用户名: 密码: 验证码:
基于人工免疫系统的多目标优化与SAR图像分割
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最优化问题是工程实践和科学研究中的主要问题形式之一,其中,仅有一个目标函数的最优化问题被称为单目标优化问题,目标函数超过一个并且需要同时处理的最优化问题被称为多目标优化问题(Multi-objective Optimization Problems,MOPs)。本论文对其前沿方向之一——人工免疫多目标优化模型进行了深入分析,针对高维多目标优化问题、新型支配机制、自适应克隆策略、高效的多样性保持技巧等具有挑战性的问题进行了深入的研究,结合国家自然科学基金项目、国家“973”项目和“863”计划等,将提出的方法成功用于合成孔径雷达(SyntheticAperture Radar, SAR)图像分割难题。本论文工作可以概括如下:
     (1)目标维数较高的多目标优化问题的难点在于,随着非支配解急剧增加,经典算法由于缺乏足够的选择压力导致性能急剧下降。为此,提出了基于偏好等级免疫记忆的克隆选择多目标优化算法,用于解决目标维数较高的优化问题。利用决策者提供的偏好信息来为抗体分配偏好等级,根据该值比例克隆抗体,增大抗体的选择压力,加快收敛速率。根据偏好信息来缩减Pareto前沿,并利用有限的偏好解估计该前沿。同时,建立了免疫记忆种群来保留较好的非支配解,采用ε支配机制来保持记忆抗体种群的多样性。实验结果表明,对于高达8目标的优化问题,该算法取得了较好的实验效果。
     (2)新型支配机制的研究是进化多目标优化领域中的热点和难点之一,其中,ε支配最具代表性。但是,它的缺点在于对于不同几何形状Pareto前沿的问题,其性能十分敏感。本论文提出了改进ε支配机制的等度规映射方法,采用等度规映射把解映射到低维流形空间,发现隐藏于非支配解的几何分布,在该空间进行ε支配的剪枝操作。与传统的ε支配相比,该机制不会丢失部分有效解,能够较好地保持解分布的均匀性。为克服传统ε支配丢失部分极端解的不足,设计了极端解校验算子。与四个代表的相关算法相比,本文提出的ε支配和极端解校验算子能够较好地保持解分布的均匀性和宽广性,明显地改进了传统ε支配。
     (3)算法的效率与进化搜索过程的自适应性操作密切相关。传统算法多一成不变地为所有个体建立非支配等级关系,带来了计算资源的浪费。本论文研究了基于在线非支配抗体的自适应多目标优化算法,该算法根据当前的非支配抗体数量,把搜索阶段划分为三个不同时期,它们分别具有局部搜索和全局搜索以及混合搜索特性。当需要执行全局搜索时,为所有个体建立非支配等级关系;当非支配抗体较多时,即需要局部搜索时,可以完全抛弃支配抗体,仅仅选取非支配抗体参与操作。此外,为了较好地完成局部搜索,本章还设计一个基于比例克隆的局部增强搜索算法。本章算法明显提高了搜索资源的利用率,增强了算法的自适应性和有效性,克服了恒定地为所有个体排序的缺点。
     (4)如何获得稳定而高效的免疫多目标优化算法?针对当前免疫多目标优化算法搜索过程的不稳定和多样性保持质量不高等缺点,提出了基于自适应等级克隆和动态删除机制的高效免疫多目标优化算法。自适应地选择个体和分配克隆资源增强了种群进化的鲁棒性,克服了传统算法陷入局部Pareto前沿的缺点。个体的近邻信息会随着个体的删除而更新,传统拥挤距离一次分配机制的多样性指标具有很大缺陷,而动态的分配机制可以明显克服该缺点,利于较好地保持解的多样性。本章算法在收敛性、多样性保持和运算时间均获得满意的实验结果。
     (5)针对当前单目标SAR图像分割中遇到的单个聚类指标难于发现复杂像素分布关系的缺点,结合多通道Gabor滤波和灰度共生矩阵对SAR图像中的纹理信息进行描述,首次提出了一种基于免疫多目标优化的SAR图像分割方法。多目标优化可以揭示复杂样本特点,对具有不同几何结构的分类问题均有较好的划分性能。采用本论文第五章提出的高效人工免疫多目标优化算法作为本章SAR图像精细分割算法依托框架。对于部分纹理图像和ERS-2卫星图像取得了满意的分割结果。实验结果展示了免疫多目标计算在SAR图像分割中的应用潜力。
     (6)针对当前基于进化计算的SAR图像自动分割算法的稳定性较差和现有多目标分割算法的效率不高等缺点,提出了高效的人工免疫多目标像素域SAR图像自动分割算法。多目标分割本质上是离散的两目标优化问题,为此,针对性地采用自适应等级均匀克隆机制和动态拥挤距离的删除机制,后者虽然对于目标维数较高的优化问题的多样性保持能力不足,但是对于两目标优化问题,其计算量相对较小,且具有满意的多样性保持性能。此外,为了获得分割图像在细节方面的清晰识别,本章采用更为直接的SAR图像斑点噪声抑制算法,目的在于滤除斑点噪声的同时,保留更多的纹理和边缘等细节信息,有利于感兴趣目标的解译和识别。对类别数目较多的合成SAR图像和TerraSAR卫星图像取得了明显较好的分割结果。
The optimal problem is a fundamental issue in current engineering practice andscientific research. Thereinto, if there is only one objective function in this kind ofproblem, it is the single-objective optimization problems (SOPs), and when the numberof objective function is larger than one, it is the essential form of multi-objectiveoptimization problems (MOPs). This thesis is to focus on the buildings of the advancedmodel and theory of artificial immune system based multi-objective optimization, whichis the leading and promising field in the area of MOPs. The intensive study has beenimplemented in the following challenging subjects, including many-objectiveoptimization problems, new dominance scheme, adaptive clone strategy, and efficienttechniques in diversity maintaining. Finally, the advanced techniques and proposedimmune multi-objective optimization algorithms are successfully applied into SyntheticAperture Radar (SAR) image segmentation. The main contributions of the thesis can besummarized as follows:
     (1) The difficulty of current multi-objective optimization community lies in thelarge number of objectives. Due to lack enough selection pressure toward the Paretofront, classical algorithms are greatly restrained. To this end, an immune memory cloneselection algorithm is proposed to solve the problem of multi-objective optimizationwith a large number of objectives. The nondominated antibodies are proportionallycloned by their preference ranks, which are defined by their preference information. It isbeneficial to increase selection pressure and speed up convergence to the truePareto-optimal front. Solutions used to approximate the Pareto front can be reducedgreatly by preference information. Besides, an immune memory population is built topreserve the nondominated antibodies and ε dominance is employed to maintain thediversity of the immune memory population. Finally, the proposed algorithm performedeffective in testing several multi-objective problems with2objectives and DTLZ2andDTLZ3as high as8objectives.
     (2) The study of new types of dominance mechanisms is a hot and key issue incurrent EMO community, and ε dominance is a representative one among them.However, their ability in diversity maintaining is sensitive to different shapes of Paretofronts. This paper proposes an improved ε dominance mechanism by Isomap, whichemploys Isomap to embed the original population to low dimensional manifold space. The intrinsic geometric structure of them could be discovered and ε dominance isadopted to select data in the embedding space. Compared with traditional ε dominance,the mechanism does not lose valid solutions and can maintain a set ofuniform-distributed solutions. Besides, extreme-solution-check operator is proposed toenhance the ability of holding extreme solutions of ε dominance. The detailedexperimental comparison with NSGAII, SPEA2, NNIA and εMOEA shows that the twostrategies in this study are beneficial to uniformity and spread maintaining.
     (3) The efficiency of MO algorithms is highly related with the adaptability in thesearching process. Most traditional algorithms are always to assign all the solutions incurrent population to different ranks, which will induce the waste of computationalresources. An adaptive multi-objective optimization algorithm by online discoverednondominated solutions is presented for MOPs in our thesis. Here, three search phasesare devised according to the number of nondominated solutions in current population. Ifcurrent population contains very few nondominated solutions, global searching processis required and all the solutions need to build the dominance relations among them;when the population consists of adequate nondominated solutions, dominated onescould be ignored and the isolated nondominated ones should be allocated morecomputational budget for local search. To exploit local information efficiently, a localincremental search algorithm is proposed and merged into the model. This proposedalgorithm maintains the adaptive mechanism between the optimization processes by theonline discovered nondominated solutions, which has enhanced adaptability androbustness of the searching process.
     (4) How to devise a steady and high-powered MO algorithm? Here, we proposedan immune MO algorithm based on adaptive ranks clone and dynamic deleting scheme,in consideration of the searching process of current immune MO algorithm beingsensitive to the number of nondominated solutions and poor performance of diversitymaintaining. The adaptive selection scheme and adaptive ranks clone scheme by theonline discovered solutions in different ranks can enhance the robustness of theproposed algorithm, which is less possible to be trapped into local optimal Pareto front.Furthermore, it has been widely approved that one-off deletion could not obtainexcellent diversity in the final population; therefore, a m-nearest neighbor list (where mis the number of objectives) is established and maintained to eliminate the solutions inthe archive population. Finally, the proposed algorithm achieved satisfied results interms of convergence, diversity metrics, and computational time.
     (5) Considering the bad performance of SO with single clustering validity index indiscovering the complicated relations among image pixels, an artificial immunemulti-objective optimization framework is formulated for the first time and applied toSAR image segmentation. Moreover, a fused feature set for texture representation isconstructed and researched, which utilizes both the Gabor filter’s ability to preciselyextract texture features in low-and mid-frequency components and the gray levelco-occurrence probability’s (GLCP) ability to measure information in high-frequency.MO algorithms can discover the complicated relations among image pixels and have thegood partitioning performance in clustering the classification problems with differentgeometrical structures. Besides, the efficient and robust MO algorithm in AIS proposedin Chapter5of the thesis is used as the framework of the SAR image fine segmentation.Finally, satisfactory segmentation results of several texture images and SAR imagesfrom ERS-2satellite are obtained by the proposed method. The experimental resultsshow its great potential application in SAR image segmentation.
