用户名: 密码: 验证码:
磁层顶位形的全球磁流体力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用全球磁流体力学(MHD)数值模拟结果,对磁层顶随太阳风条件的变化和太阳风通过磁层顶的能量传输进行了定量的研究。地球磁层顶的三维坐标是通过太阳风流线、等离子体的密度和速度以及电流密度共同确定的。我们在以往磁层顶函数的基础上建立了一个可以描述磁层顶全球位形的面函数,并且以此为工具研究了磁层顶随太阳风条件的变化。根据已经得到的磁层顶位形,我们定量计算了太阳风通过磁层顶的能量,把总能量拆分为机械能和电磁能计算垂直进入磁层顶的能量。主要结果有如下四个方面:
     1.我们使用全球MHD模拟数据研究了磁层顶位形和太阳风条件的关系。我们利用太阳风流线方法确定磁层顶,然后用一个简单的面函数拟合。建立的模型可以用来描述磁倾角ψ=0并且IMF BX和BY=0时的全球磁层顶位形。我们把本文模型的结果和经验模型比较,结果符合很好。本文模型的结果显示IMF BZ主要影响张角(磁层顶形状),对磁层顶大小影响不大。相反的,太阳风动压PD主要影响日下点距离(磁层顶大小),对磁层顶形状影响不大。
     2.我们使用全球MHD模拟数据研究磁倾角ψ对磁层顶位形的影响。我们用太阳风流线和电流密度判断磁层顶,并且用一个包含十个位形参数的三维面函数拟合,可以描述磁层顶南北不对称性和旋转不对称性以及极尖区的位形。我们分析了磁倾角ψ对磁层顶的影响,发现磁倾角ψ基本不影响赤道面磁层顶,主要影响磁层顶南北不对称性和旋转不对称性以及极尖区的位形。这些结果和三个来自卫星观测数据的常用经验模型结果基本一致。
     3.我们使用全球MHD模拟数据研究IMF BY, BZ对磁层顶位形的影响。我们利用等离子体密度和速度判断磁层顶日下点,电流密度判断极尖区,太阳风流线和电流密度判断其他区域,将前面已经建立的三维面函数引入一个描述磁层顶的拉伸方向的位形参数,可以描述磁层顶旋转不对称性和偏转角以及极尖区的位形。我们分析了磁层顶位形参数随IMF BY, BZ的变化,发现磁层顶偏转角主要受IMF时钟角的影响,IMF增大时磁层顶拉伸程度也增大。南向IMF BZ的影响大于北向IMF BZ,而IMF BY的影响小于IMF BZ。
     4.磁层顶能量传输大小与行星际磁场(IMF)和太阳风密度关系密切。北向IMF时,磁重联和粘性相互作用对磁层顶能量输入共同起作用,而在南向IMF时,磁重联则起了主要作用。在IMF北向时,由于极尖区后方尾瓣上的磁重联,极尖区附近有较强的机械能和电磁能有输入。磁层顶附近等离子体在向磁尾流动过程中,由于磁尾赤道面附近的行星际磁场被拖拽强烈,等离子体会在磁尾高纬度进入磁层内边界,并向低纬度转向,结果在磁尾赤道面附近堆积,少部分进入磁尾中性片两翼,大部分流出磁层顶,导致当地的等离子体温度变冷、密度变大。IMF为南向时,电磁能在近磁尾高纬度区输入最大,低纬度地区输入最小,机械能在主要在磁重联附近的向阳侧赤道面输入。当太阳风密度增大时候,北向行星际磁场条件下电磁能输入变化甚微,机械能输入增大;南向行星际磁场条件下电磁能输入略有增加,机械能输入增加明显。当太阳风磁场强度增加时候,北向行星际磁场条件下电磁能增加,机械能输入基本不变,南向行星际磁场条件下电磁能输入增加,较北向增加的更明显。在动压为3nPa,IMF为5nT条件下,IMF北向时,冲击到磁层顶的太阳风能量约有1.7%进入磁层,而南向IMF则增大为4.3%,若把电磁能输入等效于此重联率,综合我们考虑的条件,北向IMF时磁场重联率大约是南向的20%。
A three-dimensional adaptive magnetohydrodynamic (MHD) model is used to examinethe relation of the solar wind and the magnetopause size and shape as well as the energy flowfrom the solar wind to the magnetosphere. The magnetopause is identified with the plasmavelocity and density, the current density, and the solar wind streamlines. A three-dimensionalsurface function is constructed based on empirical model which allow description of theglobal magnetopause size and shape as well as the cusp geometry, and then study thevariation of the magnetopause changing with the solar wind. With the magnetopause wedirectly compute fluxes of mechanical and electromagnetic energy across the magnetopausesurface. The main interesting results in this thesis are as follows:
     1. The numerical results from a physics‐based global magnetohydrodynamic (MHD)model are used to examine the relationship between the shape and size of themagnetopause and the solar wind conditions. The magnetopause location isidentified by tracing three‐dimensional streamlines through the simulation domainand is fitted by simple analytical functions. The resulting model is applicable forapproximating magnetopause location for dipole tilt angle~0°and interplanetarymagnetic field (IMF) BXand BY=0nT at both low and high magnetosphericlatitudes. In both regions the results are compared with available empirical models.It is shown that IMF BZmainly affects the flaring angle (the magnetopause shape)and has smaller effects on the magnetopause size. In contrast, the solar wind PDmainly affects the magnetopause standoff distance (magnetopause size) and haslittle effect on the magnetopause shape. Both conclusions are consistent withempirical models.
