用户名: 密码: 验证码:
贡嘎山地区现代冰川变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川被认为是气候变化的最好指示器和存储器。冰川也与海平面变化、淡水资源供给、自然灾害及地貌演化等有密切关系。在全球气候变暖的背景之下,中国西部地区的绝大部分冰川处于退缩状态,20世纪80年代以来冰川退缩呈现加剧趋势,直接影响到冰川补给河流的径流变化,这势必对中国西部尤其是干旱地区的可持续发展带来极大影响。
     遥感技术的发展为冰川监测及冰川变化研究提供了更多的有效手段,本文以典型季风温冰川一贡嘎山地区冰川为研究对象,基于地形图、遥感影像、GPS测量、DEM以及消融观测等数据,结合GIS技术,从冰川面积、体积、运动速率及冰川消融等方面分析冰川的现状及其变化规律,初步得出以下结论:
     1)2009年,贡嘎山地区共有76条冰川,总面积为228.5±1.1km2,其中最大和最小冰川的面积分别为25.5km2和0.05km2;1~5km2冰川数量最多,而>10km2的冰川数量(6.5%)较少但贡献的面积却最大(45.7%):按中值高度统计,冰川主要集中在4700-5700m,其中5300-5500m冰川数量和面积所占比例都最大;按冰川朝向统计,东南朝向的冰川总面积最大,西南朝向的数量最多,而无北朝向的冰川;该地区冰川坡度介于15~45°,其中坡度为25~30°的冰川所占数量和面积都最多。
     2)1966~2009年,贡嘎山冰川总体处于退缩状态,冰川总面积减少率为11.3%,年均减小面积0.7±0.02km2。西坡冰川由41条减少到39条,面积减小15.0km2,减小率为14.6%;东坡冰川由33条增加到36条,但冰川面积减少15.2km2,减小率为9.8%。东西坡冰川面积退缩率的不同可能是由冰川规模的差异引起。海螺沟、燕子沟、磨子沟和大贡巴冰川末端分别退缩约1146±42.7m、725±42.7m、502±42.7m和1002±42.7m m。东朝向冰川的面积退缩率最大(25.5%),东南朝向冰川的退缩率最小(7.2%)。中值高度超过5700m的冰川面积退缩率最大(15.2%),其次是5100~5300m的冰川(14.4%)。坡度为30-35°的冰川面积退缩最快(15.5%),25~30°的冰川退缩率最慢。1~5km2的冰川面积退缩率最大(34.8%),其次是>10km2的冰川(26.8%),<0.5km2的冰川退缩率最小。近43年中,6个时段(1966、1974、1989、1994、2005和2009年)冰川的退缩速率又有所差异,其中2005-2009年面积退缩速率最大(1.3km2/yr),其次是1989~1994年(0.8km2/yr),而1994~2005年最小(0.4km2/yr)。
     3)花杆观测数据显示,燕子沟冰川冰舌段,消融期平均日消融深为3.25cm,年消融深为424cm,最大消融出现在海拔3800~3900m。海螺沟冰川冰舌段的冰面消融,较燕子沟冰川要强,最大值出现在3200~3500m,且消融有近期加速的趋势。西坡的大、小贡巴冰川冰舌段冰面的消融强度相对较小。贡嘎山地区冰川冰舌段冰面消融总趋势为:东坡大于西坡,消融区海拔较低的冰川大于海拔较高的冰川,且最大值通常不是出现在冰川末端。
     4)燕子沟冰川花杆的GPS测量数据显示,冰舌区平均年运动速度为41.7m/yr,最大为49m/yr,出现于海拔约3950m处;消融期平均运动速度为0.31m/d。与已有观测数据对比,燕子沟冰川运动速度近期略增,但远小于海螺沟冰川(41~205m/yr),而大于西坡大贡巴冰川(33m/yr)和小贡巴冰川(36m/yr),且它们冰面运动速度最大值都出现于消融区的上端。
     5)不同时期冰川冰舌段(距离末端约3~4km) DEM差值的结果表明,1966~2009年海螺沟、燕子沟和大贡巴冰川消融区平均减薄速率分别为1.23±0.55、1.02±0.55和0.93±0.55m/yr;相应的体积减小0.076、0.073和0.057km3。1966~1989年3条冰川的高程及体积变化速率远小于1989~2009年的变化。
     6)初步探讨冰川对气候变化的响应。a)近50年来,横断山地区与青藏高原具有相似的气候变化趋势,以增温为主,降水量略有增加。根据贡嘎山西坡九龙气象站数据计算,19662009年,该区域气温升高率为0.18℃/10a,而降水量增加不足1%。基于冰川敏感性模型可推断出,降水的增加量难以弥补气温升高引起的冰川消融量,导致该地区的冰川长期处于负物质平衡状态,进而引起冰川的大规模的消融退缩。多时段冰川面积与年平均气温、降水的对比,发现气温逐渐升高,冰川面积逐渐变小;而冰川面积退缩速率与相应时段的年平均降水的量也有较好的对应关系,即在气温升高的背景下,总降水量大时,冰川退缩速率小,总降水量小时,冰川退缩速率大。b)贡嘎山地区规模在1~5km2的冰川退缩速率最大,更大面积的冰川次之,而面积<0.5km2的冰川退缩速率最小。这一规律表明规模较小冰川对气候变化较为敏感,但面积<0.5km2的冰川因受地形保护影响较大而不能作为反映气候变化的指示器。c)气温升高幅度和表碛覆盖厚度是导致1966~1989年与1989~2009年两个时段三条观测冰川,以及东坡与西坡冰川减薄速率差异的主要因素。d)三条观测冰川坡度和末端高度的不同是导致其冰川运动速度差异的主要原因。冰川的变化不仅受气候因子的控制,也受到地形、冰川规模和类型等因素的影响。
Glaciers are a critical component of the earth system and the present accelerated melting and retreat of glaciers has severe impacts on the environment and human well-being, including vegetation patterns, economic livelihood, natural disasters, and water-energy supplies. Changes of glaciers in mountainous regions are widely recognized as one of the best natural indicators of global climate change, and the decline in glacier extent in mountains and other regions contributes to sea level rise. The glaciers in the west of China are not only an important supply of the numerous rivers, but also a large solid freshwater resource, which affect the life of peoples of the western dry region. With the contex of global warming, most of glaciers in China are retreating and the glacier retreat is more aggravately after1980s. The glacier retreat will affect the runoff of rivers and also brings a tremendous impact on the sustainable development of arid regions in western China. Hunce, the new glacier inventory of China is a necessary work.
     In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern margin of the Qinghai-Tibetan Plateau, monsoonal temperate glaciers were investigated by comparing the Chinese Glacier Inventory (CGI), recorded in the1960s, with Landsat MSS in1974, Landsat TM in1989,1994,2005, and ASTER data in2009. The remote sensing data have been applied to map the glacier outline by threshold ratio images (TM4/TM5). Moreover, the glacier outlines were verified by GPS survey on four large glaciers (Hailuogou, Mozigou, Yanzigou, and Dagongba) in2009. The results show that the area dominated by the76glaciers has shrunk by11.3%(29.2km2) from1966to2009. Glacier area on the eastern and western slopes of the Gongga Mountains decreased by15.2km2(9.8%since1966) and15km2(14.6%since1966), respectively. The loss in glacier area and length is respectively0.8km2and1146m (26.7m/yr) for the Hailuogou glacier,2.1km2and502m (11.7m/yr) for the Mozigou Glacier,0.8km2and725m (16.9m/yr) for the Yanzigou Glacier, and2.4Wand1002m (23.3m/yr) for the Dagongba Glacier.
     Glacier size strongly affects the percentage loss in glacier area. From1966to2009, the area loss in the size classes <0.5km2,0.5~1km2,1~5km2,5~10km2, and>10km2, equals6.3%,10.8%,34.8%,21.3%and26.8%, respectively. The shrinkage of the glaciers in the size class of1~5km2contributes to about1/3of the total area loss. In comparing glaciers changes with altitude, the glaciers area loss in the altitude5100~5300m and>5700m is larger than the glaciers in others altitude. The mean slope of all glaciers in this region ranges from15°to45°, and glaciers with the mean slope of15~20°and35~40°(covering an area of37.9%in1966) exhibit the largest shrinkage. The area loss of glaciers with the mean slope of25~30°is the smallest than others slopes. The shrinkage of these glaciers in northwest and east orientation is stronger than others aspects in this region and the glaciers in southeast orientation keep a smallest shrinkage.
     When the glaciers are grouped according to size classes (according to their CGI area), it shows that glaciers in area of1~5km2had a more notable reduction in area than other sizes of glaciers. Although two small glaciers have vanished, the glaciers retreat with area<0.5km2is the slowest. The small glacier is more sensitive to the climate changes but the glacier with area <0.5km2is poorly coupled to the regional climate because of the local topographic setting. Furthermore, although the change of small glacier can be protected by local topographic setting, two smallest glaciers have vanished in the Gongga Mountains. This may be explained that the glacier is too small to a consistent accumulation zones.The rate of glacier area loss with median altitude>5700m is the largest, and the second is the median altitude5100-5300m. The glacier retreat become weaker with the increased slope until30°, and the rate of glacier retreat was similar when the slope exceeds30°. The glaciers with east, northwest and south orientation have an obvious shrinkage. Although we can not find systematically changes of glacier retreating correlating to topographic factors, the glacier size, slope and aspect would probably influence the rate of glacier retreating in the Gongga Mountains.