     (6) In view of weak performance of existing SAR image segmentation bysingle-objective evolutionary algorithms and very low efficiency of currentmulti-objective segmentation algorithms. A high efficient multi-objective automaticSAR segmentation algorithm in AIS is proposed in this chapter. It is essentially discretetwo-objective optimization problems for current SAR image segmentation. With this inmind, the multi-objective SAR image segmentation employ adaptive rank baseduniform clone and dynamic crowding distance deletion. The later scheme has beenviewed as poor performance in diversity maintaining for many-objective optimization,however it can obtain satisfied results for two-objective optimization and takes on lesscomputational complexity. Besides, SAR image filtering method is employed in theimage preprocessing stage in order to preserve the fine structure, details and texture forsubsequent objective of interest recognition and better image understudying. Theproposed algorithm obtained the obvious better partitioning results in segmenting twoartificial SAR images with many number of categories and real SAR images fromTerraSAR satellite.
引文
[1] Deb K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley&Sons,Chichester, UK,2001, ISBN0-471-87339-X.
    [2] Coello Coello C.A., Van Veldhuizen D.A., and Lamont G.B. Evolutionary Algorithms forSolving Multi-Objective Problems. Kluwer Academic Publishers, New York, March2002,ISBN0-3064-6762-3.
    [3] Tan K.C., Khor E.F. and Lee T.H. Multiobjective Evolutionary Algorithms and Applications.Springer-Verlag, London,2005, ISBN1-85233-836-9.
    [4] Boyd S. and Vandenberghe L. Convex Optimization. Cambridge University Press,2004, ISBN9780521833783.
    [5] Papadimitriou C.H. and Steiglitz K. Combinatorial Optimization: Algorithms and Complexity.1998, ISBN9780486402581.
    [6] Queipo N.V. and Gil G.F. Multiobjective optimal placement of convectively and conductivelycooled electronic components on printed wiring boards. ASME Transaction Journal ofElectronic Packaging, vol.122, pp.152-159,2000.
    [7] Goldberg D.E. Genetic algorithms in search, optimization and machine learning.Addison-Wesley Publishing Company, Reading, Massachusetts,1989.
    [8] de Castro L. and Timmis J. Artificial immune systems: a new computational intelligenceapproach. Springer-Verlag, London,2002, ISBN978-1852335946.
    [9]焦李成,杜海峰,刘芳,公茂果,免疫优化计算学习与识别,科学出版,2006.
    [10] Yoo J. and Hajela P. Immune network simulations in multicriterion design. StructuralOptimization, vol.18, pp.85–94,1999.
    [11] Coello Coello C.A. and Cortes N.C. An approach to solve multi-objective optimizationproblems based on an artificial immune system. In First International Conference on ArtificialImmune Systems (ICARIS’2002). Edited by J. Timmis and P. J. Bentley. University of Kent atCanterbury, UK, September2002, pp.212–221.
    [12] Luh G.C., Chueh CH.H., and Liu W. MOIA: multi-objective immune algorithm. EngineeringOptimization. vol.35, no.2, pp.143–164,2003.
    [13] Campelo F., Guimaraes F.G., Saldanha R.R., Igarashi H., Noguchi S., Lowther D.A., RamirezJ.A. A novel multiobjective immune algorithm using nondominated sorting.11th InternationalIGTE Symposium on Numerical Field Calculation in Electrical Engineering, Seggauberg,Austria,2004.
    [14] Freschi F., Repetto M. VIS: an artificial immune network for multi-objective optimization.Engineering Optimization, vol.38, no.8, pp.975–996,2006.
    [15] Zizler E., Laumanns M., and Thiele L. SPEA2: Improving the strength Pareto evolutionaryalgorithm for multi-objective optimization. In Evolutionary Methods for Design, Optimizationand Control with Application to Industrial Problems (EUROGEN2001). Edited by K. C.Giannakoglou et al. pp.95–100,2001.
    [16] Jiao L.C, Gong M.G, Shang R.H., Du H.F., Lu B. Clonal selection with immune dominanceand energy based multiobjective optimization.3rd International Conference on EvolutionaryMulti-Criterion Optimization, Guanajuato, Mexico, March9-11, Lecture Notes in ComputerScience, vol.3410, pp.474–489,2005.
    [17] Lu B., Jiao L.C, Du H.F, Gong, M.G. IFMOA: immune forgetting multiobjective optimizationalgorithm.1st International Conference on Advances in Natural Computation, Changsha, China,August27-29, Part III Lecture Notes in Computer Science vol.3612, pp.399–408,2005.
    [18] Gong M.G., Jiao L.C., Du H.F., and Bo L.F. Multiobjective immune algorithm withnondominated neighbor-based selection. Evolutionary Computation. vol.16, no.2, pp.225–255,2008.
    [19] Holland J.H. Adaptation in natural and artificial system. University of Michigan Press, AnnArbor,1975.
    [20] Fogel L.J. Artificial intelligence though simulated evolution. John Wiley, UK,1966.
    [21] Schwefel H.P. Numerical optimization for computer models. John Wiley, UK,1981.
    [22] Kennedy J., and Eberhart R. Particle swarm optimization. In Proceedings of IEEE InternationalConference on Neural Networks, Perth, WA, Australia, vol.4, pp.1942-1948,1995.
    [23] Storn R., and Price K. Differential evolution–a simple and efficient heuristic for globaloptimization over continuous spaces. Journal of Global Optimization, vol.11, no.4, pp.341-359,1997, DOI:10.1023/A:1008202821328
    [24]周树德,孙增圻,分布估计算法综述,自动化学报,vol.33, no.2, pp.113-124,2007.
    [25] Farmer J.D., Packard N.H., and Perelson A.S. The immune system, adaptation, and machinelearning. Physica D: Nonlinear Phenomena, vol.22, Issues1-3, pp.187-204,1986, InProceedings of the Fifth Annual International Conference.
    [26] Jiao L.C., Li Y.Y., Gong M.G., Zhang X.R. Quantum-inspired immune clonal algorithm forglobal optimization. IEEE Transactions on System, Man, and Cybernetics, Part B, vol.38, no.5,pp.1234–1253,2008.
    [27] Jiao L.C., Liu J., and Zhong W.C. An organizational coevolutionary algorithm forclassification. IEEE Transactions on Evolutionary Computation, vol.10, no.1, pp.67-80,2006.
    [28] Ong Y.S., and Keane A.J. Meta-lamarckian learning in memetic algorithm. IEEE Transactionson Evolutionary Computation, vol.8, no.2, pp.99-110, April2004.
    [29] Dasgupta D. Artificial immune systems and their applications. Springer-Verlag, Inc. Berlin,ISBN-13:978-3540643906,1999.
    [30] Bersini H., and Varela F.J. Hints for adaptive problem solving gleaned from immune networks.Lecture Notes in Computer Science, Parallel Problem Solving from Nature, vol496, pp.343-354,1991, DOI:10.1007/BFb0029775.
    [31] Forrest S., Perelson A.S., Allen L., and Cherukuri R. Self-nonself discrimination in a computer.In Proceedings of the1994IEEE Symposium on Research in Security and Privacy, LosAlamitos, CA: IEEE Computer Society Press,1994.
    [32] de Castro L.N., and Von Zuben F.J. Learning and optimization using the clonal selectionprinciple. IEEE Transactions on Evolutionary Computation, vol.6, no.3, pp.239-251,2002.
    [33] Aickelin U., and Cayzer S. The danger theory and its application to AIS. The1st InternationalConference on artificial immune system, pp141-148,2002.
    [34] Jiao L.C., and Wang L. A novel genetic algorithm based on immune. IEEE Transaction onSystem, Man, and Cybernetics-Part A, vol.30, pp.1-10,2000.
    [35] Janeway C.A, Jr,Travers P., Walport M., and Shlomchik M.J. Immunobiology: the immunesystem in health and disease. New York: Garland Science;2001, ISBN-10:0-8153-3642-X.
    [36]莫宏伟,人工免疫系统原理与应用,哈尔滨工业大学出版社,2002.
    [37] Jerne N.K. Towards a network theory of the immune system. Annals of InstitutePasteur/Immunology (Paris), vol.125C, pp.373–389,1974.
    [38] Holland J.H. Escaping brittleness: the possibilities of general purpose learning algorithmsapplied to parallel rule-based system. Machine Learning II, pp.593-623,1986.
    [39] Forrest S., and Beauchemin C. Computer immunology. Immunological Reviews, vol.216no.1,176-197,2007.
    [40] Dasgupta D., Gonzalez F. Artificial immune systems in intrusion detection. In: Rao Vemuri, V.(ed.) Enhancing Computer Security with Smart Technology, pp.165–208, AuerbachPublications,2005.
    [41] Dasgupta D., Nino F., Immunological Computation: Theory and Applications. AuerbachPublications, ISBN-13:978-1420065459,2008.
    [42] de Castro L.N., Von Zuben F.J. aiNet: an artificial immune network for data analysis. IdeaGroup Publishing, USA, pp231–259,2001.
    [43]王磊,免疫进化计算理论及其应用,西安电子科技大学,2001.
    [44]何申,罗文坚,王煦法,一种检测器长度可变的非选择算法,软件学报, vol.18, no.6, pp.1361-1368,2007.
    [45]张泽明,罗文坚,王煦法,一种基于人工免疫系统的多层垃圾邮件过滤算法,电子学报,vol.34, no.9, pp.1616-1620,2006.
    [46]莫宏伟,人工免疫网络记忆分类原理与应用研究,哈尔滨工程大学,2005.
    [47]李涛,基于免疫的网络监控模型,计算机学报, vol.29, no.9, pp.1515-1522,2006.
    [48] Li T. An immunity based network security risk estimation. Science in China Series F:Information Sciences, vol.48, no.5, pp.557-578,2005, DOI:10.1360/04yf0140.
    [49]丁永生,基于生物网络的智能控制与优化研究进展,控制工程, vol.17, no.4,2010.
    [50] Zhang Z.H. Immune optimization algorithm for constrained nonlinear multiobjectiveoptimization problems. Applied Soft Computing, vol.7, Issue3, pp.840-857,2007.
    [51] Zhang Z.H. Multiobjective optimization immune algorithm in dynamic environments and itsapplication to greenhouse control. Applied Soft Computing, vol.8, Issue2, pp.959-971,2008.
    [52] Fang Liu, Maoguo Gong, Jingjing Ma, Licheng Jiao, Wei Zhang. Optimizing detectordistribution in v-detector negative selection using a constrained multiobjective immunealgorithm. In: Proceedings of The2010IEEE Congress on Evolutionary Computation,CEC2010, Barcelona, Spain, July18-23,2010.
    [53]侯翠琴,焦李成,基于面向任务模型的陆基卫星测控资源克隆选择优化调度,计算机学报,vol.32, no.8,2009.
