用户名: 密码: 验证码:
卫星导航信号码跟踪精度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球导航卫星系统(GNSS)已成为一个国家的重要基础设施之一,对一个国家具有举足轻重的意义,世界主要航天大国都不惜巨资发展属于自己的卫星导航系统。目前,已建成和在建的GNSS有GPS、GLONASS、GALILEO和COMPASS。由这四大GNSS的信号体制参数可知,BOC(包括衍生的ALTBOC和MBOC信号)调制信号在GNSS中已被广泛地采用,而传统的PSK-R调制信号依然保留下来,因此,PSK-R和BOC调制信号同时存在的局面不可避免。伪距是卫星导航系统的基本观测量,伪距观测量的提取是通过码和载波的精确跟踪来实现的,因而,码和载波跟踪精度直接决定了伪距观测精度。码跟踪精度是导航信号体制设计中所必须考虑的关键指标,对码跟踪精度及其影响因素的研究具有重要意义,可为卫星导航系统接收终端的研发提供理论指导。
     本论文以GNSS的PSK-R与BOC调制信号为对象,结合经典的功率谱密度、自相关函数及伪码跟踪等相关理论,对伪码跟踪精度及影响跟踪精度的外部因素和内在因素进行了深入地研究。分析的外部因素主要包括白噪声、高斯干扰、多径干扰及接收系统;而内在因素则主要从信号体制入手,着重研究子载波相位及恒包络互复用对码跟踪精度的影响。主要的研究内容包括:
     (1)系统地论述了信号功率谱密度及相关函数求解的通用理论。详细分析了PSK-R、BOC、ALTBOC和MBOC调制信号的功率谱密度和自相关函数,总结得到PSK-R与BOC调制信号的功率谱密度和自相关函数的特点。
     (2)从定性和定量两个方面对伪码跟踪精度进行分析。定性分析主要是根据导航信号S曲线理论来判断码跟踪性能。定量分析是基于码跟踪处理的规范模型,利用导航信号的复基带表示,推导出白噪声及高斯干扰环境下的相干、非相干超前减滞后相关处理的SNIR和码跟踪均方根误差的解析表达式,SNIR和码跟踪均方根误差均可反映噪声、干扰对码跟踪精度的影响。基于码跟踪精度的理论成果,对白噪声、窄带干扰、高斯带限干扰以及匹配谱干扰的码跟踪精度进行了详细地研究。
     (3)基于标准相关器,推导出伪码及载波相位多径误差的显式解析表达式,弥补了传统隐函数数值分析方法的不足,且显式解析表达式引入的误差足够小。考虑到多径环境与卫星仰角的变化对多径误差带来影响,在对统计信道模型进行详尽分析的基础上,提出了基于统计信道模型的显式解析表达式的多径误差分析方法,包括滑动平均多径误差包络、加权多径误差包络及加权多径误差包络的滑动平均三种评价方法,使得多径误差分析更加真实有效。
     (4)提出了GNSS接收系统的载噪比计算模型,并对天线噪声温度、电缆插入损耗、噪声系数与等效噪声温度等进行了分析研究,提出了电缆插入损耗的线性化简化计算方法;在组件及各模块噪声系数与功率增益已知的情况下,依据噪声系数与等效噪声温度的定义,分析了整个接收系统的载噪比计算方法。文中主要从ADC量化、CIC抽取滤波、码时延与多普勒残留误差这四个方面来详细分析载噪比损失对码跟踪精度和误码率的影响。
     (5)采用功率谱密度定义的方法,选取合适的任意相位子载波扩频符号波形分段形式的参数表示,在此基础上经过严格建模和推导,得到了任意相位子载波BOC调制信号的通用解析表达式。并选取两种典型的BOC调制信号进行分析,验证了通用解析表达式的正确性,总结得到一些重要结论。基于任意相位子载波功率谱密度解析表达式,对任意相位子载波调制信号所对应的Gabor带宽及所能达到的码跟踪误差下界进行了深入地研究。
     (6)系统地阐述了Interplex与CASM这两种恒包络互复用方法的原理,并对其合成损耗进行定义。对恒包络互复用的实现及合成的功率谱密度进行了论述,给出了三信号与四信号互复用的实例。对恒包络互复用效率进行了分析,根据互复用效率可选择最佳的恒包络复用功率分配参数。提出了码跟踪误差相对信号载噪比变化率方法,可实现将恒包络互复用合成损耗归算到码跟踪均方根误差增量。
Global Navigation Satellite System has become one of the most important infrastructures and ofvital significance for a country. Major space powers of the world have not hesitated to developtheir own satellite navigation system. Currently, Global Navigation Satellite Systems have beenbuilt and are being built include GPS, GLONASS, GALILEO and COMPASS. BOC (includingALTBOC and MBOC signals) modulated signals have been widely adopted, while thetraditional PSK-R modulation signal is still preserved via the four GNSS signal systemparameters. Therefore, the coexistence situation for PSK-R and BOC modulation signal isinevitable. Pseudo-range is a basic observed quantity of satellite navigation system. Theextraction of pseudo-range observed quantity is achieved through the code and carrier tracking,therefore, the code and carrier tracking accuracy directly determines the accuracy of thepseudo-range observations. Code tracking accuracy is a key indicator which must be consideredduring the design of navigation signal system. The study on impact factors for code trackingaccuracy is of great significance, which can provide theoretical guidance for research anddevelopment of satellite navigation system receiver.