     The DEM data was generated from dual-frequency differential GPS (GPS) data surveyed in2009combined with DEM from aerial photographs acquired in1966and1989. The results show that the mean elevation changes from1966to2009of ablation area are-1.23±0.55,-1.02±0.55and-0.93±0.55m/yr in Hailuogou, Yanzigou (east slope) and Dagongba Glacier (west slope), respectively. In consequence, all the three glaciers in ablation areas show decreasing trends with volume reduction of0.076,0.073and0.054km3, for Hailuogou, Yanzigou and Dagongba Glacier, respectively. The shrankage of glacier elevation and volume in the period of1966-1989is weaker than that in1989-2009. The glacier ablation of YZG glacier is about3.25cm/day in the summer and the average ablation is about424cm/yr. The maximum ablation of YZG Glacier is at an altitude of3800-3900m not at the glacier terminus. Compared with other glaciers, the ablation of YZG Glacier is stronger than DGB Glacier (271cm/yr) but weaker than HLG Glacier (582cm/yr). Ice velocities measured by DGPS at32fixed stakes implanted in the ablation area increase with distance from the glacier terminus, ranging from38m/yr approaching the glacier terminus to a maximum of49m/yr at the head of ablation area.
     Decades of climate records obtained from three meteorological stations in the Gongga Mountains were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. During1966-2009, the mean annual temperature over the eastern and western slope of the Gongga Mountains has been increasing by0.34℃/decade and0.24℃/decade (1988~2009), respectively. Moreover, mean annual precipitation was only increasing1%in past50years. This evidence indicates that the warming of the climate is probably responsible for the glacier retreat in the study region. Compared the mean temperature with mean retreat rate of glaciers, the retreat rate is not related in a clear way to the mean temperature, while the mean precipitation shows a well corresponding relation with the retreat rate of glaciers. When the mean precipitation is high, the retreat rate of glacier is slow, and vice versa. The glacier retreat in the Gongga Mountains is similar to the same glacier type but faster than continental glaciers type in the west of China. However, we have procured many significative and interesting results. Many open questions still need to be solved (e.g. spatial resolution of remote sensing images; the different of fieldwork; accuracies of glacier mapping). In the future, the monitoring of the glacier changes will be a long-time and hard work, especially for alpine glaciers.
引文
Abdalati, W., Krabill, W., Frederick, E. et al.,2004. Elevation changes of ice caps in the Canadian Arctic Archipelago. American Geophysical Union, Washington, DC, ETATS-UNIS, 109(F04007),1-11.
    Adalgeirsdottir, G., Echelmeyer, K.A. Harrison, W.D.,1998. Elevation and volume changes on the Harding Icefiled Alaska. Journal of Glaciology,44(148),570-582.
    Ageta, Y. and Higuchi, K.,1984. Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya.66(3),249-255.
    Aizen, V.B., Aizen, E.M. and Nikitin, S.A.,2002. Glacier regime on the northern slope of the Himalaya (Xixibangma glaciers). Quaternary International,97-98,27-39.
    An, Z. et al.,2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews,19(8),743-762.
    Aniya, M., Sato, H., Naruse, R. et al.,1996. The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogrammetric Engineering and Remote Sensing,62(12),1361-1369.
    Arendt, A., Echelmeyer, K., Harrison, W. et al.,2006. Updated estimates of glacier volume changes in the western Chugach Mountain Alaska, and a comparison of regional extrapolation methods. Journal of Geophysical Research, 111(F03019, doi:10.1029/2005JF000436),1-12.
    Arendt, A.A., Echelmeyer, K.A., Harrison, W.D., et al.,2002. Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level. Science,297(5580),382-386.
    B(?)cker, C.A.,1996. Using GIS for Glacier Volume Calculations and Topographic Influence of the Radiation Balance. An Example from Disko, West Greenland. Danish Journal of Geography,96,8-20.
    Barrand, N.E., James, T.D. and Murray, T.,2010. Spatio-temporal variability in elevation changes of two high-Arctic valley glaciers. Journal of Glaciology,56,771-780.
    Bayr, K.J., Hall, D.K. and Kovalick, W.M.,1994. Observations on glaciers in the eastern Austrian Alps using satellite data. Remote Sensing 15(9),1733-1742.
    Benn, D.I. and Evans, D.J.A. (Eds.),1998. Glaciers and Glaciation. Hodder Arnold Publication, 734 pp.
    Berthier, E., Arnaud, Y., Kumar, R. et al.,2007. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3),327-338.
    Berthier, E. and Toutin, T.,2008. SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska. Remote Sensing of Environment,112(5),2443-2454.
    Berthier, E., Vadon, H., Baratoux, D. et al.,2005. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sensing of Environment,95(1),14-28.
    Bishop, M.P., J.F. Shroder Jr, Haritashya, U.K. and Bulley, H.N.N.,2007. Remote sensing and GIS for alpine glacier change detection in the Himalaya. In Baudo, R. Tartari, G. and Vuillermoz E. (Eds) Mountain Witnesses of Global Changes. pp209-235.
    Bishop, M.P. and Olsenholler, J.A.,2004. Global Land Ice Measurements from Space (GLIMS): Remote Sensing and GIS Investigations of the Earth's Cryosphere Geocarto International, 19(2),57-84.
    Bishop, M.P., Shroder, J.F. and Hickman, B.L.,1999. SPOT Panchromatic Imagery and Neural Networks for Information Extraction in a Complex Mountain Environment. Geocarto International,14(2),19-28.
    Bishop, M.P., Shroder, J.F. and Ward, J.L.,1995. SPOT multispectral analysis for producing supraglacial debris-load estimates for Batura glacier, Pakistan. Geocarto International, 10(4),81-90.
    Bouillon, A., Bernard, M., Gigord, P. et al.,2006. SPOT 5 HRS geometric performances:Using block adjustment as a key issue to improve quality of DEM generation. ISPRS J. Photogramm. Remote S.,60,134-146.
    Boulton, G.S.,1996. Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation,42. International Glaciological Society, Cambridge, ROYAUME-UNI.
    Bown, F. and Rivera, A.,2007. Climate changes and recent glacier behaviour in the Chilean Lake District. Global and Planetary Change,59(1-4),79-86.
    Braithwaite, R.J.,2002. Glacier mass balance:the first 50 years of international monitoring. Progress in Physical Geography,26(1),76-95.
    Braithwaite, R.J. and Zhang, Y.,1999. Modelling Changes in Glacier Mass Balance that may Occur as a Result of Climate Changes. Geografiska Annaler:Series A, Physical Geography,81(4),489-496.
    Braithwaite, R.J. and Zhang, Y.,2000. Sensitivity of mass balance of five Swisss glaciers to temperature changes assessed by tuning a degree-day model. Journal of Glaciology, 46(152),7-14.
    Casassa, G., Smith, K., Rivera, A. et al.,2002. Inventory of glaciers in isla Riesco, Patagonia, Chile, based on aerial photography and satellite imagery. Annals of Glaciology,34(1), 373-378.
    Clague, J.J. and Evans, S.G.,2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews,19(17-18),1763-1783.
    Cogley, J.G.,2009. A more complete version of the World Glacier Inventory. Annals of Glaciology, 50(53),32-38.
    Conway, H. and L.A. Rasmussen,2000. Summer temperature profiles within supraglacial debris on Khumbu Glacier Nepal. IAHS Publ.264 (Symposium at Seattle 2000 Debris-Covered Glaciers),89-97.
    Crabtree, R.D.,1976. Changes in the Myrdalsjokull ice cap, south Iceland:possible uses of satellite imagery. Polar Record, (18),73-78.
    Cuffey, K.M. and Paterson, W.S.B. (Eds.),2010. The Physics of Glaciers, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK,693pp.
    Cullen, N.J., Molg, T. and Georg, K.,2006. Kilimanjaro Glaciers:Recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. Geophysical Research Letters,33(L156502),6.
    Dansgaard, W., Johsen, S.J. and Clausen, H.B.,1973. Stable isotope glaciology. Medd Gronl, 197(2),1-53.
    DeBeer, C.M. and Sharp, M.J.,2009. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. Journal of Glaciology, 55(192),691-700.
    Deline, P., M., C. and Mortara, G.,2004. The July 2003 Frebouge debris flows (Mont Blanc Massif, Valley of Aosta, Italy):water pocket outburst flood and ice avalanche damming. Geografia Fisica e Dinamica Quaternaria,27(2),107-111.
    Della, V.A. Rampini, A., Rabagliati, R. et al.,1983. Glacier monitoring by satellit. Ⅱ Nuovo Cimento, C-1,6,211-221.
    Della V.A. Rampini, A. Rabaglitati, R. et al.,1987. Development of a satellite remote sensing technique for the study of alpine glaciers. International Journal of Remote Sensing,8, 203-215.
    Denby, C.R. and Hulth, J.,2011. Assessment of differentiated surface elevation data from 1949, 1975 and 2008 for estimates of ice-volume changes at Jan Mayen. Journal of Glaciology, 57,976-981.
    Ding, Z.L., Xiong, S.F., Sun, J.M. et al.,1999. Pedostratigraphy and paleomagnetism of a -7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology,152(1-2),49-66.
    Ding, Z.L., Yang, S.L., Sun, J.M. et al.,2001. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth and Planetary Science Letters,185(1-2),99-109.
    Dolgushin, L.,1962. Main particularities of glaciation of Central Asia according to the last Data. IASH,54,348-358.
    Dozier, J.,1989. Spectral signature of alpine snow cover from Landsat 5 TM. Remote Sensing of Environment,28,9-22.
    Dyurgerov, M.,2002. Glacier Mass Balance and Regime:Data of Measurements and Analysis,1-273.
    Dyurgerov, M.B. and Meier, M.F.,1997. Mass Balance of Mountain and Subpolar Glaciers:A New Global Assessment for 1961-1990. Arctic and Alpine Research,29(4),379-391.
    Dyurgerov, M.B. and Meier, M.F.,2000. Twentieth century climate change:Evidence from small glaciers. Proceedings of the National Academy of Sciences,97(4),1406-1411.
    Eiken, T., J.O.Hagen and Melvold., K.,2001. Kinematic GPS survey of geometry changes on Svalbard glaciers. Annals of Glaciology,24,157-163.