    [54]戚玉涛,刘芳,焦李成,求解大规模TSP问题的自适应归约免疫算法,软件学报, vol.19,no.6,2008.
    [55]丛林,沙宇恒,焦李成,基于免疫克隆选择算法的图像分割,电子与信息学报, vol.28, no.7,2006.
    [56]焦李成,刘芳,缑水平,刘静,陈莉,智能数据挖掘与知识发现,西安电子科技大学出版社,2006.
    [57]焦李成,公茂果,王爽,侯彪,刘芳,张向荣,周伟达,自然计算、机器学习与图像理解前沿,西安电子科技大学出版社,2008.
    [58] Burnet F. The clonal selection theory of acquired immunity. Cambridge University Press,Cambridge,1959.
    [59] Garrett S.M. Parameter-free, adaptive clonal selection. In Congress on EvolutionaryComputation, CEC2004, IEEE, vol.1, pp.1052-1058.
    [60] Watkins A., and Timmis J. Exploiting parallelism inherent in AIRS, an artificial immuneclassifier. In: Nicosia G et al (eds) Third international conference on artificial immune systems,vol.3239in LNCS, Springer, pp.427–438,2004.
    [61] Kim J., and Bentley P.J. A model of gene library evolution in the dynamic clonal selectionalgorithm. In: J Timmis, Bentley P (eds) Proceedings of the1st international conferece onartificial immune systems ICARIS, University of Kent at Canterbury, University of Kent atCanterbury Printing Unit, pp.182–189,2002.
    [62] Li J., Jiao L.C., and He W.H. Lamarkian clonal selection algorithm for CDMA multiuserdetection over multi-path channels. International Conference on Neural Networks and Brain,2005, ICNN&B '05, vol.1, pp.601-606,2005.
    [63] Gong M.G., Jiao L.C., and Zhang L.N. Baldwinian learning in clonal selection algorithm foroptimization, Information Sciences. Elsevier, vol.180, no.8, pp.1218–1236,2010.
    [64] Zhong Y.F, Zhang,L.P., Huang B., and Li P.X. An unsupervised artificial immune systemclassifier for multi/hyperspectral remote sensing imagery. IEEE Transaction on Geosciencesand Remote Sensing, vol.44, no.2, pp.420–431,2006.
    [65] Zhang,L.P., Zhong,Y.F., Huang, B.,Gong J.Y., and Li, P.X. Dimensionality reduction basedon clonal selection for hyperspectral imagery. IEEE Transactions on Geoscience and RemoteSensing, vol.45, no.12, pp.4172-4185,2007.
    [66] Perelson A.S. Immune network theory. Immunological Review, vol.10, pp.5-36,1989.
    [67] Ishiguro A., Kuboshiki S., and Ichikawa S. Gaint control of hexapod walking robots usingmutual-coupled immune networks. Advanced Robotics, vol.10, no.2, pp.179-195,1996.
    [68] Tang Z., Yamaguchi T., and Tashima K. Multiple-valued immune network model and itssimulations. In Proceeding of27th international symposium on Multiple-valued Logic,Autigonish, Canada, pp.233-238,1997.
    [69] Timmis J., Neal M. A resource limited artificial immune system for data analysis. Knowledgebased Systems, vol.14, no.3-4, pp.121-130,2001.
    [70] Bersini H., and Varela F.The immune learning mechansims: recruitment, reinforcement andtheir applications. Chapman Hall,1994.
    [71] Bersini H. Immune network and adaptive control. In Proceedings of the1st Europeanconference on artificial life (ECAL), MIT Press, pp217–226,1991.
    [72] Huang W.L., and Jiao L.C. Artificial immune kernel clustering network for unsupervisedimage segmentation. Progress in Natural Science, vol.18, pp.455-461,2008.
    [73] D’haeseleer P., Forrest S., and Helman P. An Immunological Approach to Change Detection:Algorithms, Analysis and Implications. In proceeding of IEEE Symposium on Security andPrivacy, Oakland, Canada, pp.110-119,1996.
    [74] Gao X.Z., Ovaska S.J., and Wang, X. Genetic Algorithms-based Detector Generation inNegative Selection Algorithm. IEEE Mountain Workshop on Adaptive and Learning Systems,Logan, UT, pp.133-137,2006.
    [75] Balthrop J., Esponda F., Forrrest S., and Glickman M. Coverage and generalization in anaritificial immune system. In Proceedings of the Genetic and Evolutionary ComputationConference (GECCO2002), pp.3–10, New York.Morgan Kaufmann Publishers,2002.
    [76] Zhou J., and Dasgupta D. Revisiting Negative Selection Algorithms. EvolutionaryComputation, vol.15, no.2, pp.223-251,2007.
    [77] Gonz′alez F., Dasgupta D., and G′omez J. The effect of binarymatching rules in negativeselection. In E. Cantu-Paz et al.(Eds), Proceedings of the Genetic and EvolutionaryComputation Conference (GECCO2003), LNCS2723, pages195–206, Chicago, IL. Springer,2003.
    [78] González F., Dasgupta D., and Gómez J. The effect of binary matching rules in negativeselection. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO2003, Lecture Notes in Computer Science, Volume2723/2003, pp.195-206,2003.
    [79] Chen Y.B., Feng C., Zhang Q., and Tang C.J. Negative selection algorithm with variable-sizedr-contiguous matching rule. IEEE International Conference on Progress in Informatics andComputing (PIC), vol.1, pp.150-154,2010.
    [80] Matzinger P. The danger model: a renewed sense of self, Science, vol.296, pp.301-305,2002.
    [81] Aickelin U., and Cayzer S. The danger theory and its application to artificial immune systems.In Proceedings of the1st International Conference on ARtificial Immune Systems (ICARIS2002), Canterbury, UK, pp.141-1482002.
    [82] Aickelin U., Bentley P., Cayzer S., Kim J.W., and McLeod J. Danger theory: the link betweenAIS and IDS? In Proceedings of the2nd International Conference on Artificial ImmuneSystems (ICARIS2003), LNCS2787, Edinburgh, UK, pp.147-1552003.
    [83] Greensmith J., Aickelin U., and Cayzer S. Introducing dendritic cells as a novelimmune-inspired algorithm for anomoly detection. In Proceedings of the4th InternationalConference on Artificial Immune Systems (ICARIS2005), Lecture Notes in Computer Science3627, Banff, Canada, pp153-1672005.
    [84] Zheng H., Hu X.M., Si X.S., and Yang W.B. A novel object detection approach for satelliteimagery based on danger theory. In Proceeding of the First International Conference onIntelligent Networks and Intelligent Systems, pp.445-448,2008.
    [85]肖人彬,王磊,人工免疫系统:原理、模型、分析及展望,计算机学报, vol.25, no.12,pp.1281-1293,2002.
    [86]焦李成,杜海峰,人工免疫系统进展与展望,电子学报, vol.31, no.10, pp.1540-1548,2003.
    [87] Kim J.W., Bentley P.J. Towards an artificial immune system for network intrusion detection:an investigation of dynamic clonal selection. In Proceedings of the2002World on Congress onComputational Intelligence, WCCI.2002, vol.2, pp.1015-1020.
    [88] Ali K., Aib I., and Boutaba R. P2P-AIS: P2P artificial immune systems architecture fordetecting DDoS flooding attacks. Global Information Infrastructure Symposium, GIIS '09, pp.1-4,2009.
    [89] Chao R., and Tan Y. A virus detection system based on artificial immune system. InternationalConference on Computational Intelligence and Security, pp.6-10,2009.
    [90] Whitbrook A.M., Aickelin U., and Garibaldi J.M. Idiotypic immune networks in mobile-robotcontrol. IEEE Transactions on Sytems, Man, and Cybernetics-Part B: Cybernetics, vol.37, no.6, pp.1581-1598.2007.
    [91] Yang R.T., Bewick S., Zhang M.J., and Hamel W.R. Adaptive immune system TH1/TH2differentiation mechanism inspired perimeter patrol control strategy. IEEE Transaction onControl Systems Technology, vol.19, no.2, pp.407-415,2011.
    [92] Nasaroui O., Gonzalez F., Dasgupta D. The fuzzy artificial immune system: motivations, basicconcepts, and application to clustering and Web profiling. In Proceedings of the2002IEEEInternational Conference on Fuzzy Systems, Honolulu, HI, pp.711-716,2002.
    [93] Graaff A.J., Engelbrecht A.P. A local network neighbourhood artificial immune system fordata clustering. IEEE Congress on Evolutionary Computation, CEC'2007, Singapore, pp.260-267,2007.
    [94] Ma W.P., Jiao L.C., and Gong M.G. Immunodominance and clonal selection Inspiredmultiobjective clustering. Progress in Natural Science, Elsevier, vol.19, no.6, pp.751–758,2009.
    [95] Hashim F., Munasinghe K.S., and Jamalipour A. A danger theory inspired survivabilityframework for the next generation mobile network. IEEE Latin America Transactions, vol.8,no.4, pp.358-369,2010.
    [96] Gong M.G., Jiao L.C., Du H.F., Wang L. An artificial immune system algorithm for CDMAmultiuser detection over multi-path channels. In Proceedings of the Genetic and EvolutionaryComputation Conference, GECCO2005, Washington, D.C. USA, June25-29, pp.2105-2111,2005.
    [97] Das S., Natarajan B., Stevens D., and Koduru P. Multi-objective and constrained optimizationfor DS-CDMA code design based on the clonal selection principle. Applied Soft Computingvol.8, pp.788–797,2008.
    [98] Zhang L.P., Zhong Y.F., Huang B., Li P.X. A resource limited artificial immune algorithm forsupervised classification of multi/hyper-spectral remote sensing image,International Journal ofRemote Sensing, vol.28, no.7, pp.1665–1686,2007.
    [99] Zhang X.R., Tan S. Jiao L.C. SAR image classification based on immune clonal featureselection, Aurélio C. Campilho, Mohamed S. Kamel (Eds.): Lecture Notes in ComputerScience, vol.3212, pp.504-511. Springer, Berlin,2004.
    [100] Zeng D.H., Xu Q. G., Xie C.X., and Yu D.G. Artificial immune algorithm based robotobstacle-avoiding path planning. In Proceedings of the IEEE International Conference onAutomation and Logistics, Qingdao, China September, pp.798-803,2008.