     Pseudo-code tracking accuracy and external factors and internal factors on tracking accuracyare studied in depth combined with relevant theory including classic power spectral density,auto-correlation function, pseudo-code tracking and others in this paper. External factorsanalyzed include white noise, Gaussian interference, multipath interference and the receivingsystem; while the influence of internal factors including arbitrary sub-carrier phase and constantenvelope composite technology which both belonging to signal system on code trackingaccuracy is analyzed. The main research contents will be shown as followings.
     (1) General theory for solving signal power spectral density and correlation function iselaborated systematically. According to the characteristics of the navigation signals, the powerspectral density and autocorrelation function for PSK-R, BOC, ALTBOC and MBOCmodulation signals are analyzed in detail and their characteristics are summarized.
     (2) Pseudo-code tracking accuracy is analyzed from two aspects of qualitative andquantitative.S curve which stems from autocorrelation function can be used for qualitativejudging the performance of code tracking loop. It is not enough for us to make a qualitativeanalysis on code tracking loop error via S curve, next, under canonical model framework ofTOA error estimation, using no-coherent delay lock loop, through modeling and derivation canget a quantitative formula between code tracking error and SNIR calculated theoretically and the RF front-end bandwidth, early code and late code space, carrier to noise ratio, integrationtime and code loop bandwidth, which leading to a quantitative analysis of the non-coherentdelay lock loop for code tracking error. SNIR and root mean square error of code tracking canreflect the effect on code tracking accuracy of noise, interference. Based on theoretical resultsof the pseudo-code tracking accuracy, the code tracking under white noise, narrowbandinterference, bandlimited white interference with fixed centre frequency and differentbandwidths, and matched spectrum interference are studied in detail.
     (3) Explicit analytical expression for pseudo-code and carrier phase multipath error is deducedbased on standard correlator, which to make up for the deficiencies of the traditional implicitfunction numerical analysis method, and the error introduced by the explicit analyticalexpression is negligible. A more practical and reliable way for multipath error analysis based onexplicit analytical expression of statistical channel model is advanced considering the effect ofmultipath scenario and elevation of satellite. This includes three kinds of evaluation methodscontaining running average multipath error envelope, weighted multipath error envelope andrunning weighted multipath error envelope, which make a more realistic analysis of themultipath error.
     (4) The calculation model about the GNSS receiving system is proposed, and the antenna noisetemperature, the cable insertion loss, the noise figure and the equivalent noise temperature areanalyzed, the linear simplified calculation method is proposed; In the condition of the powergain coefficient of the component and the modules is known, according to the definition ofnoise coefficient and equivalent noise temperature, the calculation method of carrier to noiseratio for whole receiving system is proposed. This paper mainly detailed analyze the effect ofcarrier to noise ratio loss on tracking accuracy and bit error rate from the ADC quantization,CIC decimation filter, code delay and doppler residual error.
     (5) Common explicit expression for BOC signal power spectral density of arbitrary phasesub-carrier is derived through rigorous modeling and derivation which based on a commonapproach for solving the navigation signal power spectral density and representation for spreadspectrum symbols of segmental waveform by selection of arbitrary phase subcarrier. Formula isverified correct by analyzing two kinds of typical BOC signals, and some important conclusionsare drawn. Gabor bandwidth and code tracking lower bound error for modulation signals ofarbitrary phase sub-carrier are studied in depth based on the analytical expression of any phasesub-carrier power spectral density.