    Etzelmuller, B., Vatne, G.,(?)degard, R.S. et al.,1993. Mass balance and changes of surface slope, crevasse and flow pattern of Erikbreen, northern Spitsbergen:an application of a geographical information system (GIS). Polar Research,12(2),131-146.
    Fischer, A.,2009. Calculation of glacier volume from sparse ice-thickness data, applied to Schaufelferner, Austria. Journal of Glaciology,55,453-460.
    Forel, F.-A. (Ed.),1895. International Commission on Glaciers, Les variations periodiques des glaciers,discours preliminaire., Vol.ⅩⅩⅩⅣ. Archives des sciences physiques et naturelles, Geneva,209 pp.
    Foulger, G., Bilham, R., Morgan, W.J. et al.,1987. The Iceland GPS Geodetic Field Campain 1986. Eos Trans. AGU,68(52),1809-1818.
    Frezzotti, M., Capra, A. and Vittuari, L.,1998. Comparison between glacier ice velocities inferred from GPS and sequential satellite images. Annals of Glaciology,27,54-60.
    Fujisada, H., Bailey, G.B., Kelly, G.G. et al.,2005. ASTER DEM performance. IEEE Transactions on Geoscience and Remote Sensing,43(12),2707-2714
    Fujita, K.,2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters,276(1-2),14-19.
    Gao, Z. and Cheng, G.,1994. Preliminary analyses of hydrological characteristics of Hailuogou glacier on the eastern slope of the Gongga Moutain. In:Z. Xie (Ed.), Glacier and Environment in the Qinghai-Xizang(Tibet) Plateau(I)-The Gongga Mountain. Science Press Beijing, pp201.
    Gratton, D. J., Howarth, P. J. and Marceau, D. J.,1990. Combining DEM parameters with Landsat MSS and TM imagery in a GIS for mountain glacier characterization. IEEE ransactions on Geoscience and Remote Sensing, GE-28 (4),766-769.
    Govind, R., Valette, J.J. and Lemoine, F.G.,2010. A DORIS determination of the absolute velocities of the Sorsdal and Mellor glaciers in Antarctica. Advances in Space Research, 45(12),1523-1534.
    Haeberli, W.,2005. Glacier mass balance bulletin-Bulletin No.8(2002-2003).
    Haeberli, W. and Beniston, M.,1998. Climate Change and Its Impacts on Glaciers and Permafrost in the Alps. Ambio,27(4),258-265.
    Haeberli, W., Cihlar, J. and Barry, R.G.,2000. Glacier monitoring within the Global Climate Observing System. Annals of Glaciology,31,241-246.
    Haeberli, W., Kaab, A., Vonder Miihll, D. and Teysseire, P.,2001. Prevention of debris flows from outbursts of periglacial lakes at Gruben, Valais, Swiss Alps. Journal of Glaciology, 47(156),111-122.
    Hall, D. K. and Martinec, J.,1985. Remote sensing of ice and snow, Chapman & Hall, London, 189 pp.
    Hall, D.K., Bayr, K.J., Schoner, W. et al.,2003. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893-2001). Remote Sensing of Environment,86(4),566-577.
    Hall, D.K., Chang, A.T.C., Foster, J.L. et al.,1989. Comparison of in situ and Landsat derived reflectances of Alaskan glaciers. Remote Sensing of Environment,28,493-504.
    Hall, D.K., Riggs, G.A. and Salomonson, V.V.,1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment,54(2),127-140.
    Hallet, B., Hunter, L. and Bogen, J.,1996. Rates of erosion and sediment evacuation by glaciers:A review of field data and their implications. Global and Planetary Change,12(1-4), 213-235.
    Han, T., Ding, Y., Ye, B. et al.,2006. Mass-balance characteristics of Urumqi glacier No.1, Tien Shan, China. Annals of Glaciology,43(1),323-328.
    Hardy, C.C. and Burgan, R.E.,1999. Evaluation of NDVI for monitoring live moisture in three vegetation types of the Western U.S,65. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, ETATS-UNIS.
    He, Y., Theakstone, W.H., Zhonglin, Z. et al.,2004. Asynchronous Holocene climatic change across China. Quaternary Research,61(1),52-63.
    Heim, A.,1936. The glaciation and solifluction of Minya Gongkar. Geographical Journal,87, 444-454.
    Hirano, A., Welch, R. and Lang, H.,2003. Mapping from ASTER stereo image data:DEM validation and accuracy assessment. ISPRS Journal of Photogrammetry and Remote Sensing,57(5-6),356-370.
    Hoelzle, M., Chinn, T., Stumm, D. et al.,2007. The application of glacier inventory data for estimating past climate change effects on mountain glaciers:A comparison between the European Alps and the Southern Alps of New Zealand. Global and Planetary Change, 56(1-2),69-82.
    Hoelzle, M., Haeberli, W., Dischl, M. et al.,2003. Secular glacier mass balances derived from cumulative glacier length changes. Global and Planetary Change,36(4),295-306.
    Holben, B. and Justice, C.,1981. An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing,2(2), 115-133.
    Hooke,R.L.,1998. Principles of Glaier Mechanics.1-248.
    Howat, I.M., Ian Joughin and Scambos, T.A.,2007. Rapid Changes in Ice Discharge from Greenland Outlet Glaciers. Science,315(5818-1561),1559.
    Huggel, C., Haeberli, W., Andreas K.auml, Bieri, D. and Richardson, S.,2004. An assessment procedure for glacial hazards in the Swiss Alps. Canadian Geotechnical Journal,41(6), 1068-1083.
    Huggel, C., Kaab, A., Haeberli, W., Teysseire, P. et al.,2002. Remote sensing based assessment of hazards from glacier lake outbursts:a case study in the Swiss Alps. Canadian Geotechnical Journal,39(2),316-330.
    IPCC,2007. Climate Change 2007:The Physical Science Basis. Report of Working Group of the Intergovernmental Panel on Climate Change.16-72.
    Johannesson, T., Raymond, C. and Waddington, E.,1989. Time-scale for adjustment of glaciers to changes in mass banalce Journal of Glaciology,35(121),355-369.
    Jacobs, J. D., Simms, E. L. and Simms, A.,1997. Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM, Journal of Glaciology,43 (143),98-102.
    Jacob, T., Wahr, J., Pfeffer, W.T. et al.,2012. Recent contributions of glaciers and ice caps to sea level rise. Nature,482(7386),514-518.
    Jia, X., Richards, J.A. and Ricken, D.E. (Eds.),1999. Remote sensing digital image analysis:an introduction,3rd Ed. Springer, Berlin, pp400.
    Jiskoot, H., Curran, C.J., Tessler, D.L. et al.,2009. Changes in Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry, tributary detachment, lengthslope and areaaspect relations. Annals of Glaciology,50(53),133-143.
    Jones, P.D., New, M., Parker, D.E. et al.,1999. Surface air temperature and its changes over the past 150 years. Rev. Geophys.,37(2),173-199.
    JPL,2002. ASTER spectral library, URL:http://speclib.jpl.nasa.gov/.
    Kayastha, R.B., Takeuchi, Y., Nakawo, M. et al.,2000.Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal using a positive degreeday factor. IAHS Publ.264 (Symposium at Seattle 2000-Debris-Covered Glaciers),71-81.
    Kaab, A.,2002. Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data:examples using digital aerial imagery and ASTER data. SPRS Journal of Photogrammetry & Remote Sensing,57,39-52.
    Kaab, A.,2005. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment,94(4),463-474.
    Kaab, A.,2008. Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on Edge(?)ya, Eastern Svalbard. IEEE Transactions on geoscience and Remote Sensing,46(10),2823-2831.
    Kaab, A., Huggel, C., Fischer, L. et al.,2005. Remote sensing of glacier- and permafrost-related hazards in high mountains:an overview. Nat. Hazards Earth Syst. Sci.,5(4),527-554.
    Kaab, A., Paul, F. and Maisch, M.,2002. The New Remote sensing derived Swiss glacier inventory:Ⅱ. First Results. Annals of Glaciology,34,362-366.
    Kang, E.S. Shen, Y. P., Li, X. et al.,2004. Assessment of the glacier and snow water resources in China. A Report to the Ministry of Water Resources of China, CAREERI/CAS, Lanzhou.
    Kang, S., Chen, F., Gao, T. et al.,2009. Early onset of rainy season suppresses glacier melt a case study on Zhadang glacier, Tibetan Plateau. Journal of Glaciology,55(192),755-758.
    Kargel, J.S. Abrams, M.J., Bishop, M.P. et al.,2005. Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment,99(1-2),187-219.
    Khromova, T.E., Dyurgerov, M.B. and Barry, R.G.. Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophysical Research Letters,2003,30(16),1863, doi:10.1029/2003GL017233
    Kieffer, H., Kargel, J.S., Barry, R. et al.,2000. New eyes in the sky measure glaciers and ice sheets. Eos Trans. AGU,81(24),265-271.
    King, M.,2004. Rigorous GPS data-processing strategies for glaciological applications. Journal of Glaciology,50(171),601-607.
    Klein, A.G. and Kincaid, J.L.,2006. Retreat of glacier on Puncak Jaya, Irian Jaya,determined from 2000 and 2002 IKONOS satellite images. Journal of Glaciology,,52(176),65-80.
    Kohler, J. James, T.D., Murray, T. et al.,2007. Acceleration in thinning rate on western Svalbard glaciers. Geophysical Research Letters,34(L18502, doi:10.1029/2007GL030681),1-5.
    Korona, J., Berthier, E., Bernard, M. et al.,2009. SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009). ISPRS Journal of Photogrammetry and Remote Sensing,64(2),204-212.
    Kramer, H.J. (Ed.),2002. Observation of the earth and its enviornment:survey of missions and sensors. Springer, Berlin,1510 pp.
    Kulkarni, A.V. and Bahuguna, I.M.,2002. Glacier retreat in the Baspa basin, Himalaya, monitored with satellite stereo data. Journal of Glaciology,48(106),171-172.
    Lambrecht, A. and Kuhn, M.,2007. Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Annals of Glaciology,46(1), 177-184.