    [101] Hu X.Z, Xie C.X., and Xu Q.G. Robot path planning based on artificial immune network. InProceedings of the2007IEEE International Conference on Robotics and Biomimetics,December,2007, Sanya, China, pp.1053-1057.
    [102] Lemos D.R., Timmis J., Ayara M., and Forrest S. Immune-inspired adaptable error detectionfor automated teller machines. IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews, vol.37, no.5, pp.873-886,2007
    [103] Xiong H., and Sun C.X. Artificial immune network classification algorithm for fault diagnosisof power transformer. IEEE Transactions on Power Delivery, vol.22, no.2, pp.930-935,2007.
    [104] Campelo F., Guimar es F.G., Igarashi H., Ramírez J.A., and Noguchi S. A modified immunenetwork algorithm for multimodal electromagnetic problems. IEEE Transactions on Magnetics,vol.42, no.4, pp.1111-1114,2006.
    [105] Chun J.S., Kim M.K., and Jung H.K. Shape optimization of electromagnetic devices usingImmune Algorithm. IEEE Transactions on Magnetics, vol.33, no.2, pp.1876-1879,1997.
    [106] Gong M.G, Jiao L.C., and Zhang L.N. Solving traveling salesman problems by artificialimmune response. In Proceedings of the6th international conference on simulated evolutionand learning, SEAL06,15-18October2006, Hefei, China. Springer-Verlag, Lecture Notes inComputer Science, vol.4247, pp.64–71.
    [107] Yang Z.W., Zhao S.C., and Zhao Q. Research on bus scheduling based on artificial immunealgorithm. The4th International Conference on Wireless Communications, Networking andMobile Computing, WiCOM '08, Dalian, China, pp.1-4,2008.
    [108] Bhaduri A. Multicast routing with multiple QoS constraints based on artificial immunenetworks. International Conference on Advances in Recent Technologies in Communicationand Computing, Kottayam, Kerala, India, pp.285-258,2009.
    [109] Ge H.W., Sun L., Liang Y.C., and Qian F. An effective PSO and AIS-Based hybrid intelligentalgorithm for job-shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics-PartA: Systems and Humans, vol.38, no.2, pp.358-367,2008.
    [110] Handl J., and Knowles J. An evolutionary approach to multiobjective clustering. IEEETransactions on Evolutionary Computation, vol.11, no.1, pp.56-76,2007.
    [111] Gong M.G, Zhang L.N., Jiao L.C., and Gou S.P. Solving multiobjective clustering using animmune-inspired algorithm. In Proceedings of the2007IEEE Congress on EvolutionaryComputation, CEC2007, Singapore, pp.15-22,2007.
    [112] Deb K., Jain P., Gupta N., and Maji H. Multi-Objective placement of electronic componentsusing evolutionary algorithms. IEEE Transactions on Components and PackagingTechnologies, vol.27, no.3, pp.480-492,2004.
    [113] Coello Coello C.A., and Lamont G.B. Applications of multi-Objective evolutionary algorithms,World Scientific, Singapore,2004, ISBN981-256-106-4.
    [114] Pareto V. Cours d'économie politique professé a l'université de Lausanne. Vol. I'1896; Vol. II,1897.
    [115] Rosenberg R.S. Simulation of genetic populations with biochemical properties [Ph.D. Thesis].Michigan: University of Michigan,1967.
    [116] Schaffer J. D. Multi-objective optimization with vector evaluated genetic algorithms. InGrefenstette (editor), Proceedings of an International Conference on Genetic Algorithms andtheir Applications,1985,93-100.
    [117] Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multi-objective geneticalgorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [118] Fonseca C.M., Fleming P.J. Genetic algorithm for multiobjective optimization: Formulation,discussion and generation. In: Forrest S, ed. Proc. of the5th Int’l Conf. on Genetic Algorithms.San Mateo: Morgan Kauffman Publishers,1993.416-423.
    [119] Srinivas N, Deb K. Multiobjective optimization using non-dominated sorting in geneticalgorithms. Evolutionary Computation,1994,2(3):221-248.
    [120] Horn J., Nafpliotis N., Goldberg D.E. A niched Pareto genetic algorithm for multiobjectiveoptimization. In: Fogarty TC, ed. Proc. of the1st IEEE Congress on EvolutionaryComputation. Piscataway: IEEE,1994.82-87.
    [121] Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications.PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, November1999.
    [122] Knowles J.D., Corne D.W. Approximating the non-dominated front using the Pareto archivedevolution strategy. Evolutionary Computation,2000,8(2):149-172.
    [123] Corne D.W., Knowles J.D., Oates M.J. The Pareto-envelope based selection algorithm formulti-objective optimization. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, MereloJJ, Schwefel HP, eds. Parallel Problem Solving from Nature, PPSN VI. LNCS, Berlin:Springer-Verlag,2000.869-878.
    [124] Corne D.W., Jerram N.R., Knowles J.D., Oates M.J. PESA-II: Region-Based selection inevolutionary multi-objective optimization. In: Spector L, Goodman ED, Wu A, Langdon WB,Voigt HM, Gen M, eds. Proc. of the Genetic and Evolutionary Computation Conf., GECCO2001. San Francisco: Morgan Kaufmann Publishers,2001.283-290.
    [125] Erickson M., Mayer A., Horn J. The niched Pareto genetic algorithm2applied to the design ofgroundwater remediation system. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D,eds. Proc. of the1st Int’l Conf. on Evolutionary Multi-Criterion Optimization, EMO2001.Berlin: Springer-Verlag,2001.681-695.
    [126] Coello Coello C.A., Pulido G.T. A micro-genetic algorithm for multiobjective optimization. In:Spector L, Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, eds. Proc. of the Geneticand Evolutionary Computation Conf., GECCO2001. San Francisco: Morgan KaufmannPublishers,2001.274-282.
    [127] Laumanns M., Thiele L., Deb K., Zitzler E. Combining convergence and diversity inevolutionary multi-objective optimization. Evolutionary Computation,2002,10(3):263-282.
    [128] Brockoff D., Zitzler E. Are all objective necessary on dimensionality reduction in evolutionarymulti-objective optimization? In: Runarsson TP, Beyer HG, Burke E, Merelo-Guervós JJ,Whitley LD, Yao X, eds. Parallel Problem Solving from Nature, PPSN IX. LNCS, Berlin:Springer-Verlag,2006.533-542.
    [129] Hernández-Díaz A.G., Santana-Quintero L.V., Coello Coello C.A., Molina J. Pareto-Adaptiveε-dominance. Evolutionary Computation,2007,15(4):493-517.
    [130] Deb K., Saxena D.K. On finding Pareto-optimal solutions through dimensionality reductionfor certain large-dimensional multi-objective optimization problems. Technical Report,2005011, Kalyanmoy Deb and Dhish Kumar Saxena, Indian Institute of Technology Kanpur,2005.
    [131] Saxena D.K., Deb K. Non-Linear dimensionality reduction procedure for certainlarge-dimensional multi-objective optimization problems: Employing correntropy and a novelmaximum variance unfolding. In: Coello Coello CA, Aguirre AH, Zitzler E, eds. Proc. of the4th Int’l Conf. on Evolutionary Multi-Criterion Optimization, EMO2007. Berlin:Springer-Verlag,2007.772-787.
    [132] Brockhoff D. Many-Objective optimization and hypervolume-based search. PhD thesis, ETHZurich,2009.
    [133] Coello Coello C.A., Pulido G.T., Lechuga M.S. Handling multiple objectives with particleswarm optimization. IEEE Transactions. on Evolutionary Computations,2004,8(3):256-279.
    [134] Zhou A.M., Zhang Q.F., Jin Y., Sendhoff B., Tsang E. Global multi-objective optimization viaestimation of distribution algorithm with biased initialization and crossover. In: Thierens D,Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Congdon CB, Deb K, eds. Proc. of theGenetic and Evolutionary Computation Conf., GECCO2007. New York: ACM Press,2007.617-622.
    [135] Zhang Q.F., Zhou A.M., Jin Y. RM-MEDA: A regularity model based multiobjectiveestimation of distribution algorithm. IEEE Trans. on Evolutionary Computation,2007,12(1):41-63.
    [136] Zhang Q.F., Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
    [137] Goldberg D.E., Richardson J. Genetic algorithms with sharing for multimodal functionoptimization. In: Grefenstette JJ, ed. Proc. of the2nd Int’l Conf. on Genetic Algorithm.Hillsdale: L. Erlbaum Associates, Inc.,1987.41-49.
    [138] Veldhuizen D.V., Lamont G. Multiobjective optimization with messy genetic algorithms. In:Carroll J, Damiani E, Haddad H, Oppenheim D, eds. Proc. of the2000ACM Symp. onApplied to Computing. New York: ACM Press,2000.470476.
    [139] Gregorio P.T., Coello Coello C. A. The micro genetic algorithm2: towards on-Line adaptationin evolutionary multiobjective optimization, in Carlos M. Fonseca, Peter J. Fleming, EckartZitzler, Kalyanmoy Deb and Lothar Thiele (Eds), Evolutionary Multi-Criterion Optimization.Second International Conference, EMO2003, pp.252-266, Springer, Lecture Notes inComputer Science, Vol.2632, Faro, Portugal, April2003.
    [140]周树德,孙增圻,分布估计算法综述,自动化学报,2007,33(2):113-124.
    [141] Jiao L.C., Liu J., Zhong W.C. An organizational coevolutionary algorithm for classification.IEEE Transactions on Evolutionary Computation,2006,10(1):67-80.
    [142] Coello Coello C. A., Landa Becerra R. Evolutionary multiobjective optimization using acultural Algorithm, in2003IEEE Swarm Intelligence Symposium, pp.6-13, IEEE ServiceCenter, Indianapolis, Indiana, USA, April2003.
    [143] Li X. A non-dominated sorting particle swarm optimizer for multiobjective optimization. In:Cantú-Paz E, Foster JA, Deb K, Lawrence D, Roy R, eds. Proc. of the Genetic andEvolutionary Computation Conf., GECCO2003. Berlin: Springer-Verlag,2003.37-48.
    [144] Fieldsend J.E., Sing S. A multi-objective algorithm based upon particle swarm optimization,an efficient data structure and turbulence. In: Bullinaria JA, ed. Proc. of the2002UKWorkshop on Computational Intelligence. Birmingham: University of Birmingham,2002.37-44.