     (6) The principle about the Interplex and CASM constant envelope and mutual multiplexingmethods is systematically elaborated, and the combining loss is defined. The power spectraldensity of constant envelope synthesis and realization is discussed, and the examples about the multiplexing of three and four signals are given. The efficiency of constant envelope andmutual multiplexing are analyzed, and the power distribution parameters are chosen accordingto the best constant envelope multiplexing. The tracking error code in relative signal to noiseratio variation method are put forward, which can realize constant envelope and mutualmultiplexing power spectrum and combining loss count to the code tracking RMS error.
引文
[1]何在民. BOC信号的相关器设计及跟踪性能分析[D].北京:中国科学院研究生院硕士学位论文(国家授时中心),2008.5.
    [2]王智.高动态多普勒条件下的扩频接收技术研究[D].上海:上海交通大学硕士学位论文,2007.1.
    [3]寇艳红. GNSS软件接收机与信号模拟器系统研究[D].北京:北京航空航天大学博士学位论文,2006.3.
    [4] Elliott D.Kaplan著. GPS原理与应用[M].寇艳红译.北京:电子工业出版社,2007.7.
    [5] John W. Betz, Charles R. Cahn, Philip A. Dafesh, L1C Signal Design Options [C]. ION GNSS2006.685~687.
    [6]张倞.多GNSS兼容软件接收机设计及MBOC信号接收算法研究[D].北京:北京航空航天大学硕士学位论文,2010.5.
    [7] José ángel ávila Rodríguez. On Generalized Signal Waveforms for Satellite Navigation [D]. Munich:The Faculty of Aerospace Engineering of Munich University, June,2008.
    [8]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社,2003.8.
    [9] Gerald L. Cook and Elie Accad. GLONASS Operations[C]. ION GPS2000, Salt Lake City, September2000.1366~1383.
    [10] GALILEO Project Office. GIOVE-A navigation signal-in-space interface control document [S].2007.03.
    [11] European Space Agency/European GNSS Supervisory Authority. GALILEO Open Service Signal inSpace Interface Control Document [S].2008.
    [12]魏敬法. CAPS接收机基带处理算法研究、仿真与实现[D].北京:中国科学院研究生院博士学位论文(国家授时中心),2008.5.
    [13] China Satellite Navigation Project Centre. COMPASS/BeiDou Navigation Satellite SystemDevelopment [C].2009.
    [14]唐祖平. GNSS信号设计与评估若干理论研究[D].武汉:华中科技大学博士学位论文,2009.3.
    [15]周忠谟,易杰军,周琪. GPS测量原理与应用[M].北京:测绘出版社,2004.7.
    [16]武建锋.高动态CAPS信号模拟器关键技术研究[D].北京:中国科学院研究生院博士学位论文(国家授时中心),2010.5.
    [17]李丹. GNSS信号产生与接收仿真验证平台的软件设计[D].北京:北京航空航天大学硕士学位论文.2007.12
    [18]韩春好,刘利,赵金贤.伪距测量的概念、定义与精度评估方法[J].宇航学报,2009,30(6):2421-2425.
    [19]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社,2009.7.
    [20] Simon M. Non-Coherent Pseudo-noise Code Tracking Performance of Spread Spectrum Receivers.Communications [J]. IEEE Transactions on,1977,25(3):327~345.
    [21] Van Dierendonck A J, Fenton P, Ford T. Theory and Performance of Narrow Correlator Spacing in aGPS Receiver [J]. Navigation,1992,39(3):265~283.
    [22] Cannon M E, Lachapelle G, Qiu W, et al. Performance Analysis of a Narrow Correlator SpacingReceiver for Precise Static GPS Positioning [J]. Las Vegas, NV, USA: Published by IEEE, Piscataway,NJ, USA,1994.355~360.
    [23] Betz J W, Kolodziejski K R. Extended Theory of Early-Late Code Tracking for a Bandlimited GPSReceiver [J]. Journal of the Institute of Navigation,2000,47(3):211~226.