     2. Numerical results from a physics-based global magnetohydrodynamic (MHD)model are used to examine the effect of the dipole tilt angle (ψ) on the location andshape of the magnetopause. Identification of the magnetopause location in thesimulation domain is automated using criteria based on the current density and theshape of the streamlines. These data are fitted with a three-dimensional surface controlled by10configuration parameters which allow description of the cuspgeometry as well as the asymmetry in the Z direction and the azimuthal asymmetryof the magnetopause. Effects of dipole tilt angle on the configuration parameters areanalyzed from a series of simulations for southward IMF and different dipole tiltangle values. It is found that dipole tilt angle has little impact on the equatorialmagnetopause but significantly affects the cusp locations and the degree ofasymmetry between the Northern and Southern hemispheres and theequatorial/meridional plane. The results are shown to be consistent with threefrequently used empirical models derived from satellite observations.
     3. Numerical results from a physics-based global magnetohydrodynamic (MHD)model are used to investigate the controlling effects of the interplanetary magneticfield (IMF) components, BYand BZ, on the location and shape of the magnetopause.The subsolar magnetopause is identified by using the plasma velocity and density,the cusp by using the current density, and the other area by streamlines and thecurrent density. These data are fitted with a three dimensional surface functionconstructed by Liu et al.[2012], which allows description of the cusp geometry aswell as the Z asymetry and azimuthal asymmetry of the magnetopause. A newparameter is introduced to describe the orientation of the elliptical cross-section ofthe magnetopause which depends on the IMF BY. Effects of IMF BYand BZon themagnetopause configuration parameters are analyzed and dependence of themagnetopause parameters in the IMF components are obtained. Magnetopausecross-section is found to be largely controlled by the IMF clock angle. Increasing BZor BYincreases the eccentricity of the magnetopause cross-section, and this effect islarger for southward IMF than for the northward IMF. Also, the stretching effect ofBYis smaller than that of BZ.
     4. For northward IMF most of the energy flux inflow occurs near the polar cusps onmagnetopause. Some plasma enters into plasma sheet, generating cooler and denserplasma near the flanks of plasma sheet. For southward IMF the largest electromagnetic energy input into the magnetosphere occurs at the tail lobe behindthe cusps, and largest mechanical energy input occurs at near-equatorial daysidemagnetopause. Under southward IMF conditions, mechanical energy transfer isenhanced at the flanks of magnetopause in response to increased IMF magnitude,while more electromagnetic energy input can be identified as increasing solar winddensity. Our results suggest that the mechanisms proposed to energy transfer aremainly due to reconnection and viscous interaction processes for northward IMF.For southward IMF reconnection is the dominant factor in energy transfer. If theelectromagnetic energy coupling between the solar wind and the magnetosphere canbe interpreted as a proxy for the reconnection efficiency, the average efficiencyduring northward IMF is about20%of that for southward IMF under the solar windconditions we considered.
引文
Akasofu, S.-I.(1981), Energy coupling between the solar wind and the magnetosphere, Space Sci.Rev.,28,121-190.
    Anekallu, C. R.,M. Palmroth, T. I. Pulkkinen, S. E. Haaland, E. Lucek, and I. Dandouras (2011),Energy conversion at the Earth magnetopause using single and multispacecraft methods, J. Geophys. Res.,116, A11204, doi:10.1029/2011JA016783.
    Baker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron (1996),Neutral line model of substorms: Past results and present view, J. Geophys. Res.,101(A6),12,975-13,010,doi:10.1029/95JA03753.
    Boardsen, S. A., T. E. Eastman, T. Sotirelis, and J. L. Green (2000), An empirical model of the high‐latitude magnetopause, J. Geophys. Res.,105(A10),23,193–23,219.
    Burton, R. K., R. L. McPherron, and C. T. Russell (1975), An Empirical Relationship BetweenInterplanetary Conditions and Dst, J. Geophys. Res.,80(31),4204-4214, doi:10.1029/JA080i031p04204.