    [145] Reyes Sierra M., Coello Coello C.A. Improving PSO-based multi-objective optimization usingcrowding, mutation and e-dominance. In: Coello Coello CA, Aguirre AH, Zitzler E, eds. Proc.of the3rd Int’l Conf. Evolutionary Multi-Criterion Optimization, EMO2005. Berlin:Springer-Verlag,2005.505-519.
    [146] Abido M.A. Two level of nondominated solutions approach to multiobjective particle swarmoptimization. In: Thierens D, Beyer HG, Bongard J, Branke J, Clark JA, Cliff D, Congdon CB,Deb K, eds. Proc. of the Genetic and Evolutionary Computation Conf., GECCO2007. NewYork: ACM Press,2007.726-733.
    [147] Korudu P., Das S., Welch SM. Multi-Objective hybrid PSO using μ-fuzzy dominance. In:Lipson H, ed. Proc. of the Genetic and Evolutionary Computation Conf., GECCO2007. NewYork: ACM Press,2007.853-860.
    [148] Jiao L.C., Du H.F., Liu F., Gong M.G. Immunological Computation for Optimization,Learning and Recognition. Beijing: Science Press,2006(in Chinese).
    [149] Coello Coello C.A., Cortes N.C. Solving multiobjective optimization problems using anartificial immune system. Genetic Programming and Evolvable Machines,2005,6(2):163-190.
    [150] Cutello V., Narzisi G., Nicosia G. A class of Pareto archived evolution strategy algorithmsusing immune inspired operators for ab-initio protein structure prediction. In: Rothlauf F,Branke J, Cagnoni S, Corne DW, Drechsler R, Jin YC, eds. Proc. of the3rd EuropeanWorkshop on Evolutionary Computation and Bioinformatics, EvoWorkshops2005. Berlin:Springer-Verlag,2005.54-63.
    [151] Freschi F., Repetto M. VIS: An artificial immune network for multi-objective optimization.Engineering Optimization,2006,38(8):975-996.
    [152] Khan N., Goldberg D.E., Pelikan M. Multi-Oobjective Bayesian optimization algorithm.Technical Report, No.2002009, University of Illinois at Urbana-Champaign,2002.
    [153] Laumanns M., Ocenasek J. Bayesian optimization algorithms for multi-objective Optimization.In: Merelo JJ, Adamidis P, Beyer HG, eds. Proc. of the7th Int’l Conf. on Parallel ProblemSolving from Nature. London: Springer-Verlag,2002.298-307.
    [154] Li H., Zhang Q.F. Multiobjective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, April,2009,12(2):284-302.
    [155] Korudu P., Das S., Welch S.M. Multi-Objective hybrid PSO using μ-fuzzy dominance. In:Lipson H, ed. Proc. of the Genetic and Evolutionary Computation Conf., GECCO2007. NewYork: ACM Press,2007.853-860.
    [156] Lotov A.V., Bushenkov V.A., Lamenev G.K. Interactive decision maps: Approximation andvisualization of Pareto frontier. New York: Kluwer Academic Publishers,2004.
    [157] Tenenbaum J.B., Silva V., Langford J.C. A global geometric framework for nonlineardimensionality reduction. Science,2000,290(22):2319–2323.
    [158] Fry B. Visualizing Data: Exploring and Explaining Data with the Processing Environment.Sebastopol: O’Reilly Press,2007.
    [159] Khare V., Yao X., Deb K. Performance scaling of multi-objective evolutionary algorithms. In:Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L, eds. Proc. of the2nd Int’l Conf. onEvolutionary Multi-Criterion Optimization, EMO2003. Berlin: Springer-Verlag,2003.376-390.
    [160] Hughes E.J. Multiple single objective Pareto sampling. In: Sarker R, Reynolds R, Abbass H,Tan KC, McKay B, Essam D, Gedeon T, eds. Proc. of the IEEE Congress on EvolutionaryComputation, CEC2003. Piscataway: IEEE Service Center,2003.2678-2684.
    [161] Wagner T., Beume N., Naujoks B. Pareto-, aggregation-, and indicator-based methods inmany-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds.Proc. of the4th Int’l Conf. on Evolutionary Multi-Criterion Optimization, EMO2007. Berlin:Springer-Verlag,2007.742-756.
    [162] Deb K., Sundar J., Uday N., Chaudhuri S. Reference point based multi-objective optimizationusing evolutionary algorithms. International Journal of Computational Intelligence Research(IJCIR),2(6):273–286,2006.
    [163] Deb K., Kummar A. Light beam search based multi-objective optimization using evolutionaryalgorithms, Report No.2007005, Kanpur Genetic Algorithms Laboratory (KanGAL), IndianInstitute of Technology, Kanpur, India,2007.
    [164] Knowles J., Thiele L., Zitzler E. A tutorial on the performance assessment of stochasticmultiobjective optimizers. TIK Report214, Computer Engineering and Networks Laboratory(TIK), ETH Zurich, February2006.
    [165] Knowles J., Corne D. Properties of an adaptive arching algorithm for storing nondominatedvectors, IEEE Transactions Evolutionary Computation,2003,7(2):100-116.
    [166] Emmerich M., Beume N., Naujoks B. An EMO algorithm using the hypervolume measure asselection criterion. In Conference on Evolutionary Multi-Criterion Optimization (EMO2005),volume3410of LNCS, pages62–76. Springer,2005.
    [167] Huband S., Hingston P., White L., Barone L. An evolution strategy with probabilistic mutationfor multi-Objective optimisation. In Proceedings of the2003Congress on EvolutionaryComputation (CEC2003), volume3, pages2284–2291, Canberra, Australia,2003. IEEEPress.
    [168] Bader J., Zitzler E. HypE: An algorithm for fast hypervolume-based many-objectiveoptimization. Evolutionary Computation, spring,2011,19(1):45-76.
    [169] Huband S., Hingston P., Barone L., While L. A review of multiobjective test problems and ascalable test problem toolkit. IEEE Transactions on Evolutionary Computation,2006,10(5):477-506.
    [170] Zitzler E., Deb K., Thiele L. Comparison of multi-objective evolutionary algorithms:Empirical results. Evolutionary Computation,2000,8(2):173-195.
    [171] Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization testproblems. In: Fogel DB, ed. Proc. of the IEEE Congress on Evolutionary Computation, CEC2002. Piscataway: IEEE Service Center,2002.825-830.
    [172] Li H., Zhang Q.F. A multi-objective differential evolution based on decomposition formultiobjective optimization with variable linkages. In: Runarsson TP, Beyer HG, Burke E,Merelo-Guervós JJ, Whitley LD, Yao X, eds. Parallel Problem Solving from Nature, PPSN IX.LNCS, Berlin: Springer-Verlag,2006.583-592.
    [173] Coello Coello C.A., van Veldhuizen D.A., Lamont G.B. Evolutionary Algorithms for SolvingMulti-Objective Problems.2nd ed., New York: Springer-Verlag,2007.
    [174] Van Veldhuizen D. A., Lamont G. B. On measuring multiobjective evolutionary algorithmperformance. In Proceedings of the2000IEEE Congress on Evolutionary Computation, CEC2000, IEEE Service Center: Piscataway, New Jersey, Vol.1, pages204-211.
    [175] Schott J.R. Fault tolerant design using single and multicriteria genetic algorithm optimization
    [MS. Thesis]. Cambridge: Massachusetts Institute of Technology,1995.
    [176] Tan K.C., Lee T.H., Khor E.F. Evolutionary algorithms for multi-objective optimization:performance assessments and comparison, IEEE Congress on Evolutionary Computation2001,Seoul, Korea, pp.979-986.
    [177] Van Veldhuizen D.A. Multiobjective evolutionary algorithms: classifications, analyses andnew innovations. PhD thesis, Department of Electrical and Computer Engineering. GraduateSchool of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May1999.
    [1] Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multi-objective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [2] Zitzler E., Laumanns M., Thiele L. SPEA2: improving the strength Pareto evolutionaryalgorithm. In Evolutionary Methods for Design, Optimization and Control with Applications toIndustrial Problems, Athens, Greece,2002, pages95-100.
    [3] de Castro L., Timmis J. Artificial immune systems: a new computational intelligence approach.Springer-Verlag, London,2002, ISBN978-1852335946.
    [4]焦李成,杜海峰,刘芳,公茂果,免疫优化计算学习与识别,科学出版,2006.
    [5] de Castro L.N., and Von Zuben F.J. Learning and optimization using the clonal selectionprinciple. IEEE Transactions on Evolutionary Computation, vol.6, no.3, pp.239-251,2002.
    [6] Laumanns M., Thiele L., Deb K., Zitzler E. Combining convergence and diversity inevolutionary multi-objective optimization. Evolutionary Computation,2002,10(3):263–282.
    [7] Deb K., Kummar A. Light beam search based multi-objective optimization using evolutionaryalgorithms, Report No.2007005, Kanpur Genetic Algorithms Laboratory (KanGAL), IndianInstitute of Technology, Kanpur, India,2007.
    [8] Coello Coello C.A. Handling preferences in evolutionary multi-objective optimization: Asurvey. In Proc. of Congress on Evolutionary Computation, Piscataway, New Jersey, IEEEService Center,2000,1:30-37.
    [9] Corne D.W., Jerram N.R., Knowles J.D., Oates M.J. PESA-II: region-based selection inevolutionary multi-objective optimization. In: Lee S, et al. ed. Proc. of the Genetic andEvolutionary Computation Conference (GECCO-2001). San Francisco, California, MorganKaufmann Publishers,2001.283-290.
    [10] Shaw K.J., Fleming P.J. Including real-life preferences in genetic algorithms to improveoptimization of production schedules. In: Proc. of Genetic algorithms in engineering systemsinnovations and applications, Glasgow, Scotland, IEE,1997.239-244.
    [11] Pierro F.D., Khu S.T., Savic D.A. An investigation on preference order ranking scheme formulti-objective evolutionary optimization. IEEE Trans. on Evolutionary Computation,2007,11(1):17-45.
    [12] Cvetkovi′c D., Parmee I.C. Genetic Algorithm based Multi-objective Optimization andConceptual Engineering Design. In: Congress on Evolutionary Computation, Washington D.C.,USA, IEEE,1999,1:29-36.
    [13] Jaszkiewicz A., Slowinski R. The light beam search approach-an overview of methodology andapplications. European Journal of Operation Research,1999,113(2):300-314.