    [24] Betz J W. Effect of Narrowband Interference on GPS Code Tracking Accuracy[C]. ION NTM2000.Anaheim, CA,2000.16~27.
    [25] K R Kolodziejski,J W Betz.Effect of Non-White Gaussian Interference on GPS Code TrackingAccuracy[C].The MITRE Corporation Technical Report MTR99B21R1,June1999.
    [26] Hegarty C, Tran M, Lee Y. Simplified Techniques for Analyzing the Effects of Non-White Interferenceon GPS Receivers. ION GPS2002:15th International Technical Meeting of the Satellite Division of theInstitute of Navigation[C]. Portland, OR,2002.620~629.
    [27] Bello P A, Fante R L. Code Tracking Performance for Novel Unambiguous M-Code TimeDiscriminators[C]. Proceedings of the National Technical Meeting of the Institute of Navigation.2005.293~298.
    [28] Morrissey T N, Shallberg K W, Townsend B. Code Tracking Errors for Double Delta Discriminatorswith Narrow Correlator Spacings and Bandlimited Receivers[C]. Monterey, CA, United States: Instituteof Navigation, Fairfax, VA22030, United States,2006.914~926.
    [29] Soellner M, Kohl R, Luetke W, et al. The Impact of Linear and Non-Linear Signal Distortions onGALILEO Code Tracking Accuracy[C]. ION GPS2002:15th International Technical Meeting of theSatellite Division of the Institute of Navigation.2002.1270~1285.
    [30] Quirk K J, Srinivasan M. Analysis of Sampling and Quantization Effects on the Performance of PNCode Tracking Loops [J]. New York, NY, USA: IEEE,2002.1480~1484.
    [31] Quirk K J, Srinivasan M. PN Code Tracking Using Noncommensurate Sampling [J]. IEEE Transactionson Communications,2006,54(10):1845~1856.
    [32] J W Betz, K R Kolodziejski. Generalized Theory of Code Tracking with an Early-Late DiscriminatorPart I: Lower Bound and Coherent Processing [J]. IEEE TRANSACTIONS ON AEROSPACE ANDELECTRONIC SYSTEMS,2009,45(4):1538~1550.
    [33] J W Betz, K R Kolodziejski. Generalized Theory of Code Tracking with an Early-Late DiscriminatorPart II: Noncoherent Processing and Numerical Results [J]. IEEE TRANSACTIONS ON AEROSPACEAND ELECTRONIC SYSTEMS,2009,45(4):1551~1564.
    [34] Van Dierendonck A J, Braasch M S. Evaluation of GNSS Receiver Correlation Processing Techniquesfor Multipath and Noise Mitigation[C]. Proceedings of the National Technical Meeting, Institute ofNavigation. Santa Monica, CA, USA: Inst of Navigation, Alexandria, VA, USA,1997.207~215.
    [35] Irsigler M, Rodriguez J, Hein G. Criteria for GNSS Multipath Performance Assessment[C]. ION GNSS18th International Technical Meeting of the Satellite Division. Long Beach, CA,2005.2166~2177.
    [36] Hein G W, Avila-Rodriguez J A, Wallner S, et al. MBOC: The New Optimized Spreading ModulationRecommended for GALILEO L1OS and GPS L1C[C].2006IEEE/ION Position, Location andNavigation Symposium, Vols1-3,2006.883~892.
    [37] Avila-Rodriguez J, Hein G W, Wallner S, et al. The MBOC Modulation: The Final Touch to theGALILEO Frequency and Signal Plan[C]. ION GNSS20th International Technical Meeting of theSatellite Division. Fort Worth, TX,2007.1515~1529.
    [38]张孟阳,吕保维,宋文森. GPS系统中的多径效应分析[J].电子学报,1998,36(3):10~14.
    [39]刘荟萃,许晓勇,王飞雪.扩频测距系统中多径信号伪码跟踪误差分析及消除技术[J].全球定位系统,2005,6:34~38.
    [40]黄旭方. GNSS无线频率兼容及高功放非线性效应影响的研究[D].武汉:华中科技大学博士学位论文,2009.3.
    [41] Soualle F, Burger T. Impact of GALILEO Spreading Code Selection and Data Rate onto NavigationSignal Interference [C]. Proceedings of the Institute of Navigation2003. Portland: ION GPS2003.1035~1043.