    Langway, C.C.,1967. Stratigraphic analysis of a deep ice core from Greenland. Research Report 77, US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, Hanover, NH.USA,130pp.
    Larsen, C.F., Motyka, R.J., Arendt, A.A. et al.,2007. Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise. Journal of Geophysical Research,112(F01007),1-11.
    Leprince, S., Ayoub, F., Klingert, Y. et al.,2007. Co-Registration of Optically Sensed Images and Correlation (COSICorr):an operational methodology for ground deformation measurements. Geoscience and Remote Sensing Symposium, IEEE International, 1943-1946.
    Li, B., Zhang, Y. and Zhou, C.,2004. Remote sensing detection of glacier chenges in Tianshan Mountain for the past 40 years. Journal of Geographical Sciences,14(3),296-302.
    Li, J., Liu, S., Shangguan, D. et al.,2010a. Identification of ice elevation change of the Shuiguan River No.4 glacier in the Qilian Mountains, China. Journal of Mountain Science,7(4), 375-379.
    Li, K., Li, H., Wang, L. et al.,2011a. On the relationship between local topography and small glacier change under climatic warming on Mt. Bogda, eastern Tian Shan, China. Journal of Earth Science,22(4),515-527.
    Li, S., Benson, C., Gens, R. and Lingle, C.,2008. Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques. Remote Sensing of Environment,112(9), 3628-3638.
    Li, Z., He, Y., Wang, C. et al.,2011b. Spatial and temporal trends of temperature and precipitation during 1960-2008 at the Hengduan Mountains, China. Quaternary International,236(1-2), 127-142.
    Li, Z., He, Y, Yang, X. et al.,2010b. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quaternary International, 218(1-2),166-175.
    Li, Z., Sun, W. and Zeng, Q.,1998. Measurements of Glacier Variation in the Tibetan Plateau Using Landsat Data. Remote Sensing of Environment,63(3),258-264.
    Li, Z., He, Y, Pu, T. et al.,2010c. Changes of climate, glaciers and runoff in China's monsoonal temperate glacier region during the last several decades. Quaternary International, 218(1-2),13-28.
    Lillesand, T., Kiefer, R.W. and Chipman, J. (Eds.),2007. Remote Sensing and Image Interpretation,6th Edition. John Wiley&Sons, Inc., Madison,804 pp.
    Lillesand, T.M. and Kieffer, R.W. (Eds.),1999. Remote sensing and image interpretation. Wiley, New York,736 pp.
    Liu, Q., Liu, S., Zhang, Y. et al.,2010. Recent shrinkage and hydrological response of Hailuogou glacier,a monsoon temperate glacier on the east slope of Mount Gongga, China. journal of Glaciology,56(196),215-224.
    Liu, S., Sun, W., Shen, Y. and Li, G.,2003. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. Journal of Glaciology,49(164),117-124.
    Liu.Cheng-Chien, Chang, Y.C., Huang, S. et al.,2009. Monitoring the dynamics of ice shelf margins in Polar Regions with high-spatial- and high-temporal-resolution space-borne optical imagery. Cold Regions Science and Technology,55(1),14-22.
    Loomis, S.R.1970. Morphology and ablation processes on glacier ice. Assoc. Am. Geogr. Proc.,2, 88-92
    Lougeay, R.,1974. Detection of buried glacial and ground ice with thermal infrared remote sensing. In:H.S. Santeford and J.L. Smith (Eds.), Advanced concepts and techniques in the study of snow and ice resources. National Academy of Sciences, Washington, D.C., pp. 487-494.
    Lu, A., He, Y., Zhang, Z. et al.,2004. Regional structure of global warming across China during the twentieth century. Climate Research,27,189-195.
    Lynch-Stieglitz, J.,2004. Hemispheric Asynchrony of Abrupt Climate Change, science,304, 1919-1920.
    Mattson, L.E., Gardner, J.S. and Young, G.J.,1993. Ablation on debris covered glaciers:an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publ.218 (Symposium at Kathmandu, Nepal 1992-Snow and Glacier Hydrology),289-296.
    Mikhalenko, V.N.,1997. Changes in Eurasian glaciation during the past century:glacier mass balance and ice—core evidence. Annals of Glaciology,24,283-287.
    Mather, P.M. (Ed.),1999. Computer processing of remotely-sensed images:An introduction,2nd Ed. Wiley, New York,306 pp.
    METI/NASA/USGS,2009. ASTER Global DEM Validation Summary Report, METI/ERSDAC, NASA/LPDAAC, USGS/EROS,.
    Moholdt, G., Nuth, C., Hagen, J.O. and Kohler, J.,2010. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment,114(11), 2756-2767.
    Moussavi, M.S., Zoej, M.J.V., Vaziri, F.et al.,2009. A new glacier inventory of Iran. Annals of Glaciology,50(53),93-103.
    Muskett, R.R., Lingle, C.S., Sauber, J.M., et al.,2008. Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth and Planetary Science Letters,265(3-4),345-359.
    Nakawo, M. and G.J. Young,1981. Field experiments to determine the effect of a debris layer on ablation of glacier ice. Ann.Glaciol.,2,85-91.
    Nakamura, K., Doi, K. and Shibuya, K.,2010. Fluctuations in the flow velocity of the Antarctic Shirase Glacier over an 11-year period. Polar Science,4(3),443-455.
    Narama, C., Kaab, A., Duishonakunov, M. and Abdrakhmatov, K.,2010. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (-1970), Landsat (-2000), and ALOS (-2007) satellite data. Global and Planetary Change, 71(1-2),42-54.
    Naruse, R. and Skvarca, P.,2000. Dynamic Features of Thinning and Retreating Glaciar Upsala, a Lacustrine Calving Glacier in Southern Patagonia. Arctic, Antarctic, and Alpine Research, 32(4),485-491.
    Nicholson, L. and Benn, D.I.,2006. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology,52(178),463-470.
    Nicholson, L., Mar, n, J., Lopez, D. et al.,2009. Glacier inventory of the upper Huasco valley, Norte Chico, Chile:glacier characteristics, glacier change and comparison with central Chile. Annals of Glaciology,50(53),111-118.
    Oerlemans, J.,1994. Quantifying global warming from the retreat of glaciers. Science,264(5156), 243-245.
    Oerlemans, J. (Ed.),2001. Glaciers and Climate Change. Wilco b.v., Amsterdam Netherlands, 148pp.
    Oerlemans, J.,2005. Extracting a climate signal from 169 glacier records. Science,308(5722), 675-677.
    Oerlemans, J. Anderson, B., Hubbard, A. et al.,1998. Modelling the response of glaciers to climate warming. Climate Dynamics,14(4),267-274.
    Oerlemans, J. and Fortuin, J.P.F.,1992. Sensitivity of Glaciers and Small Ice Caps to Greenhouse Warming. Science,258(5079),115-117.
    Oerlemans, J., Giesen, R.H. and Van Den Broeke, M.R.,2009. Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). Journal of Glaciology,55(192),729-736.
    Oerlemans, J. and Reichert, B.K.,2000. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. Journal of Glaciology,46(152),1-6.
    Ohmura, A.,2009. Completing the World Glacier Inventory. Annals of Glaciology,50(53), 144-148.
    (?)strem, G,1959. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann.,,41(4),228-230.
    Owen, L.A., Finkel, R.C., Barnard, P.L. et al.,2005. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quaternary Science Reviews, 24(12-13),1391-1411.
    Owen, L.A. Thackray, G, Anderson, R.S. et al.,2009. Integrated research on mountain glaciers: Current status, priorities and future prospects. Geomorphology,103(2),158-171.
    Paterson, W.S.B. (Ed.),1994. The physics of glaciers. Pergamon Press, Oxford,480 pp.
    Patzelt, G.,1980. The Austrian glacier inventory:status and first results. World Glacier Inventory-inventaire mondial des glaciers,126,181-185.
    Pan, B. Zhang, G., Wang, J. et al.,2012. Glacier changes from 1966-2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing. The Cryosphere,6,1087-1101
    Paul, F.,2003. The new Swiss glacier inventory 2000:application of remote sensing and GIS, Universitat Zurich, Switzerland, thesis of PhD,193pp.
    Paul, F. Huggel, C., Kaab, A., et al.,2002b. Comparison of TM-derived glacier areas with higher resolution data sets., Proceedings EARSeL Workshop on Remote Sensing of Land Ice and Snow, Bern.
    Paul, F. and Andreassen, L.M.,2009. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data:challenges and change assessment. Journal of Glaciology, 55(192),607-618.
    Paul, F. and Haeberli, W,2008. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. GEOPHYSICAL RESEARCH LETTERS, 35(L21502),1-5.
    Paul, F., Huggel, C. and Kaab, A.,2004. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4),510-518.
    Paul, F., Kaab, A. and Maisch, M.,2002a. The new remote sensing derived Swiss glacier inventory:Methods. Annals of Glaciology 34(41),355-361.
    Pelto, M.S.,2010. Forecasting temperate alpine glacier survival from accumulation zone observations. The Cryosphere,4,67-75.
    Pelto, M.S. and Hedlund, C.,2001. Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A. Journal of Glaciology,47(158),497-506.
    Plewes, L. A. and Hubbard, B.,2001. A review of the use of radio-echo sounding in glaciology, Progress in Physical Geography,25(2),203-236.
    Porter, S.C.,1986. Pattern and forcing of Northern Hemisphere glacier variations during the last millennium. Quaternary Research,26(1),27-48.
    Post, A., Meier, M.F., and Mayo, L.R.,1976. Measuring the motion of the Lowell and Tweeedsuir surging glaciers of Bristish Columbia, Canada. In ERTS-1, A New Window on Our Planet, USGS professional Paper929, pp.180-4
    Pritchard, H.D., Arthern, R.J., Vaughan, D.G. and Edwards, L.A.,2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature,461(7266), 971-975.