    [14] Deb K., Miettinen K., Chaudhuri S. Towards an Estimation of Nadir Objective Vector UsingHybrid Evolutionary and Local Search Approaches. Report No.2007009, Kanpur GeneticAlgorithms Laboratory (KanGAL), Indian Institute of Technology, Kanpur, India,2007.
    [15] Ishibuchi H., Tsukamoto N., Nojima Y. Evolutionary many-objective optimization: Ashort-review. In Proc. of the2008Congress on Evolutionary Computation, Hong Kong, IEEE,2008.2424-2431.
    [16] Jiao L.C., Wang L. A novel genetic algorithm based on immune. IEEE Transaction on System,Man, and Cybernetics-Part A,2000,30:1-10.
    [17]莫宏伟,人工免疫网络记忆分类原理与应用研究,哈尔滨工程大学,2005.
    [18] Deb K., Mohan M., Mishra S. Toward a quick computation of well-spread Pareto-optimalsolutions. In: Fonseca C M, et al. ed. Evolutionary Multi-Criterion Optimization.2nd Int’lConf.,2003, Faro, Portugal, Springer, Lecture Notes in Computer Science,2003,2632:222-236.
    [19] Deb K., Beyer H.G. Self-adaptive genetic algorithms with simulated binary crossover.Evolutionary Computation Journal,2001,9(2),197-221.
    [20] Beyer H.G., Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEETransactions on Evolutionary Computation,2001,5(3).250-270.
    [21] Huband S., Hingston P., Barone L., While L. A review of multi-objective test Problems and ascalable test problem toolkit. IEEE Trans. on Evolutionary Computation,2006,10(5):477-506.
    [22] Zitzler E., Deb K., Thiele L. Comparison of multi-objective evolutionary algorithms: Empiricalresults. Evolutionary Computation,2000,8(2):173-195.
    [23] Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization test problems.In: Proc. of Congress on Evolutionary Computation,2002, Piscataway, New Jersey, IEEEService Center,2002,1:825-830.
    [24] Deb K., Sundar J., Uday N., Chaudhuri S. Reference point based multi-objective optimizationusing evolutionary algorithms. International Journal of Computational Intelligence Research(IJCIR),2(6):273–286,2006.
    [25] Van Veldhuizen DA. Multi-objective evolutionary algorithms: classification, analyzes, and newinnovations, Wright-Patterson AFB, Ohio: Air Force Institute of Technology,1999.
    [26] Van Veldhuizen DA, Lamont GB. On measuring multiobjective evolutionary algorithmperformance. In: Congress on Evolutionary Computation2000, Piscataway, New Jersey, IEEEPress,2000,1:204-211.
    [27] Schott J.R. Fault tolerant design using single and multicriteria genetic algorithm optimization[MS. Thesis]. Cambridge: Massachusetts Institute of Technology,1995.
    [28] Zitzler E, Thiele L. Multi-objective evolutionary algorithms: A comparative case study and thestrength Pareto approach. IEEE Trans. on Evolutionary Computations.1999,6(2):182-197.
    [29] Khare V., Yao X., Deb K. Performance scaling of multi-objective evolutionary algorithms. In:Fonseca CM, et al. ed. Evolutionary Multi-Criterion Optimization. Second International Conf.,EMO2003, Springer. Lecture Notes in Computer Science. Faro, Portugal, April2003,2632:376-390.
    [1] Ishibuchi H., Tsukamoto N., Nojima Y. Evolutionary many-objective optimization: Ashort-review. In Proc. of the2008Congress on Evolutionary Computation, Hong Kong, IEEE,2008.2424-2431.
    [2] Deb K., Mohan M., Mishra S. Evaluating the ε-domination based multi-objective evolutionaryalgorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation,2005,13(4):501–525.
    [3] Reyes Sierra M., Coello Coello C.A. Improving PSO-based multi-objective optimization usingcrowding, mutation and ε-dominance. In Coello Coello, C. A., Hern′andez Aguirre, A., andZitzler, E., editors, The Third International Conference on Evolutionary Multi-CriterionOptimization, EMO2005, pages505–519, Guanajuato, M′exico. Springer. Lecture Notes inComputer Science, vol.3410.
    [4] Laumanns M., Thiele L., Deb K., Zitzler E. Combining convergence and diversity inevolutionary multi-objective optimization. Evolutionary Computation,2002,10(3):263–282.
    [5] Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multi-objective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [6] Deb, K., Mohan, M., and Mishra, S.(2003). Towards a Quick Computation of Well SpreadPareto-Optimal Solutions. In Fonseca, C.M., Fleming, P. J., Zitzler, E., Deb, K., and Thiele, L.,editors, the Second International Conference on Evolutionary Multi-Criterion Optimization.,EMO2003, pages222–236, Faro, Portugal. Springer, Lecture Notes in Computer Science, vol.2632.
    [7] Hernández-Díaz A.G., Santana-Quintero L.V., Coello Coello C.A., Molina J. Pareto-adaptiveepsilon-dominance, Evolutionary Computation,2007,15(4):493-517.
    [8] DeMers D. Cottrell, G. Non-linear dimensionality reduction. In Hanson S., Cowan J., Giles L.(eds.), Advances in Neural Information Processing Systems (NIPS)1993,5:580–590.Morgan-Kaufmann.
    [9] Roweis S. Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science,2000,290:2323–2326.
    [10] de Silva V., Tenenbaum J.B. Global versus local methods in nonlinear dimensionality reduction,in S. Becher, S. Thrun, and K. Oberinayer editors. Advances in Neural Information ProcessingSystems, vol.15, pp:705-712. Cambridge. MA. The MIT press,2003.
    [11] Zitzler E., Laumanns M., and Thiele L. SPEA2: improving the strength Pareto evolutionaryalgorithm. In Evolutionary Methods for Design, Optimization and Control with Applications toIndustrial Problems, Athens, Greece,2002, pp95-100.
    [12] Gong M.G., Jiao L.C., Du H.F., and Bo L.F. Multiobjective immune algorithm withnondominated neighbor-based selection. Evolutionary Computation,2008,16(2):225-255.
    [13] Liu L., Li M.Q., and Lin D. The ε-dominance based multiobjective evolutionary algorithm andan adaptive ε strategy. Chinese Journal of Computers,2008,31(7), pp:1063-1072,2008,(inChinese with English abstract).
    [14]焦李成,公茂果,王爽,侯彪,刘芳,张向荣,周伟达,自然计算、机器学习与图像理解前沿,西安电子科技大学出版社,2008.
    [15] Deb K., Thiele L., Laumanns M., and Zitzler E. Scalable multi-objective optimization testproblems. In: Proceedings of Congress on Evolutionary Computation, CEC2002, IEEE ServiceCenter, Vol.1, pages825-830.
    [16] Deb K. Multi-Objective genetic algorithms: Problem difficulties and construction of testproblems. Evolutionary Computation,1999,7(3):205-230.
    [17] Huband S., Hingston P., Barone L., and While L. A review of multi-objective test problems anda scalable test problem toolkit. IEEE Transaction on Evolutionary Computation,10(5),477-506,2006.
    [18] Zhang Q.F., Zhou A.M., and Jin Y. RM-MEDA: A regularity model based multiobjectiveestimation of distribution algorithm. IEEE Trans. on Evolutionary Computation,2007,12(1):41-63.
    [19] Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and thestrength Pareto approach. IEEE Transaction on Evolutionary Computation,3(4),257-271,1999.
    [20] Schott J.R. Fault tolerant design using single and multicriteria genetic algorithm optimization[MS. Thesis]. Cambridge: Massachusetts Institute of Technology,1995.
    [21] Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications.PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, November1999.
    [1] Erickson M., Mayer A., and Horn J. The niched Pareto genetic algorithm2applied to the designof groundwater remediation system. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D,eds. Proc. of the1st Int’l Conf. on Evolutionary Multi-Criterion Optimization, EMO2001.Berlin: Springer-Verlag,2001.681-695.
    [2] Zitzler E., Laumanns M., and Thiele L. SPEA2: improving the strength Pareto evolutionaryalgorithm. In Evolutionary Methods for Design, Optimization and Control with Applications toIndustrial Problems, Athens, Greece,2002, pages95-100.
    [3] Corne D.W., Jerram N.R., Knowles J.D., Oates M.J. PESA-II: Region-Based selection inevolutionary multi-objective optimization. In: Spector L, Goodman ED, Wu A, Langdon WB,Voigt HM, Gen M, eds. Proc. of the Genetic and Evolutionary Computation Conf., GECCO2001. San Francisco: Morgan Kaufmann Publishers,2001.283-290.
    [4] Deb K., Pratap A., Agarwal S., and Meyarivan T. A fast and elitist multi-objective geneticalgorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [5] Jensen M.T. Reducing the run-time complexity of multiobjective EAs: the NSGA-II and otheralgorithms. IEEE Transactions on Evolutionary Computation,2003,7(5):503-515.
    [6] Goldberg D. E. Genetic algorithm for search, optimization, and machine learning. MA:Addison-Wesley,1989.
    [7] Coello Coello C. A. Evolutionary multiobjective optimization: a historical view of the field,IEEE Computational Intelligence Magazine, Vol.1, No.1, pp.28-36, February2006.
    [8] Coello Coello C. A., Lamont G. B. and Van Veldhuizen D. A. Evolutionary algorithms forsolving multi-objective problems, Second Edition, Springer, New York, ISBN978-0-387-33254-3, September2007.
    [9] Deb K. Multi-objective optimization using evolutionary algorithms, John Wiley&Sons,Chichester, UK,2001, ISBN0-471-87339-X.
    [10]Fonseca C.M., Fleming P.J. Genetic algorithm for multiobjective optimization: Formulation,discussion and generation. In: Forrest S, ed. Proc. of the5th Int’l Conf. on Genetic Algorithms.San Mateo: Morgan Kauffman Publishers,1993.416-423.
    [11]Srinivas N, Deb K. Multiobjective optimization using non-dominated sorting in geneticalgorithms. Evolutionary Computation,1994,2(3):221-248.
    [12]Horn J., Nafpliotis N., Goldberg D.E. A niched Pareto genetic algorithm for multiobjectiveoptimization. In: Fogarty TC, ed. Proc. of the1st IEEE Congress on Evolutionary Computation.Piscataway: IEEE,1994.82-87.
    [13]Srinivas M., and Patnaik L. M. Adaptive probabilities of crossover and mutation in geneticalgorithms. IEEE Transactions on System, Man and Cybernetics, vol.24,656–667,1994.