    [42] Normark P L, St hlberg C, Seco-Granados G. Interference Study Processing Semi-Live GALILEO L1and Live GPS L1Data in a High-Performance GNSS Software Receiver [C]. Proceedings of theInstitute of Navigation2003. Portland: ION GPS2003.1965~1792.
    [43] Wallner S, Hein G W, Pany T, et al. Interference Computations between GPS and GALILEO [C].18thInternational Technical Meeting of the Satellite Division. Long Beach: ION GNSS2005.861~876.
    [44] Soualle F, Burger T. Radio Frequency Compatibility Criterion for Code Tracking Performance [C].20thInternational Technical Meeting of the Satellite Division. Fort Worth: ION GNSS2007.1201~1210.
    [45] Hegarty C, Tran M, Lee Y. Simplified Techniques for Analyzing the Effects of Non-white Interferenceon GPS Receivers [C]. Proceedings of the Institute of Navigation2002. Portland: ION GPS2002.620~629.
    [46] Betz J W. Effect of Partial-Band Interference on Receiver Estimation of C/N0: Theory[C]. DefenseTechnical Information Center,2001.
    [47] Holmes J K, Raghavan S, Dafesh P, et al. Effective Signal to Noise Ratio Performance Comparison OfSome GPS Modernization Signals [C]. Proceedings of the Institute of Navigation1999. Nashville: IONGPS1999.1755~1762.
    [48] J W Betz. The Offset Carrier Modulation for GPS Modernization [C]. Proceedings of The Institute ofNavigation’s National Technical Meeting, January1999.639~648.
    [49] J W Betz.Binary Offset Carrier Modulations for Radio navigation [J].Navigation, Journal of Institute ofNavigation. Winter2001,48(4):227~246.
    [50] ALAN V. OPPENHEIM, ALAN S. WILLSKY.著.刘树棠译.信号与系统[M].西安:西安交通大学出版社,2000.10.
    [51]樊昌信,张甫翊.通信原理[M].北京:国防工业出版社,2001.
    [52] B C Barker, et al. Overview of the GPS M Code Signal [C].Proceedings of The Institute of Navigation’sNational Technical Meeting, January2000:542~549.
    [53]徐玮.基于FPGA的BOC调制技术研究[D].西安:西安电子科技大学硕士学位论文,2007.1.
    [54]张鑫.基于FPGA的GNSS导航信号基带调制与控制技术研究[D].西安:西安电子科技大学硕士学位论文,2011.3.
    [55]祁永强.基于新特性卫星导航信号的跟踪方法研究[D].沈阳:沈阳理工大学硕士学位论文,2010.3.
    [56]刘松林. BOC调制扩频信号同步技术研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2008.2.
    [57]高辉. BOC调制信号同步算法的研究及其FPGA实现[D].哈尔滨:哈尔滨工程大学硕士学位论文,2009.3.
    [58]王强.多GNSS信号体制的数字中频信号模拟器设计及试验验证[D].北京:北京航空航天大学硕士学位论文,2007.12.
    [59] PRATT AN R, CONSULTANTS O, OWEN J I R. BOC Modulation Waveforms [C]. Proceedings of theION GPS/GNSS2003, F, September2003.
    [60] REBEYROL E, MACABIAU C. BOC Power Spectrum Densities [C]. Proceedings of the2005NationalTechnical Meeting of the Institute of Navigation, F, January2005.
    [61] Maurizio Fantino, Paolo Mulassano, Fabio Dovis, Letizia Lo Presti. Performance of the ProposedGALILEO CBOC Modulation in Heavy Multipath Environment [J]. Springer Science and BusinessMedia, LLC.2007.
    [62] J Avila-Rodriguez, S Wallner, GW Hein, E Rebeyrol. CBOC-An implementation of MBOC [C]. CNESWorkshop on GALILEO Signal Processing.2006.
    [63]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.10.
    [64] Irsigler M, Eissfeller B. Comparison of multipath mitigation techniques with consideration of futuresignal structures [C]. ION GPS/GNSS2003,9-12September2003, Portland, OR.2584~2592.
    [65] B.W.Parkinson, J.J.Spliker Jr. Ed. Global Positioning System: Theory and Application, vol.I [M].Cambrige, MA: American Insitute of Aeronautics and Astronautics. Inc.1996.