    Chao, J. K., D. J. Wu, C.‐H. Lin, Y. H. Yang, X. Y. Wang, M. Kessel, S. H. Chen, and R. P.Lepping (2002), Models for the size and shape of the Earth s magnetopause and bow shock, paperpresented at2000COSPAR Colloquium on Space Weather Study: Using Multi‐Point Techniques,Common Space Res., Wanli, Taipei.
    Choe, J. Y., D. B. Beard, and E. C. Sullivan (1973), Precise calculation of the magnetosphere surfacefor a tilted dipole, Planet. Space Sci.,21(3),485–498.
    Coroniti, F. V., and C. F. Kennel (1972), Changes in magnetospheric configuration during thesubstorm growth phase, J. Geophys. Res.,77,3361–3370, doi:10.1029/JA077i019p03361.
    De Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth (2004), Couplingof a global MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res.,109, A12219,doi:10.1029/2003JA010366.
    Dmitriev, A. V., and A. V. Suvorova (2000), Three-dimensional artificial neural network model of thedayside magnetopause, J. Geophys. Res.,105(A8),18,909, doi:10.1029/2000JA900008.
    Dmitriev, A. V., A. V. Suvorova, and J.-K. Chao (2011), A predictive model of geosynchronousmagnetopause crossings, J. Geophys. Res.,116, A05208, doi:10.1029/2010JA016208.
    Dmitriev A. V., and A. V. Suvorova (2012), Equatorial trench at the magnetopause under saturation, J.Geophys. Res.,117, A08226, doi:10.1029/2012JA017834.
    Dungey, J. W.(1961), The Steady State of the Chapman-Ferraro Problem in Two Dimensions, Phys.Rev. Lett.,6,47.
    Dungey, J.W.(1961), Interplanetary magnetic field and the auroral zones, Physical Review Letters,APS,6,47-48,doi:10.1103/PhysRevLett.647.
    Dungey, J. W.(1963), The structure of the exosphere or adventures in velocity space, in Geophysics,The Earths Environment, edited by C. DeWitt, J. Hieblot, and A. Lebeau, p.503, Gordon and Breach, NewYork.
    Dusik, S., G. Granko, J. SafranKova, and K. Jelinek (2010), IMF cone angle control of themagnetopause location: Statistical study, Geophys. Res. Lett.,37, L19103, doi:10.1029/2010GL044965.
    Feldman, W. C., et al.(1995), Possible conjugate reconnection at the high-latitude magnetopause, J.Geophys. Res.,100(A8),14,913-14,923, doi:
    Fairfield, D. H.(1971), Average and unusual locations of the earth s magnetopause and bow shock, J.Geophys. Res.,76(28),6700–6716.
    Ferraro, V. C. A.(1960), An approximate method of estimating the size and shape of the stationaryhollow carved out in a neutral ionized stream of corpuscles impinging on the geomagnetic field, J.Geophys. Res.,65,3951, doi:10.1029/JZ065i012p03951.
    Formisano, V., V. Domingo, and K.-P.Wenzel (1979), The three-dimensional shape of themagnetopause, Planet. Space Sci.,27,1137.
    Gombosi, T. I., D. L. DeZeeuw, C. P. T. Groth, and K. G. Powell (2000), Magnetosphericconfiguration for Parker‐spiral IMF conditions: Results of a3D AMR MHD simulation, Adv. Space.Res.,26,139–149.
    Hasegawa, H., K. Maezawa, T. Mukai, and Y. Saito (2002a), Plasma entry across the distant tailmagnetopause1. Global properties and IMF dependence, J. Geophys. Res.,107, A5,1063,doi:10.1029/2001JA900139.
    Hasegawa, H., K. Maezawa, T. Mukai, and Y. Saito (2002b), Plasma entry across the distant tailmagnetopause2. Gomparison between MHD theory and observation, J. Geophys. Res.,107, A5,1063,doi:10.1029/2001JA900138.
    Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Reme, A. Balogh, M. W. Dunlop, C. Hashimoto, and R.TanDokoro (2004), Transport of solar wind into Earth’s magnetosphere through rolled upKelvin-Helmholtz vortices, Nature,430,755.
    Heikkila, W. J., and J. D. Winningham (1971), Penetration of magnetosheath plasma to low altitudesthrough the dayside magnetospheric cusps, J. Geophys. Res.,76, A883, doi:10.1029/JA076i004p00883.
    Holzer, R. E., and J. A. Slavin (1978), Magnetic flux transfer associated with expansions andcontractions of the dayside magnetosphere, J. Geophys. Res.,83(A8),3831–3839.