    [14]Agapie A. Adaptive genetic algorithms-modeling and convergence. In Proceedings of the1999Congress on Evolutionary Computation, CEC99, Washington, DC, USA, pp.729-735,1999.
    [15]Sugisaka M., and Fan X. Adaptive genetic algorithm with a cooperative mode. In Proceedings ofIEEE International Symposium on Industrial Electronics, ISIE2001, vol.3, pp.1941-1945,2001.
    [16]Liu Z.M., Zhou J.L., and Lai S. New genetic algorithm based on ranking. In Proceedings of theSecond International Conference on Machine Learning and Cybernetics, IEEE, Xi’an, China,November2003, pp.1841–1844.
    [17]Hinterding R., and Eiben A.E. Adaptation in evolutionary computation: a survey. IEEE Congresson Evolutionary Computation, pp.65–69,1997.
    [18]Tan K.C., Lee T.H., and Khor E. F. Evolutionary algorithms with dynamic population size andlocal exploration for multiobjective optimization. IEEE Transactions on EvolutionaryComputation, vol.6, pp.565–588,2001.
    [19]Chen J., and Mahfouf M. A population adaptive based immune algorithm for solvingmulti-objective optimization problems. Artificial Immune Systems, Lecture Notes in ComputerScience, vol.4163/2006, pp.280-293,2006.
    [20]Cao R., Li G., and Wu Y. A self-adaptive evolutionary algorithm for multi-objective optimization.Edited by D.S. Huang, L. Heutte, and M. Loog. Advanced Intelligent Computing Theories andApplications with Aspects of Artificial Intelligence, Lecture Notes in Computer Science, vol.4682/2007, pp.553-564,2007, DOI:10.1007/978-3-540-74205-0_60.
    [21]Chang P.C. Hsieh J.C., and Wang C.Y. Adaptive multi-objective genetic algorithms forscheduling of drilling operation in printed circuit board industry. Applied Soft Computing, vol.7,pp.800-806,2007.
    [22] Wagner T., Beume N., Naujoks B. Pareto-, aggregation-, and indicator-based methods inmany-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proc.of the4th Int’l Conf. on Evolutionary Multi-Criterion Optimization, EMO2007. Berlin:Springer-Verlag,2007.742-756.
    [23]Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization test problems.In: Fogel DB, ed. Proc. of the IEEE Congress on Evolutionary Computation, CEC2002.Piscataway: IEEE Service Center,2002.825-830.
    [24]Zitzler E., and Thiele L. Multiobjective evolutionary algorithms: A comparative case study andthe strength Pareto approach. IEEE Transactions on Evolutionary Computation, vol.3, pp.257–271,1999.
    [25]Zitzler E., Thiele L, Laumanns M., Fonseca C.M., and Fonseca V.G. Performance assessment ofmultiobjective optimization analysis and review. IEEE Transactions on EvolutionaryComputation, vol.7, pp.117–132,2003.
    [26]Van Veldhuizen D. A., Lamont G. B. On measuring multiobjective evolutionary algorithmperformance. In Proceedings of the2000IEEE Congress on Evolutionary Computation, CEC2000, IEEE Service Center: Piscataway, New Jersey, Vol.1, pages204-211.
    [27]Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications.PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, November1999.
    [28]Schott J.R. Fault tolerant design using single and multicriteria genetic algorithm optimization[MS. Thesis]. Cambridge: Massachusetts Institute of Technology,1995.
    [29]Khare V., Yao X., Deb K. Performance scaling of multi-objective evolutionary algorithms. In:Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L, eds. Proc. of the2nd Int’l Conf. onEvolutionary Multi-Criterion Optimization, EMO2003. Berlin: Springer-Verlag,2003.376-390.
    [30]Kukkonen S., and Lampinen J. Ranking-dominance and many-objective optimization. InProceedings of IEEE Congress on Evolutionary Computation (CEC'2007), pp.3983-3990, IEEEPress, Singapore, September2007.
    [1] Zitzler E., Laumanns M., and Thiele L. SPEA2: improving the strength Pareto evolutionaryalgorithm. In Evolutionary Methods for Design, Optimization and Control with Applicationsto Industrial Problems, Athens, Greece,2002, pages95-100.
    [2] Deb K., Pratap A., Agarwal S., and Meyarivan T. A fast and elitist multi-objective geneticalgorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol.6, no.2, pp:182-197,2002.
    [3] Coello Coello C.A. and Cortes N.C. An approach to solve multi-objective optimizationproblems based on an artificial immune system. In First International Conference on ArtificialImmune Systems (ICARIS’2002). Edited by J. Timmis and P. J. Bentley. University of Kent atCanterbury, UK, September2002, pp.212–221.
    [4] Gong M.G., Jiao L.C., Du H.F., and Bo L.F. Multiobjective immune algorithm withnondominated neighbor-based selection. Evolutionary Computation. vol.16, no.2, pp.225–255,2008.
    [5] Yoo J. and Hajela P. Immune network simulations in multicriterion design. StructuralOptimization, vol.18, pp.85–94,1999.
    [6] Cui X., Li M., and Fang, T. Study of population diversity of multiobjective evolutionaryalgorithm based on immune and entropy principles. In: Proceedings of the2001Congress onEvolutionary Computation, vol.2, pp.1316–1321,2001.
    [7] Luh G.C., Chueh C.H., and Liu W.W. MOIA: Multiobjective immune algorithm. EngineeringOptimization35(2),143–164,2003.
    [8] Luh G.C., Chueh CH.H., and Liu W. MOIA: multi-objective immune algorithm. EngineeringOptimization. vol.35, no.2, pp.143–164,2003.
    [9] Lu B., Jiao L.C, Du H.F, Gong, M.G. IFMOA: immune forgetting multiobjective optimizationalgorithm.1st International Conference on Advances in Natural Computation, Changsha,China, August27-29, Part III Lecture Notes in Computer Science vol.3612, pp.399–408,2005.
    [10] Jiao L.C, Gong M.G, Shang R.H., Du H.F., Lu B. Clonal selection with immune dominanceand energy based multiobjective optimization.3rd International Conference on EvolutionaryMulti-Criterion Optimization, Guanajuato, Mexico, March9-11, Lecture Notes in ComputerScience, vol.3410, pp.474–489,2005.
    [11] Tan K.C., Goh C.K., Mamun A.A., and Ei E. Z. An evolutionary artificial immune system formulti-objective optimization, European Journal of Operational Research, vol.187, pp:371–392,2008.
    [12] Zuo X.Q., Mo H.W., and Wu J.S. A robust scheduling method based on a multi-objectiveimmune algorithm, Information Sciences, vol.179, pp:3359–3369,2009.
    [13] Hu Z.H. A multiobjective immune algorithm based on a multiple-affinity model. EuropeanJournal of Operational Research, vol.202, pp:60–72,2010.
    [14] Tavakkoli-Moghaddam R., Rahimi-Vahed A., Mirzaei A.H. A hybrid multi-objective immunealgorithm for a flow shop scheduling problem with bi-objectives: weighted mean completiontime and weighted mean tardiness, Information Sciences, vol.177, pp:5072–5090,2007.
    [15] Kukkonen, S., and Deb K. A fast and effective method for pruning of nondominated solutionsin many-objective problems. In Proceedings of the9th International Conference on ParallelProblem Solving from Nature (PPSN IX), Reykjavik, Iceland, Sep2006, pp.553-562.
    [16] Rudin W. Real and complex analysis. McGraw-Hill,0-07-054234-1,1987.
    [17] Yang D. D., Jiao L. C., and Gong M. G. Adaptive multi-objective optimization based onnondominated solutions. Computational Intelligence, vol.25, no.2, pp:84-108,2009.
    [18] Ziztzler E., and Kunzli S. Indicator-based selection in multi-objective search. In X. Yao et al.,editors, Conference on Parallel Problem Solving from Nature (PPSN VIII), volume3242ofLNCS, pp.832–842,2004.
    [19] Bader J., and Ziztzler E. HypE: An algorithm for fast hypervolume-based many-objectiveoptimization. TIK Report286, Computer Engineering and Networks Laboratory (TIK), ETHZurich,2008.
    [20] Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization testproblems. In: Fogel DB, ed. Proc. of the IEEE Congress on Evolutionary Computation, CEC2002. Piscataway: IEEE Service Center,2002.825-830.
    [21] Van Veldhuizen D. A., Lamont G. B. On measuring multiobjective evolutionary algorithmperformance. In Proceedings of the2000IEEE Congress on Evolutionary Computation, CEC2000, IEEE Service Center: Piscataway, New Jersey, vol.1, pages204-211.
    [22] Zitzler E., Thiele L., Laumanns M., Fonseca C.M., and da Fonseca V.G. Performanceassessment of multiobjective optimizers: an analysis and review, IEEE Transactions onEvolutionary Computation, vol.7, no.2, pp.117-132, April2003.
    [23] Knowles J., Thiele L., and Zitzler E. A tutorial on the performance assessment of stochasticmultiobjective optimizers, Technical Report No.214, Computer Engineering and NetworksLaboratory (TIK), ETH Zurich, Switzerland, February2006.
    [24] Bandyopadhyay S., Pal S. K., and Aruna B. Multiobjective GAs, quantitative indices, andpattern classification, IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol.4, no.5, pp:2088-2099,2004.
    [25] Zitzler E., Thiele L. Multi-objective evolutionary algorithms: a comparative case study and thestrength Pareto approach. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [26] Mcgill R., Tukey J. W., and Larsen W. A. Variations of boxplots. The American statistician, vol.32, pp.12-16,1978.
    [1] Cumming I.G., and Wong F.H. Digital processing of synthetic aperture radar data algorithmsand implementation. Artech House, ISBN:1580530583,2005.
    [2] Jain A.K., Duin R.P., and Mao J.C. Statistical pattern recognition: a review, IEEETransactions on Pattern Analysis and Machine Intelligence, vol.22, no.1, pp:4–37,2000.
    [3] Lee C.H., Za ane O.R., Park H.H., Huang J.Y., and Greiner R. Clustering high dimensionaldata: a graph-based relaxed optimization approach, Information Sciences, vol.178, no.23, pp:4501–4511,2008.
    [4] Lemarechal C., Fjortoft R., Marthon P., Cubero-Castan E., and Lopes A. SAR imagesegmentation by morphological methods, in: Proceeding of the SPIE, vol.3497, pp:111–121,1998.