    Qin, D., Mayewski, P.A., Wake, C.P. et al.,2000. Evidence for recent climate change from ice cores in the central Himalaya. Annals of Glaciology,31(1),153-158.
    Quincey, D.J., Copland, L., Mayer, C. et al.,2009. Ice velocity and climate variations for Baltoro Glacier, Pakistan. Journal of Glaciology,55(194),1061-1071.
    Rabus, B., Eineder, M., Roth, A. and Bamler, R.,2003. The shuttle radar topography mission--a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing,57(4),241-262.
    Raper, S.C.B. and Braithwaite, R.J.,2006. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature,439(7074),311-313.
    Reichert, B.K., Bengtsson, L. and Oerlemans, J.,2001. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models. Journal of climate, 14,3767-3784.
    Ren, J., Qin, D., Kang, S. et al.,2004. Glacier variations and climate warming and drying in the central Himalayas. Chinese Science Bulletin,49(1),65-69.
    Richards, J.A. (Ed.),1994. Remote sensing digital image analysis:an introduction,2nd Ed. Springer, Berlin,340 pp.
    Rignot, E., Rivera, A.s. and Casassa, G,2003. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science,302(5644),434-437.
    Rignot, E. and Thomas, R.H.,2002. Mass Balance of Polar Ice Sheets. Science,297(5586), 1502-1506.
    Rivera, A., Benham, T., Casassa, G. et al.,2007. Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global and Planetary Change,59(1-4),126-137.
    Rivera, A., Casassa, G., Bamber, J. et al.,2005. Ice-elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. Journal of Glaciology, 51(172),105-112.
    Rivera, A.s. and Casassa, G.,2004. Ice Elevation, Areal, and Frontal Changes of Glaciers from National Park Torres del Paine, Southern Patagonia Icefield. Arctic, Antarctic, and Alpine Research,36(4),379-389.
    Rott, H.,1994. Thematic studies in alpine area by means of polarimetric SAR and optical imagery. Adv. Space Res.,14(3),217-226.
    Rott, H. and Markl L, G.,1989. Improved snow and glacier monitoring by the Landsat Thematic Mapper, in:Guyenne, T.-D. and Calabresi, G. (Eds.):Monitoring the Earth's environment, ESA,SP-1102,3-12.
    Rupper, S. and Roe, G.,2008. Glacier Changes and Regional Climate:A Mass and Energy Balance Approach. Journal of Climate,21(20),5384-5401.
    Sapino, J.J., Arrison, W.D.H. and Chelmeyer, K.A.E.,1998. Elevation, voluIlle and terIllinus changes of nine glaciers in North AIllerica. Journal of Glaciology,44(146),119-135.
    Scambos, T.,1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of.Environment,42,177-186.
    Schoner, W., Auer, I. and Bohm, R.,2000. Climate variability and glacier reaction in the Austrian eastern Alps. Annals of Glaciology, Vol 31,2000,31,31-38.
    Schenk, T. (Ed.),1999. Digital Photogrammetry,. TerraScience, Laurelville,Ohio, vol.1.
    Schenk, T., Csatho, B., van der Veen, C.J. et al.,2005. Registering imagery to ICESat data for measuring elevation changes on Byrd Glacier, Antarctica. Geophys. Res. Lett., 32(L23S05),1-4.
    Scherler, D., Bookhagen, B. and Strecker, M.R.,2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience,4(3),156-159.
    Schneider, C., Schnirch, M., Acuna, C. et al.,2007. Glacier inventory of the Gran Campo Nevado Ice Cap in the Southern Andes and glacier changes observed during recent decades. Global and Planetary Change,59(1-4),87-100.
    Schowengerdt, R.A. (Ed.),1997. Remote sensing-Models and methods for image processing. Academic Press, New York,522 pp.
    Scofield, J.P., Fastook, J.L. and Hughes, T.J.,1991. Evidence for a Frozen Bed, Byrd Glacier, Antarctica. J. Geophys. Res.,96(B7),11649-11655.
    Serandrei-Barbero, R., Rabagliati, R., Binaghi, E. et al.,1999. Glacial retreat in the 1980s in the Breonie, Aurine and Pustersi group (easter Apls, Italy) in Landsat TM images. Hydrological Science-Journal-des Sciences Hydrologiques,44(2),279-296.
    Shackleton, N.,1967. Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed. Nature,215(5096),15-17.
    Shackleton, N.J. and Opdyke, N.D.,1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238:Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research,3(1),39-55.
    Shangguan, D., Liu, S., Ding, Y. et al.,2009. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progress in Natural Science,19(6),727-732.
    Shangguan, D., Liu, S., Ding, Y. et al.,2007. Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Annals of Glaciology,46(132),204-208.
    Shangguan, D. Liu, S., Ding, Y. et al.,2010. Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China. Journal of Glaciology,56(196),309-317.
    Shi, Y., Liu, C. and Kang, E.,2009. The Glacier Inventory of China. Annals of Glaciology,50(53), 1-4.
    Shi, Y. and Liu, S.,2000. Estimation on the response of glaciers in China to the global warming in the 21st century. Chinese Science Bulletin,45(7),668-672.
    Simon, C. and Ommanney, L.,2009. Canada and the World Glacier Inventory. Annals of Glaciology,50(53),5-10.
    Smart, C.C., Owens, I.F., Lawson, W. et al.,2000. Exceptional ablation arising from rainfall-induced slushflows:Brewster Glacier, New Zealand. Hydrological Processes,14(6), 1045-1052.
    Smith, B.E.,2005. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers. Geophysical Research Letters,32(L21S09),1-5.
    Spikes, V.B., Csatho, B., Hamilton, G. et al.,2003. Thickness Changes on Whillans Ice Stream and Ice Stream C, West Antarctica, Derived from Laser Altimeter Measurements. Journal of Glaciology,49(165),223-230.
    Spinhirne, J.D., Palm, S.P., Hart, W.D. et al.,2005. Cloud and aerosol measurements from GLAS: Overview and initial results. Geophys. Res. Lett.,32(22), L22S03.
    Stern, W.,1930. Uber Grundlagen, Methodik and bishrige Ergebnisse elektrodynamischer Diskenmessung von Gletscjereis. Z. Gletscherkunde 15,24-42.
    Su, Z., Liu. S., Wang, N. et al.,1992. Recent flutuations of glaciers in the Gongga mountains. Annals of Glaciology,16,163-167.
    Svoboda, F. and Paul, F.,2009. A new glacier inventory on southern Baffin Island, Canada, from ASTER data:Ⅰ. Applied methods, challenges and solutions. Annals of Glaciology,50(53), 11-21.
    Thompson, L.G. Yao, T., Mosley-Thompson, E. et al.,2000. A High-Resolution Millennial Record of the South Asian Monsoon from Himalayan Ice Cores. Science,289(5486),1916-1919.
    Toutin, T.,2004. Review article:Geometric processing of remote sensing images:models, algorithms and methods,. Int. J. Remote Sens.,25(doi:10.1080/0143116031000101611), 1893-1924.
    Toutin, T.,2008. ASTER DEMs for geomatic and geoscientific applications:a review. Int. J. Remote Sens.,29,1855-1875.
    UNEP,2009. Global glacier changes:facts and figures.1-66.
    Volksen, C., Arnadottir, T., Geirsson, H. et al.,2009. Present day geodynamics in Iceland monitored by a permanent network of continuous GPS stations. Journal of Geodynamics, 48(3-5),279-283.
    Van de Wal, R.S.W. et al.,2008. Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet. Science,321(5885),111-113.
    Vaughan, D.G., Boot, W., van den Broeke, M.R. et al.,1993. A synthesis of remote sensing data on Willkins ice sgelf, Antarctica. Annual of Glaciology,17,211-218.
    Velicogna, I. and Wahr, J.,2005. Greenland mass balance from GRACE. Geophysical Research Letters,32(L18505),1-4.
    WGMS,1989. World Glacier Inventory (status 1988). IAHS (ICSI)-UNEP-UNESCO, A11-C89.
    WGMS,2011. Glacier mass balance bulletin No.11 (2008-2009). ICSU (WDS)-IUGG (IACS)-UNEP-UNESCO-WMO,1-110.
    Whillans, I.M., Chen, Y.H., Van Der Veen, C.J. et al.,1989. Force Budget:Ⅲ. Application to Three Dimensional Flow of Byrd Glacier, Antarctica. Journal of Glaciology,35(119), 68-80.
    Williams, R.S. Thorarinsson, S., Bjornsson, H. et al.,1979. Dynamics of Icelandic ice caps and outlet glaciers. Journal of Glaciology,24,505-507.
    Wood, F. B.,1988. Global alpine glacier trends 1960s to 1980s. Arctic and Alpine Research,20(4), 404-413.
    Xie, Z. and Kotlyakov, V.M. (Eds.),1994. Glacier and Environment in the Qinghai-Xizang(Tibet) Plateau—The Gongga Mountain. Science Press, Beijing,201pp.
    Yao, T., Wang, Y., Liu, S. et al.,2004. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Science China(Earth Sciences),47(12), 1065-1075.
    Yao, T., Thompson LG. and Qin, D.,1996. Variation in temperature and precipitation in the past 2000a on the Xizang(Tibet) Plateau-Guliya Ice Core Record. Science in China,Ser.D, 39(4),425-433.
    Yao, T., Thompson, L., Yang, W. et al.,2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, (DOI: 10.1038/NCLIMATE1580) (1-5).
    Ye, B., Ding, Y., Liu, F. et al.,2003. Response of various-sized alpine glaciers and runoff to climatic change. Journal of Glaciology,49(164),1-7.
    Ye, B., Yang, D., Jiao, K. et al.,2005. The Urumqi River source Glacier No.1, Tianshan, China: Changes over the past 45 years. Geophys. Res. Lett.,32(L21504),1-4.
    Zeng, Q., Cao, M., Feng, X. et al.,1983. A study of spectral reflection characteristics for snow, ice and water in the north of China. IAHS (ICSI)-UNEP-UNESCO,145,451-462.