    [66]同济大学数学教研室.高等数学(第四版上、下册)[M].北京:高等教育出版社,2001.6.
    [67]《数学手册》编写组.数学手册[M].北京:高等教育出版社,2011.12.
    [68]王剑.低轨卫星移动通信的信道模型研究及硬件实现[D].成都:电子科技大学硕士学位论文,2004.3.
    [69]宋艳玉.卫星移动通信系统多径衰落信道传输特性的研究[D].长春:吉林大学硕士学位论文,2005.6.
    [70]李玮.卫星移动通信信道模型研究及基带仿真实现[D].成都:电子科技大学硕士学位论文,2003.1.
    [71] AXEL JAHN, HERMANN BISCHL. Channel Characterisation for Spread Spectrum SatelliteCommunications [C]. Proceedings of the IEEE4th International Symposium on, F, Sep1996.1221~1226.
    [72] Zaimin He, Yonghui Hu, Jianfeng Wu, Jigang Wang, etc. A comprehensive method for multipathperformance analysis of GNSS navigation signals [C].2011IEEE International Conference on SignalProcessing, Communications and Computing, ICSPCC2011.
    [73] BETZ, JOHN W, GOLDSTEIN, et al. Candidate Designs for an Additional Civil Signal in GPS SpectralBands [J].2002.
    [74] GARY A. MCGRAW, BRAASCH M S. GNSS Multipath Mitigation Using Gated and High ResolutionCorrelator Concepts [C]. proceedings of the Proceedings of the1999National Technical Meeting of TheInstitute of Navigation, San Diego, F, January,1999.25~27.
    [75] LIONEL GARIN, ROUSSEAU J-M. Enhanced Strobe Correlator Mutipath Rejection for Code&Carrier [C]; proceedings of the10th International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GPS1997), Kansas, Fall,1997.
    [76] JASON JONES, PAT FENTON, SMITH B. Theory and Performance of the Pulse Aperture Correlator[J]. June.2004.
    [77]巴晓辉,刘海洋,郑睿,陈杰.一种有效的GNSS接收机载噪比估计方法[J].武汉大学学报(信息科学版),2011,36(4):457~466.
    [78]胡永辉,华宇,侯雷,魏敬法,武建锋. CAPS接收机的设计与实现[J].中国科学G辑:物理学力学天文学,2008,38(12):1786~1801.
    [79]王清安.以基本概念确定天线的噪声温度[J].电信快报,1992.5:12~15.
    [80]张凤林.宽波束天线噪声温度的计算[J].遥测遥控,2004.9:14~17.
    [81]天津609电缆说明手册-射频电缆主要电性能计算公式[EB/01].http://www.609.cn/showme.asp?newsname=电性能计算公式.
    [82]热噪声基本知识[EB/01]. http://read.pudn.com/downloads128/doc/543125.
    [83]刘霄.基于光电测量的光接收系统的应用[D].长春:吉林大学硕士学位论文,2007.6.
    [84]张明金,肖亚杰,张江伟. GPS接收天线的灵敏度分析与优化设计[J].科协论坛,2009,12(下):95~96.
    [85]江衍煊,陈宏,陈福金,张诗永.基于灵敏度设计GPS接收机[J].船海工程,2010,39(3):155~158.
    [86]施浒立,孙希延,李志刚.转发式卫星导航原理[M].北京:科学出版社,2009.10.
    [87]崔君霞,施浒立,陈吉斌,裴军. CAPS导航通信系统的传输链路[J].中国科学G辑:物理学力学天文学,2008,38(12):1648~1659.
    [88] BORIO D. A Statistical Theory for GNSS Signal Acquisition [D]. Coordinato redel corso di dottorato,2008.
    [89]吴华兵. GNSS P码直捕算法研究与实现[D].北京:中国科学院研究生院硕士学位论文(国家授时中心).2011.6.
    [90] HOGENAUER E. An economical class of digital filters for decimation and interpolation [J]. Acoustics,Speech and Signal Processing, IEEE Transactions, April1981,29(2):155~162.
    [91] DOLECEK G J. An Economical Class of Droop-Compensated Generalized Comb Filters: Analysis andDesign [J]. Circuits and Systems II: Express Briefs, IEEE Transactions on, April2010,54(4):275~279.
    [92] G. J. Dolecek and F. Harris. Design of wideband compensator filter for a digital IF receiver[J]. Dig.Signal Process, September2009,19(5):827~837.