    [5] Choi H., and Baraniuk R.G. Multiscale image segmentation using wavelet-domain hiddenMarkov models, IEEE Transactions on Image Processing, vol.10, no.9, pp:1309–1321,2001.
    [6] Dasgupta D., Forrest S. Novelty detection in time series data using ideas from immunology, in:Proceedings of the Fifth International Conference on Intelligent Systems,1996, pp.87–92.
    [7] McCoy D.F., Devarajan V. Artificial immune systems and aerial image segmentation, in:International Conference on Computational Cybernetics and Simulation, vol.1,1997, pp.867–872.
    [8] Timmis J., Neal M., and Hunt J., Data analysis with artificial immune systems and clusteranalysis and kohonen networks: some comparisons, in: Proceeding of the InternationalConference Systems and Man and Cybernetics, Tokyo, Japan,1999, pp.922–927.
    [9] Sathyanath S., and Sahin, F. An AIS approach to a color image classification problem in a realtime industrial application, IEEE International Conference on Systems, Man, and Cybernetics,vol.4, pp:2285-2290,2001.
    [10] Huang W.L., and Jiao L.C. Artificial immune kernel clustering network for unsupervisedimage segmentation, Progress in Natural Science, vol.18, no.4, pp:455–461,2008.
    [11] Zhong Y.F., Zhang L.P., Gong J.Y., and Li P.X. A supervised artificial immune classifier forremote-sensing imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.45, no.12, pp:3957–3966,2007.
    [12] Zhang L.P., Zhong Y.F., Huang B., Gong J.Y., Li P.X. Dimensionality reduction based onclonal selection for hyperspectral imagery, IEEE Transactions on Geoscience and RemoteSensing, vol.45, no.12, pp:4172–4186,2007.
    [13] Zheng H., Zhang J.X., and Nahavandi S. Learning to detect texture objects by artificialimmune approaches, Future Generation Comput Systems, vol.20, no.7, pp:197–1208,2004.
    [14] Xie X.L., and Beni G. A validity measure for fuzzy clustering, IEEE Transactions on PatternAnalysis and Machine Intelligence, vol.13, no.8, pp:841–847,1991.
    [15] Maulik U., and Bandyopadhyay S. Performance evaluation of some clustering algorithms andvalidity indices, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.12, pp:1650–1654,2002.
    [16] Bandyopadhyay S., Maulik U., and Mukhopadhyay A. Multi-objective genetic clustering forpixel classification in remote sensing imagery, IEEE Transactions on Geoscience and RemoteSensing, vol.45, no.5, pp:1506–1511,2007.
    [17] Deng H., and Clausi D.A. Unsupervised image segmentation using a simple MRF model witha new implementation scheme, Pattern Recognition,vol.37, no.12, pp:2323–2335,2004.
    [18] Haralick R.M., Shanmugam K., and Dinstein I. Textural features for images classification,IEEE Transactions on System, Man, and Cybernetics, vol.3, no.6, pp:610–621,1973.
    [19] Randen T., and Husy J.H. Filtering for texture classification: a comparative study, IEEETransactions on Pattern Analysis and Machine Intelligence, vol.21, no.4, pp:291–310,1999.
    [20] Jain A.K., Farrokhnia F. Unsupervised texture segmentation using Gabor filters, PatternRecognition, vol.24, no.12, pp:167–186,1991.
    [21] Clausi D.A. and Deng H. Design-based texture feature fusion using Gabor filters andco-occurrence probabilities, IEEE Transactions on Image Processing, vol.14, no.7, pp:925–936,2005.
    [22] Clausi D.A. Comparison and fusion of co-occurrence, Gabor, and MRF texture features forclassification of SAR sea ice imagery, Atmosphere-Oceans, vol.39, no.3, pp:183–194,2001.
    [23] Ruiz L., Fdez-Sarra A., and Recio J. Texture feature extraction for classification of remotesensing data using wavelet decomposition: a comparative study, in: the20th InternationalCongress of Archives of Photogrammetry and Remote Sensing, Part B,2004, pp.1109–1115.
    [24] Schistad Solberg A.H., and Jain A.K. Texture fusion and feature selection applied to SARimagery, IEEE Transactions on Geoscience and Remote Sensing, vol.35, no.2, pp:475–479,2005.
    [25] Kandaswamy U., Adjeroh Donald A., and Lee M.C. Efficient Texture Analysis of SARImagery, IEEE Transactions on Geoscience and Remote Sensing, vol.43, no.9, pp:2075-2083,2005.
    [26] Vincent L., and Soille P. Watersheds in digital spaces: an efficient algorithm based onimmersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, no.6, pp:583–598,1991.
    [27] Zhang X.R., Jiao L.C., Liu F., Bo L.F., and Gong M.G. Spectral clustering ensemble appliedto texture features for SAR image segmentation, IEEE Transactions on Geoscience andRemote Sensing, vol.46, no.7, pp:2126–2136,2008.
    [28] Chang T., and Kuo C.J. Texture analysis and classification with tree-structured wavelettransform, IEEE Transactions on Image Processing, vol.2, no.4, pp:429–441,1993.
    [29] Hubert L., Arabie P. Comparing partitions, Journal of Classification, vol.2, no.1, pp:193-218,1995.
    [1] Haralick R.M., Shanmugam K., and Dinstein I. Textural features for images classification,IEEE Transactions on System, Man, and Cybernetics, vol.3, no.6, pp:610–621,1973.
    [2] Jain A.K., Farrokhnia F. Unsupervised texture segmentation using Gabor filters, PatternRecognition, vol.24, no.12, pp:167–186,1991.
    [3] Randen T., and Husy J.H. Filtering for texture classification: a comparative study, IEEETransactions on Pattern Analysis and Machine Intelligence, vol.21, no.4, pp:291–310,1999.
    [4] Deng H., and Clausi D.A. Unsupervised image segmentation using a simple MRF model witha new implementation scheme, Pattern Recognition,vol.37, no.12, pp:2323–2335,2004.
    [5]焦李成,侯彪,王爽,图像多尺度几何分析理论与应用,西安电子科技大学出版社,2008.
    [6] Lee J.S. Digital image enhancement and noise filtering by use of local statistics, IEEETransactions on Pattern Analysis and Machine Intelligence, no.2, PP.165-168,1980.
    [7] Kuan D., Sawchuk A., Strand T., Chavel P. Adaptive restoration of images with speckle. IEEETransactions on Acoustics, Speech and Signal Processing, vol.35, no.3, pp:373-383,1987.
    [8] Frost V.S., Stiles J. A., Shanmugan K. S., Holtzman J.C. A model for radar images and itsapplication to adaptive digital filtering of multiplicative noise. IEEE Transactions on PatternAnalysis and Machine Intelligence, vol.4, no.2, pp:157-166,1982.
    [9] Lopes A., Touzi R., Nezry E. Adaptive speckle filters and scene heterogeneity. IEEETransactions on Geoscience and Remote Sensing, vol.28, no.6, pp:992-1000,1990.
    [10] Lee J.S. Refined filtering of image noise using local statistics, Computer Vision, Graphics andImage Processing, vol.15, pp:380-389,1981.
    [11] Baraldi A., Panniggiani F. A refined gamma MAP SAR speckle filter with improvedgeometrical adaptivity. IEEE Transactions on Geoscience and Remote Sensing, vol.33, no.5,pp:1245-1257,1995.
    [12] Fukuda S., Hirosawa H. Suppression of speckle in synthetic aperture radar images usingwavelet. International Journal of Remote Sensing, vol.19, no. Issue3, pp:507-519,1998.
    [13] Crouse M.S., Nowak R.D., Baraniuk R.G. Wavelet-based statistical signal processing usinghidden Markov models. IEEE Transactions on Signal Processing, vol.46, no.4, pp:886-902,1998.
    [14] Buades A., Coll B., Morel J.M. A review of image denoising algorithms, with a new one,Multiscale Modeling and Simulation, vol.4, no.2, pp:490-530,2005.
    [15] Mahmoudi M., Sapiro G. Fast image and video denoising via nonlocal means of similarneighborhoods. IEEE Signal Processing Letters, vol.12, no.12, pp:839-842,2005.
    [16] Wang J., Guo Y.W., Ying Y.T., Liu Y.L., Peng Q.S. Fast non-local algorithm for imagedenoising. IEEE International Conference on Image Processing, pp:1429-1432,2006.
    [17] Deb K., Pratap A., Agarwal S., and Meyarivan T. A fast and elitist multi-objective geneticalgorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol.6, no.2, pp:182-197,2002.
    [18] Maulik U., and Bandyopadhyay S. Performance evaluation of some clustering algorithms andvalidity indices, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.12, pp:1650–1654,2002.
    [19] Yang D. D., Jiao L.C., Liu F., Gong M.G. Investigation of Combinational Clustering Indicesin Artificial Immune Multi-objective Clustering. Submit to Computational Intelligence (UnderReview).
    [20] Handl J., Knowles J. An evolutionary approach to multiobjective clustering. IEEE Transactionon Evolutionary Computation, vol.11, no.1, pp:56-76,2007.
    [21] Bandyopadhyay S., Maulik U. Nonparameter genetic clustering: comparison of validityindices, IEEE Transaction on Systems, Man, and Cybernetics-Part C, vol.31, no.1, pp:120-125,2001.
    [22] Liu R.C., Shen Z.C., Jiao L.C. Gene transposon based clonal selection algorithm for clustering,Proceedings of the11th Annual conference on Genetic and evolutionary computation,GECCO’09, Montréal, Québec, Canada, pp:1251-1258,2009.
    [23] Zhang X.R., Jiao L.C., Liu F., Bo L.F., and Gong M.G. Spectral clustering ensemble appliedto texture features for SAR image segmentation, IEEE Transactions on Geoscience andRemote Sensing, vol.46, no.7, pp:2126–2136,2008.
    [24] Shi J., Malik J. Normalized cuts and image segmentation, IEEE Transaction on PatternAnalysis and Machine Intelligence, vol.22, no.8, pp:888-905,2000.
    [25] Deledalle C.A., Denis L., Tupin F. Iterative Weighted Maximum Likelihood Denoising WithProbabilistic Patch-Based Weights. IEEE Transactions on Image Processing, vol.18, no.12,pp:2661-2672,2009.
    [26] Hubert L., Arabie P. Comparing partitions, Journal of Classification, vol.2, no.1, pp:193-218,1995.
    [27] Goodman J. Some fundamental properties of speckle, Journal of Optical Society of American,vol.66, no.11, pp:1145-1150,1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700