    Zhang, J., Bhatt, U.S., Tangborn, W.V. et al.,2007. Climate downscaling for estimating glacier mass balances in northwestern North America:Validation with a USGS benchmark glacier. Geophysical Resarch Letters,34(21),1-4.
    Zhang, Y., Fujita, K., Liu, S. et al.,2011. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology,57(206),1147-1156.
    Zhang, Y., Fujita, K. Liu, S. et al.,2010. Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier:Hailuogou glacier, China. Journal of Glaciology,56(195), 65-74.
    Zhang, Y., Liu, S., Xu, J. et al.,2008. Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China. Environmental Geology, 56(1),59-68.
    Zwally, H.J., Schutz, B., Abdalati, W. et al.,2002. ICESat's laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics,34(3-4),405-445.
    安芷生和符淙斌,2001.全球变化科学进展.地球科学进展,16(5),671-680.
    冰川编目技术文档,2007.中国科学院寒区旱区环境与工程研究所,内部培训资料.
    蔡迪花,马金辉,年雁云等,2006.慕士塔格峰冰川变化遥感研究.兰州大学学报(自然科学版),42(01),13-18.
    蔡英,李栋梁,汤懋苍等,2003.青藏高原近50年来气温的年代际变化.高原气象,22(5),464-475.
    曹泊,潘保田,高红山等,2010.1972-2007年祁连山东段冷龙岭现代冰川变化研究.冰川冻土,32(2),242-248.
    曹梅盛,李新和陈贤章(Eds.),2006.冰冻圈遥感.科学出版社,北京,266pp
    曹敏,李忠勤和李慧林,2011.天山托木尔峰地区青冰滩72号冰川表面运动速度特征研究.冰川冻土,33(1),21-30.
    车涛,李新,P.K.Mool等,2005.希夏邦马峰东坡冰川与冰川湖泊变化遥感监测.冰川冻土,27(06),801-806.
    陈锋,2009.念青唐古拉峰地区冰川变化及其对气候变化的响应——RS与GIS的应用.中国科学院青藏高原研究所,北京,博士论文,
    陈锋,康世昌,张拥军等,2009.纳木错流域冰川和湖泊变化对气候变化的响应.山地学报,27(6),641-647.
    陈富斌(Ed.),1993.贡嘎山高山生态环境研究.成都科技大学出版社,成都,170 pp.
    陈富斌(Ed.),1998.贡嘎山高山生态环境研究,第2卷.气象出版社,北京,170 pp.
    陈建明,刘潮海和金明,1996.重复航空摄影测量方法在乌鲁木齐河源流域冰川变化监测中的应用.冰川冻土,18(4),331-336.
    陈俊勇,2005.对SRTM3和GTOPO30地形数据质量的评估.武汉大学学报(信息科学版)30(11),941-944.
    陈晓清,崔鹏,杨忠等,2005.近15a喜玛拉雅山中段波曲流域冰川和冰湖变化.冰川冻土,27(06),793-801.
    陈晓清,崔鹏,杨忠等,2007.喜马拉雅山中段波曲流域近期冰湖溃决危险性分析与评估.冰川冻土,29(04),509-517.
    程根伟和陈桂蓉,2003.贡嘎山暗针叶林区森林蒸散发特征与模拟.水科学进展,14(5),617-623.
    程尊兰,朱平一和宫怡文,2003.典型冰湖溃决型泥石流形成机制分析.山地学报,21(6),716-720.
    崔之久,1958.贡嘎山现代冰川的初步观察-纪念为征服贡嘎山而英勇牺牲的战友.地理学报,24(3),318-343.
    丁良福,康兴成,1985.祁连山冰川发育的气候条件及其对冰川特征的影响.见:中国科学院兰州冻土研究所集刊5号.北京:科学出版社,5-15.
    丁文江.漫游散记(十八).独立评论,1933,(48),335-337.
    丁永建,1996a.1980年以来冰冻圈对气候变暖响应的若干证据.冰川冻土,18(02),131-139.
    丁永建,1996b.中国和瑞士冰川波动之对比研究.冰川冻土,18(增刊),96-105.
    丁永建和柄洪涛,1996.近年来冰川物质平衡变化及对气候变化的响应.冰川冻土,18(增刊),23-32.
    段建平,王丽丽和任贾文,2009.近百年来中国冰川变化及其对气候变化的敏感性研究进展.地理科学进展,28(02),231-237.
    段克勤,姚檀栋,蒲健辰等,2001.喜马拉雅山达索普冰川积累量变化及其对青藏高原温度的响应.冰川冻土,23(02),119-126.
    段克勤,姚檀栋,蒲健辰等,2002b吴祥定.喜马拉雅山地区冰川积累量记录的季风降水对气 候变暖的响应.科学通报,47(19),1058-1063.
    高生淮和郑远昌,1989.横断山研究文集.四川科学技术出版社,成都,209pp.
    高闻宇,李忠勤,李开明等,2011.基于遥感与GIS的库克苏河流域冰川变化研究.干旱区地理,34(2),252-261.
    段克勤,姚檀栋和蒲健辰,2002a.喜马拉雅山中部过去约300年季风降水变化.第四纪研究,22(03),236-242.
    郭春喜,张林波,张骥等,2002.西安80坐标系与WGS-84坐标系转换模型的确.东北测绘,25(4),34-37.
    郭柳平,叶庆华,姚檀栋等,2007.基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究.冰川冻土,29(04),517-525.
    国家地震局西南地震队,1977.西南地区地震及烈度区划探讨,地震出版社.
    何德伟,马东涛,黄海等,2008.贡嘎山旅游景区泥石流灾害及减灾对策.水土保持通报,28(1),140-144.
    何茂兵,孙波,杨亚新等,2004.天山乌鲁木齐河源一号冰川探地雷达测厚及其数据分析.东华理工学院学报,27(3),235-239.
    何茂兵,杨亚新,陈越等,2003.浅谈探地雷达在冰川研究中的应用.华东地质学院学报,26(1),48-51.
    何元庆,姚檀栋,杨梅学等,2000.玉龙山温冰川浅冰芯记录现代指示意义.冰川冻土,22(03),235-242.
    何元庆等,2003.中国季风温冰川区近代气候变化与冰川动态.地理学报,58(04),550-558.
    黄汲清,1984.中国的冰川.冰川冻土,6(1),85-93.
    黄汲清.中国大地构造基本轮廓.地质学报,1977,(2):117-143.
    黄茂桓,1988.中国冰川运动,中国冰川概论.科学出版社,北京,pp.88-104.
    黄茂桓和孙作哲,1982.我国大陆型冰川运动的某些特征.冰川冻土,4(2),35-45.
    黄以职,顾钟炜,万天祺等,1980.高山冰川雷达探测试验.冰川冻土,2(3),37-39.
    纪鹏,郭华东和张露,2011.基于Landsat数据的郭扎错北面冰川近20年来面积动态变化遥感研究.遥感技术与应用,26(2),202-208.
    焦克勤,井哲帆,成鹏等,2009.天山奎屯河哈希勒根51号冰川变化监测结果分析.干旱区地理,32(5),732-737.
    晋锐,车涛,李新等,2004.基于遥感和GIS的西藏朋曲流域冰川变化研究.冰川冻土,26(03),261-267.
    井哲帆,周在明和刘力,2010.中国冰川运动速度研究进展.冰川冻土,32(4),749-755.
    井哲帆,2007.气候变化背景下中国若干典型冰川的运动及其变化,中国科学院喊去旱区环境与工程研究所,兰州,博士论文,120 pp.
    康尔泗,程国栋和董增川(Eds.),2002.中国西北干旱区冰雪水资源与出山径流.科学出版社,北京,20-23 pp.
    蓝永超等,2007.近50年来新疆天山南北坡典型流域冰川与冰川水资源的变化.干旱区资源与环境,21(11),1-8.
    李斌,李新和陈贤章,1999.中国冰川编目软件设计.冰川冻土,21(1),77-80.
    李炳元和王富葆,1986.颠西北、川西南地区地貌的基本特征.横断山考察文集(二).北京:科技出版社,174-183.
    李吉均(Ed.),1986.西藏冰川.科学出版社,北京,328 pp.
    李吉均和苏珍(Ed.),1996.横断山冰川.科学出版社,北京,282 pp.
    李吉均,宋明琨,秦大河等,1983.贡嘎山冰川考察.In:孙鸿烈(Ed.),横断山考察专集(一).云南人民出版社,pp.391.
    李震,孙文新和曾群柱,1999.综合RS与GIS方法提取青藏高原冰川变化信息——以布喀塔格峰为例.地理学报,54(03),263-268.
    李治国,姚檀栋,叶庆华等,2011.1980-2007年喜马拉雅东段洛扎地区冰川变化遥感监测.地理研究,30(5),940-951.
    李忠勤,韩添丁,井哲帆等,2003.乌鲁木齐河源区气候变化和1号冰川40a观测事实.冰川冻土,25(2),117·123.
    李忠勤,王飞腾,朱国才等,2007a.天山庙尔沟平顶冰川的基本特征和过去24a间的厚度变化.冰川冻土,29(01),61-65.
    李忠勤,沈永平,王飞腾等,2007b.天山乌鲁木齐河源1号冰川消融对气候变化的响应.气候变化研究进展,3(03),132-138.
    李宗省,何元庆,贾文雄等,2009.全球变暖背景下海螺沟冰川近百年的变化.冰川冻土,31(1),75-82.
    林振耀和吴祥定,1983.云南小中旬地区树木年轮所表征的气候变化.In:孙鸿烈(Ed.),横断山考察专集(一).云南人民出版社,昆明,pp.206-214.
    林振耀和赵听奕,1996.青藏高原气温降水变化的空间特征.中国科学(D辑:地球科学),26(4),254-258.