    [93]李冰,郑瑾,葛临东.基于多相结构和部分锐化的CIC抽取滤波器[D].电子与信息学报,2007,29(4):1005~1008.
    [94] M. Laddomada. Generalized comb decimation filters for ΣΔ A/D converters: Analysis and design[J].IEEE Trans. Circuits Syst. I, Reg. Papers, May2007,54(5):994~1005.
    [95] Alan Y. Kwentus, Zhongnong Jiang, and Alan N. Wilson, Jr. Application of filter sharpening to cascadedintegrator-comb decimation filters [J]. IEEE Transactions on Signal Processing,1997,45(2):457~467.
    [96] A. Fernandez Vazquez and G. J. Dolecek. A general method to design GCF compensation filter[J]. IEEETrans. Circuits Syst. II, Exp. Briefs, May2009,56(5):409~413.
    [97] DOLECEK G J. Simple Method for Compensation of CIC Decimation Filter [J]. Electronics Letters,September2008,44(19):1162~1163.
    [98] Zaimin He, Yonghui Hu, Kang Wang, Jianfeng Wu, etc. A Novel CIC Decimation Filter for GNSSReceiver Based on Software Defined Radio[C].7th International Conference on WirelessCommunications, Networking and Mobile Computing, WiCOM2011.
    [99] BLUNT P. Advanced Global Navigation Satellite System Recevier Design [D]. University of Surrey,February2007.
    [100]张旭冰. WCDMA终端射频电路设计[D].济南:山东大学硕士学位论文,2007.9.
    [101]何在民,胡永辉,侯娟,王康,王继刚.子载波相位与BOC信号功率谱密度的关系研究[J].时间频率学报,2011.34(1):34~40.
    [102] J. Spilker and R. Orr. Code Multiplexing via Majority Logic for GPS Modernization[C].Proceedings of the ION International Technical Meeting, September1998.
    [103] FAN T. Study of signal combining methodologies for future GPS flexible navigation payload (PartII)[C]. Position, Location and Navigation Symposium, IEEE/ION. May2008.1078~1089.
    [104] DAFESH P A. Quadrature product subcarrier modulation (QPSM)[J]. Aerospace Conference,IEEE.1999.175~182.
    [105]杨健. GNSS新型导航信号的设计与仿真[D].成都:电子科技大学硕士学位论文,2011.5.
    [106]吴勇敢,刘亚欢,李国通,余超.导航信号生成互复用技术研究[J].宇航学报,2011,32(7):1457~1461.
    [107]吴勇敢,刘亚欢,程成,李国通,帅涛.高功率放大器和带宽对恒包络导航信号的影响分析[J].遥测遥控,2011,32(3):14~20.
    [108] BUTMAN S. Interplex--An Efficient Multichannel PSK/PM Telemetry System [J].Communications, IEEE Transactions, Jun1972,20(3):415~419.
    [109] United States Patent6,430,213. Coherent Adaptive Subcarrier Modulation Method [P].Inventors:Philip A. Dafesh (Los Angeles, CA), Assignee: The Aerospace Corporation, El Segundo, CA (US) App.No.9/318,561Filed: May26,1999.
    [110] G. H. Wang, V. S. Lin, T. Fan, K. P. Maine, P. A. Dafesh, and2Lt B. Myers. Study of SignalCombining Methodologies for GPS III’s Flexible Navigation Payload [C]. Proceedings of ION GPS2004, September2004.
    [111] ICD-GPS-200.GIOVE-A+B (#102) Navigation Signal-in-space Interfaces Control Document[S].August2008.
    [112] Emilie Rebeyrol, Olivier Julien, Christophe Macabiau, Lionel Ries, Antoine Delatour, LaurentLestarquit. GALILEO civil signal modulations [C]. Proceedings of GPS Solution2007.159~171.
    [113] United States Patent7,154,962. Methods and apparatus for generating a constant-envelopecomposite transmission signal [P]. Inventors: Cangiani; Gene L.(Parsippany, NJ), Orr; Richard S.(Montgomery Village, MD), Nguyen; Charles Q.(Parsippany, NJ), Assignee: ITT ManufacturingEnterprises, Inc.(Wilmington, DE), Appl. No.:09/963,669, Filed: September27,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700