Surface Science,2011,257 (24):10715-10720.
    [100]Li Z C, Zhu Y, Zhou Q, etc. Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition [J]. Applied Surface Science,2012,258(7):2766-2770.
    [101]Kleiman A, Marquez A, Vera M L, etc. Photocatalytic activity of TiO2 thin films deposited by cathodic arc [J]. Applied Catalysis B:Environmental,2011,101:676-681.
    [102]Cui Y F, Wang C, Liu G, etc. Fabrication and photocatalytic property of ZnO nanorod arrays on Cu2O thin film [J]. Materials Letters,2011,65(15-16):2284-2286.
    [103]Ng J W, Wang X P, Sun D D. One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A [J]. Applied Catalysis B:Environmental,2011,110:260-272.
    [104]Wang L, Zheng Y Y, Li X Y, etc. Nanostructured porous ZnO film with enhanced photocatalytic activity [J]. Thin Solid Films,2011,519(16):5673-5678.
    [105]Zhu H, Tao J, Wang T, etc. Growth of branched rutile TiO2 nanorod arrays on F-doped tin oxide substrate [J]. Applied Surface Science,2011,257(24):10494-10498.
    [106]Liu F J, Liu H, Li X Y, etc. Nano-Ti02@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties [J]. Applied Surface Science,2012,258(10): 4667-4671.
    [107]Jia F Z, Yao Z P, Jiang Z H, etc. Solvothermal synthesis ZnSe-In2Se3-Ag2S solid solution coupled with TiO2-xSx nanotubes film for photocatalytic hydrogen production [J]. International Journal of Hydrogen Energy,2012,37(4):3048-3055.
    [108]Zhang K L, Liu C M, Huang FQ, etc. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst [J]. Applied Catalysis B,2006, 68(3-4):125-129.
    [109]朱蕾,王其召,袁坚,等Bi(Nb)OCl光催化剂的制备及其可见光降解罗丹明B溶液的性能[J].分子催化,2009,23(4):362-365.
    [110]Zhu L P, Liao G H, Bing N C, etc. Self-assembled 3D BiOCl hierarchitectures:Tunable synthesis and characterization [J]. Crystal Energy Communication,2010,12: 3791-3796.
    [111]Chen F, Liu H Q, Bagwasi S, etc. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation [J]. Journal of Photochem and Photobiol A: Chem,2010,215(1):76-80.
    [112]Cao C B, Lv R T, Zhu H S. Preparation of single-crystal BiOCl nanorods via surfactant soft-template inducing growth [J]. Journal of Metastable and Nanocrystalline Materials, 2005,23:79-82.
    [113]丁更新,周思敏,刘健翔,等.氧化钛/全氟磺酸树脂杂化薄膜的制备与光催化性能[J].硅酸盐学报,2010,38(1):74-77.
    [114]刘红旗,顾晓娜,陈锋,等.BiOCl纳米片微球的制备及形成机理[J].催化学报,2011,32(1):129-134.
    [115]蒋琪英,沈娟,钟国清.含铋(Ⅲ)配合物的合成及铋的配位性质[J].化学进展,2006,18(12):1634-1645.
    [116]董占能,赵兵,郭玉忠.金属醇盐的物化特性[J].昆明理工大学学报,2000,25(2):58-61.
    [117]Zhang L S, Wong K H, Zhang D Q, etc. Zn:In(OH)ySz solid solution nanoplates: synthesis, characterization, and photocatalytic mechanism [J]. Environmental Science and Technology,2009,43(20):7883-7889.
    [118]Kongsuebchart W, Praserthdam P, Panpranot J, etc. Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis [J]. Journal of Crystal Growth,2006,297(2):234-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700