    刘潮海,康尔泗,刘时银等,1999.西北干旱区冰川变化及其径流效应研究.中国科学D辑,29(S 1),55-62.
    刘潮海,施雅风,王宗太等,2000.中国冰川资源及其分布特征——中国冰川目录编制完成.冰川冻土,22(02),106-113.
    刘潮海,谢自楚和刘时银等,2002.冰川水资源及其变化.,14-51.
    刘巧,2011.海螺沟冰川冰内及冰下水系季节演化示踪与模拟研究,中国科学院寒区早区环境与工程研究所,兰州,博士论文,168 pp.
    刘巧,刘时银,张勇等,2011.贡嘎山海螺沟冰川消融区表面消融特征及其近期变化.冰川冻土,33(3),227-237.
    刘时银,丁永建,李晶等,2006a.中国西部冰川对近期气候变暖的响应.第四纪研究,26(05),762-772.
    刘时银,丁永建,叶佰生等,2000a.高亚洲地区冰川物质平衡变化特征研究.冰川冻土,22(02),97-106.
    刘时银,沈永平,孙文新等,2002a.祁连山西段小冰期以来的冰川变化研究.冰川冻土,24(03),227-234.
    刘时银,谢自楚和刘潮海,2000b.冰川物质平衡与冰川波动.In:施雅风(Ed.),中国冰川与环境-过去、现在和未来.科学出版社,北京,410 pp.
    刘时银,鲁安新,丁永建等,2002b.黄河上游阿尼玛卿山区冰川波动与气候变化.冰川冻土,24(06),701-708.
    刘时银等,2004.基于RS与GIS的冰川变化研究——青藏高原北侧新青峰与马兰冰帽变化的再评估.冰川冻土,26(03),244-253.
    刘时银,上官冬辉,丁永建等,2005.20世纪初以来青藏高原东南部岗日嘎布山的冰川变化.冰川冻土,27(01),55-64.
    刘时银,丁永建,张勇等,2006b.塔里木河流域冰川变化及其对水资源影响.地理学报,61(05),482-490.
    刘淑珍,1983.贡嘎山地区地貌类型及制图.In:孙鸿烈(Ed.),横断山考察专集(一).云南人民出版社,昆明,pp.391.
    刘淑珍,刘新民,赵永涛等,1983.贡嘎山地区地貌特征及地貌发育史.见:中国科学院成都地理研究所.贡嘎山地理考察.科学技术文献出版社重庆分社,重庆,21-24.
    刘晓尘和效存德,2011.1974-2010年雅鲁藏布江源头杰玛央宗冰川及冰湖变化初步研究.冰川冻土,33(3),488-497.
    刘宇硕,秦翔,杜文涛等,2010.祁连山老虎沟12号冰川运动特征分析.冰川冻土,32(3),475-479.
    刘志辉,王红娟,裴欢等,2005.基于RS和GIS技术的近40a新疆昌吉州冰川变化分析.新疆大学学报(自然科学版),22(02),127-133.
    刘宗香和谢自楚,1995.青藏高原内陆水系冰川粒雪线与中值高度趋势面的绘制与主要特征.冰川冻土,17(4),356-360.
    卢爱刚,2009.基于冰川学学科分支下的贡嘎山区海洋型冰川研究进展.陕西理工学院学报(自然科学版),25(3),81-90.
    鲁安新,姚檀栋,刘时银等,2002.青藏高原各拉丹冬地区冰川变化的遥感监测.冰川冻土,24(05),559-563.
    马凌龙,田立德,杨威等,2008.青藏高原南部羊八井古仁河口冰川GPR测厚.冰川冻土,30(5),783-789.
    马晓波和李栋梁,2003.青藏高原近代气温变化趋势及突变分析.高原气象,22(5),507-512.
    梅安新,彭望碌,秦其明等(Eds.),2001.遥感导论.高等教育出版社,北京,320 pp.
    聂勇,张镱锂,刘林山等,2010.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测.地理学报,65(1),13-28.
    蒲健辰(Ed.),1994.中国冰川目录-长江水系.甘肃文化出版社,兰州,142 pp.
    蒲健辰,姚檀栋,王宁练等,2002.普若岗日冰原及其小冰期以来的冰川变化.冰川冻土,24(01),87-92.
    谯程俊,2010.唐古拉山冬克玛底地区冰川变化遥感监测.安徽农业科学,38(14),7703-7705.
    蒲健辰,姚檀栋,王宁练等,2004.近百年来青藏高原冰川的进退变化.冰川冻土,26(05),517-523.
    秦大河(Ed.),2002.中国西部环境演变评估.科学出版社,北京.
    秦大河,效存德,丁永建等,2006.国际冰冻圈研究动态和我国冰冻圈研究的现状与展望.应用气象学报,17(06,),649-656.
    任贾文,秦大河和井哲帆,1998.气候变暖使珠穆朗玛峰地区冰川处于退缩状态.冰川冻土,20(02),17-18.
    任雨,张雪芹和彭莉莉,2010.青藏高原1951-2006年气温距平序列的建立与分析.高原气象,29(3),572-579.
    上官冬辉,2007.基于3S的塔里木河流域冰川变化应用研究,中国科学院喊去旱区环境与工程研究所,兰州,博士论文.
    上官冬辉,刘时银,丁永建等,2004a.中国喀喇昆仑山、慕士塔格公格尔山典型冰川变化监测结果.冰川冻土,26(03),374-375.
    上官冬辉,刘时银,丁永建等,2004b.玉龙喀什河源区32年来冰川变化遥感监测.地理学报,59(06),855-862.
    上官冬辉,刘时银,丁永建等,2005a.利用ASTER影像对慕士塔格-公格尔山冰川解译与目录编制.冰川冻土,27(03),344-351.
    上官冬辉,刘时银,丁永建等,2005b.喀喇昆仑山克勒青河谷近年来发现有跃动冰川.冰川冻土,27(05),641-645.
    上官冬辉,刘时银,丁良福等等,2008.1970-2000年念青唐古拉山脉西段冰川变化.冰川冻土,30(02),204-211.
    沈玉昌和杨逸畴.滇西金沙江袭夺问题的新探讨.地理学报,1963,26(2):88-107.
    施雅风(Ed.),2000.中国冰川与环境.冰川物质平衡与冰川波动.科学出版社,北京,101-123 pp.
    施雅风,1961.五年来的中国冰川学冻土学与干旱水文研究.科学通报,3,218-225.
    施雅风,1986.J.L.R.阿伽西一近代冰川学说的奠基人.冰川冻土,8(2),179-182.
    施雅风,2001.2050年前气候变暖冰川萎缩对水资源影响情景预估.冰川冻土,23(04),333-342.
    施雅风,刘潮海和王宗太(Eds.),2005.简明中国冰川编目.上海科学普及出版社,上海,17-20 pp.
    施雅风,谢自楚,张祥松和黄茂桓,1985.二十五年来中国冰川学的回顾与展望.地理学报,40(4),387-396.
    施雅风和刘东生,1964.希夏邦马地区科学考察初步报告.科学通报,10,928-938.
    施雅风和刘时银,2000.中国冰川对21世纪全球变暖响应的预估.科学通报,45(04),434-438.
    施雅风和任炳辉,1983.中国冰川研究发展简史.冰川冻土,5(1),21-32.
    施雅风和谢自楚,1964.中国现代冰川的基本特征.地理学报,30(3),183-208.
    施雅风,孔昭宸,王苏民等,1992.中国全新世大暖期气候与环境的基本特征.中国全新世大暖期气候与环境(施雅风Ed),北京,海洋出版社,1-18pp.
    宋波,何元庆,庞洪喜等,2007.基于遥感和GIS的我国季风海洋型冰川区冰碛物覆盖型冰川边界的自动识别.冰川冻土,29(03),456-463.
    宋明琨,1985.横断山冰川考察.冰川冻土,1,98-98.
    苏珍,梁大兰和洪明,1993.贡嘎山海洋性冰川发育条件及分布特征.冰川冻土,15(4),551-558.
    苏珍,刘时银,谢自楚等,1998.贡嘎山季风海洋性冰川的初步研究.In:陈富斌(E d.),贡嘎山高山生态环境研究.气象出版社,170 pp.
    苏珍和蒲健辰,1998.青藏高原现代冰川的进退变化.见青藏高原近代气候变化及对环境的影像.广州,广东科技出版社,223-236.
    苏珍和A.B.奥尔洛夫,1992.1991年中苏联合希夏邦马峰地区冰川考察研究简况.冰川冻土,14(2),184-186.
    苏珍,施雅风和郑本兴,2002.贡嘎山第四纪冰川遗迹及冰期划分.地球科学进展,17(5),639-648.
    苏珍,宋国平和曹真堂,1996.贡嘎山海螺沟冰川的海洋性特征.冰川冻土,18(增刊),51-60.
    苏珍,王立伦,蒲健辰等,1987.横断山现代冰川基本特征的初步研究,第二届全国冰川冻土学术会议论文集.甘肃人民出版社.
    苏珍和施雅风,2000.小冰期以来中国季风温冰川对全球变暖的响应.冰川冻土,22(03),223-230.
    孙波,何茂兵,张鹏等,2003.天山1号冰川厚度和冰下地形探测与冰储量分析.极地研究,15(1),35-36.
    孙维兵,周山和赵旭,2003.GPS动态RTK测量中WGS-84与本地坐标系转换程序的实现及应用.勘察科学技术,3,51-54.
    孙向阳,王根绪,李伟等,2011.贡嘎山亚高山演替林林冠截留特征与模拟.水科学进展,22(1),24-30.
    王德义和王俊勤,1994.WGS-84与BJ-54两坐标系转换参数的精度,4,51-51.
    王建,潘竟虎和王丽红,2002.基于遥感卫星图像的ATCOR2快速大气纠正模型及应用.遥感技术与应用,17(4),193-197.
    王解先,王军和陆彩萍,2003.WGS-84与北京54坐标转换问题.大地测量与地球动力学,23(3),70-73.
    王立伦,刘潮海和康兴成,1983.我国阿尔泰山现代冰川的基本特征.冰川冻土,5(4),27-38.
    王利平,2009.基于GIS的羌塘高原冰川系统变化及其预测.湖南师范大学,长沙,硕士论文.
    王宁练,姚檀栋,蒲建辰等,2006.青藏高原北部马兰冰芯记录的近千年来气候环境变化.中国科学D辑,36(8),723-732.
    王宁练和蒲健辰,2009.祁连山八一冰川雷达测厚与冰储量分析.冰川冻土,31(03),431-435.
    王宁练和张祥松,1992.近百年来山地冰川波动与气候变化.冰川冻土,14(3),242-250.
    王璞玉,2011.天山不同地区典型冰川厚度及储量变化分析.中国科学院寒区旱区环境与工程研究所,兰州,博士论文,113pp.
    王清华,鄂栋臣和陈春明,2001.中山站至A冰穹考察及沿线GPS复测结果分析.武汉大学学报(信息科学版),26(03),200-204.
    王绍武,蔡静宁和朱静红,2002.中国气候变化的研究.气候与环境研究,7(2),137-145.
    王圣杰,张明军,李忠勤等,2011.近50年来中国天山冰川面积变化对气候的响应.地理学报,66(1),38-46.
    王彦龙,邵文章,1983.川西滇北藏东南地区雪害分布及其特征.横断山考察专集(一)云南人民出版社,昆明,154-165.
    王祎婷,陈秀万,柏延臣等,2010.多源DEM和多时相遥感影像监测冰川体积变化—以青藏高原那木纳尼峰为例.冰川冻土,32(1),126-133.
    王宗太(Ed.),1981.中国冰川目录I祁连山区.中国科学院兰州冰川冻土研究所,兰州.
    王宗太和苏红超,2003.世界和中国的冰川分布及其水资源意义.冰川冻土,25(5),498-503.
    文汉江和程鹏飞,2005. ICESAT/GLAS激光测高原理及其应用.测绘科学,30(5),33-37.
    吴立宗.中国冰川编目空间集成和基于陆地卫星的冰川编目,中国科学院研究生院硕士学位论文2005.
    吴涛,康建成,王芳等,2006.全球海平面变化研究新进展.地球科学进展,21(07,),730-737.
    吴艳红,朱立平,叶庆华等,2007.纳木错流域近30年来湖泊—冰川变化对气候的响应.地理学报,62(03),301-311.
    武震,刘时银和张世强,2009.祁连山老虎沟12号冰川冰下形态特征分析.地球科学进展,24(10),1149-1158.
    谢昌卫,丁永建,刘时银等,2006.近30a来托木尔峰南麓科其喀尔冰川冰舌区变化.冰川冻土,28(05),672-677.
    谢自楚,1985.关于斌成功稳定性系数的初步研究,中国地理学会冰川冻土学术讨论会议论文集(冰川学).科学出版社,北京,pp 48-51.
    谢自楚,苏珍,沈永平等,2001.贡嘎山海螺沟冰川物质平衡、水交换特征及其对径流的影响.冰川冻土,23(01),7-16.
    谢自楚和刘潮海(Eds.),2010.冰川学导论.上海科学普及出版社,上海,490 pp.
    辛晓冬,姚檀栋,叶庆华等,2009.1980---2005年藏东南然乌湖流域冰川湖泊变化研究.冰川 冻土,31(01),19-27.
    徐小飞,2007.贡嘎山地区泥石流对气候变化的响应.中国科学院成都山地灾害与环境研究所.中国科学院·水利部成都山地灾害与环境研究所,成都,硕士论文.
    徐小飞,马东涛,何德伟等,2007.贡嘎山地区泥石流形成的水热组合分析.山地学报,25(4),431-437.
    许君利,刘时银,张世强等,2006.塔里木盆地南缘喀拉米兰河克里雅河流内流区近30a来的冰川变化研究.冰川冻土,28(03),312-319.
    许君利,张世强,韩海东等,2011.天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析.冰川冻土,33(2),268-276.
    许世远,1963.中国天山现代冰川作用研究.地理学报,29(4),310-330.
    阳勇,陈仁升和吉喜斌,2007.近几十年来黑河野牛沟流域的冰川变化.冰川冻土,29(01),100-107.
    杨保,2003.青藏高原地区过去2000年来的气候变化.地球科学进展,18(2),285-292.
    杨帆,温家洪和Wang, W.,2011. ICESat与ICESat-2应用进展与展望.极地研究,23(2),137-152.
    杨建平,丁永建,刘时银等,2003.长江黄河源区冰川变化及其对河川径流的影响.自然资源学报(05),595-604.
    姚檀栋,段克勤,田立德等,2000.达索普冰芯积累量记录和过去400a来印度夏季风降水变化.中国科学D辑,30(06),619-628.
    姚檀栋等,2007.喜马拉雅山脉西段纳木那尼冰川正在强烈萎缩.冰川冻土29(04),503-508.
    姚永慧,励惠国和张百平,2009.近30年来天山托木尔峰东侧分水岭处冰川变化.干旱区地理,32(6),828-833.
    叶柏生,丁永建和刘潮海,2001.不同规模山谷冰川及其径流对气候变化的响应过程.冰川冻土,23(02),103-110.
    叶庆华,陈锋,姚檀栋等,2007.近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究.遥感学报,11(04),511-520.
    曾群柱,曹梅盛,冯学智等,1984.我国西北若干种冰、雪及水体反射光谱特性的研究.中国科学(B辑:化学),14,370-377.
    张国梁,潘保田,王杰等,2010.基于遥感和GPS的贡嘎山地区1966-2008年现代冰川变化研究.冰川冻土,32(3),454-460.
    张国梁,王杰,潘保田等,2010.冰川变化遥感监测的研究进展.兰州大学学报(自然科学版),46(6),1-10.
    张华伟,鲁安新,王丽红等,2010.基于遥感的祁连山东部冷龙岭冰川变化研究.遥感技术与应用,25(5),682-687.
    张华伟,鲁安新,王丽红等,2011.祁连山疏勒南山地区冰川变化的遥感研究.冰川冻土,33(1),8-13.
    张荣祖,郑度,杨勤业等,1997.横断山区自然地理.北京:科学出版社,151pp.
    张世强,卢健和刘时银,2001.利用TM高光谱图像提取青藏高原喀喇昆仑山区现代冰川边界.武汉大学学报(信息科学版),26(05),435-441.
    张堂堂,任贾文和康世昌,2004.近期气候变暖念青唐古拉山拉弄冰川处于退缩状态.冰川冻土,26(06),736-739.
    张廷斌,张建平,吴华等,2011.1990-2000年间西藏林芝地区冰川变化研究.冰川冻土,33(1),14-20.
    张文敬,李同阳和李伟,2001.海螺沟现代冰川对气候变化的响应.In:钟祥浩(Ed.),青藏高原东缘环境与生态.四川大学出版社,成都,271 pp.
    张祥松(Ed.),1990.喀喇昆仑山叶尔羌河冰川突发洪水研究.科学出版社,北京,256 pp.
    张祥松,1979.世界冰川目录工作的主要进展.冰川冻土,1,58-64.
    张祥松,朱国才,钱嵩林等,1985.天山乌鲁木齐河源1号冰川雷达测厚.冰川冻土,7(2),153-162.
    张兆明,何国金,刘定生等,2010.一种改进的遥感影像地形校正物理模型.光谱学与光谱分析,30(7),1839-1843.
    赵井东,2007.天山托木尔峰地区第四纪冰川演化序列初步研究.中国科学研究院寒区旱区环境与工程研究所,兰州,博士论文,113pp.
    郑本兴,2001.贡嘎山东麓第四纪冰川作用与磨西台地成因探讨.冰川冻土,23(03),283-292.
    郑本兴和施雅风,1975.珠穆朗玛峰地区冰川的变化.见:珠穆朗玛峰地区科学考察报告(1966-1968),现代冰川与地貌.北京:科学出版社,92-105.
    郑本兴,赵希涛,李铁松等,1999.梅里雪山明永冰川的特征与变化.冰川冻土,21(02),145-151.
    郑本兴和马秋华,1994.贡嘎山区全新世冰川变化与泥石流发育的关系.山地研究,12(1),1-8.
    郑度,林振耀和张雪芹,2002.青藏高原与全球环境变化研究进展.地学前缘,9(1),95-102.
    郑度和李炳元,1999.对青藏高原地理环境研究进展.地理科学,19(4),295-302.
    中国国家测绘局,2000.数字测绘产品质量要求,第一部分:数字线划地形图、数字高程模型质量要求.中华人民共和国国家标准,GB/T 17941-2000.
    中国科学院登山科学考察队(Ed.),1985.天山托木尔峰地区的冰川与气象.新疆人民出版社,乌鲁木齐,224 pp.
    中科院成都地理研究所,1983.贡嘎山地理考察.科技技术文献出版社重庆分社,重庆.
    钟祥浩和刘淑珍,1989.横断山综述.横断山研究文集.四川科学技术出版社,成都,pp.198-209.
    周长艳,李跃清,李薇等,2005.青藏高原东北及临近地区水汽输送的气候特征.高原气象,24(06),880-888.
    周海和夏介明,1997.WGS-84坐标系和BJ-54坐标系的转换及DGPS测量.水运工程,(10),52-54.
    周行,2009.青藏高原蓬错和色林错流域冰川与湖泊变化的遥感研究.中国科学院青藏高原研究所,北京,硕士论文.
    周建民李震和李新武,2009.基于ALOS/PALSARr雷达干涉数据的中国西部山谷冰川冰流运动规律研究.测绘学报,38(4),341-348.
    周宁芳,秦宁生,屠其璞等,2005.近50年青藏高原地面气温变化的区域特征分析.高原气象,24(3),344-349.
    周婷婷,2010.遥感影像辐射校正研究与应用.福建师范大学,福州,硕士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700