    Howe, H. C., Jr., and J. H. Binsack (1972), Explorer33and35plasma observations of themagnetosheath flow, J. Geophys. Res.,77(19),3334–3344.
    Jelinek, K., Z. Nemecek, and J. Safrankova (2012), A new approach to magnetopause and bow shockmodeling based on automated region identification, J. Geophys. Res.,117, A05208,doi:10.1029/2011JA017252.
    Kabin, K., R. Rankin, R. Marchand, T. I. Gombosi, C. R. Clauer, A. J. Ridley, V. O. Papitashvili, andD. L. De Zeeuw (2003), Dynamic response of Earth s magnetosphere to By reversals, J. Geophys. Res.,108(A3),1132, doi:10.1029/2002JA009480.
    Kabin, K., R. Rankin, G. Rostoker, R. Marchand, I. J. Rae, A. J. Ridley, T. I. Gombosi, C. R. Clauer,and D. L. De Zeeuw,(2004), Open‐closed field line boundary position: A parametric study using anMHD model, J. Geophys. Res.,109, A05222, doi:10.1029/2003JA010168.
    Kalegaev, V. V., and Y. G. Lyutov (2000), The solar wind control of the magnetopause, Adv. SpaceRes.,25(7–8),1489–1492, doi:10.1016/S0273-1177(99)00660-2.
    Kawano, H., S. M. Petrinec, C. T. Russell, and T. Higuchi (1999), Magnetopause shapedeterminations from measured position and estimated flaring angle, J. Geophys. Res.,104(A1),247–261.
    King, J. H., and N. E. Papitashvili (2004), Solar wind spatial scales in and comparisons of hourlyWind and ACE plasma and magnetic field data, J. Geophys. Res.,110, A02209,doi:10.1029/2004JA010804.
    Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake (2011),Extreme Poynting flux in the dayside thermosphere: Examples and statistics, Geophys. Res. Lett.,38,L16102, doi:10.1029/2011GL048302.
    Korth, H., B. Anderson, H. Frey, C. Waters (2005), High-latitude electromagnetic and particle energyflux during an event with sustained strongly northward IMF, Annales geophysicae,23,1295-1310.
    Koskinen, H. E. J., and E. I. Tanskanen (2002), Magnetospheric energy budget and the epsilonparameter, J. Geophys. Res.,107,1415, doi:10.1029/2002JA009283.
    Kuznetsov, S. N., and A. V. Suvorova (1996), Solar wind control of the magnetopause shape andlocation, Radiat. Meas.,26(3),413–415, doi:10.1016/1350-4487(96)00017-0.
    Kuznetsov, S. N., and A. V. Suvorova (1998), An empirical model of the magnetopause for broadranges of solar wind pressure and Bz IMF, in Polar Cap Boundary Phenomena, edited by J. Moen, A.Egeland, and M. Lockwood, p.51, Kluwer Acad., Norwell, Mass.
    Laitinen, T., Janhunen, P., Pulkkinen, T., Palmroth, M., and Koskinen, H.(2006), On thecharacterization of magnetic reconnection in global MHD simulations, Annales geophysicae,24,3059-3069.
    Laitinen, T. V., M. Palmroth, T. I. Pulkkinen, P. Janhunen, and H. E. J. Koskinen (2007), Continuousreconnection line and pressure-dependent energy conversion on the magnetopause in a global MHD model,J. Geophys. Res.,112, A11201, doi:10.1029/2007JA012352.
    Lavraud, B., and J. E. Borovsky (2008), Altered solar wind-magnetosphere interaction at low Machnumbers: Coronal mass ejections, J. Geophys. Res.,113, A00B08, doi:10.1029/2008JA013192.
    Li, W., D. Knipp, J. Lei, and J. Raeder (2011), The relation between dayside local Poynting fluxenhancement and cusp reconnection, J. Geophys. Res.,116, A08301, doi:10.1029/2011JA016566.
    Li, W., J. Raeder, J. Dorelli, M./Oieroset, and T. D. Phan (2005), Plasma sheet formation during longperiod of northward IMF, Geophys. Res. Lett.,32, L12S08, doi:10.1029/2004GL021524.
    Lin, R. L., X. X. Zhang, S. Q. Liu, Y. L. Wang, and J. C. Gong (2010), A three‐dimensionalasymmetric magnetopause model, J. Geophys. Res.,115, A04207, doi:10.1029/2009JA014235.
    Liu, W. W.(2012), Interaction of solar wind pressure pulses with the magnetosphere: IMFmodulation and cavity mode, J. Geophys. Res.,117, A08234, doi:10.1029/2012JA017904.
    Liu, Z.-Q., J. Y. Lu, K. Kabin, Y. F. Yang, M. X. Zhao, X. Cao (2012), Dipole tilt control of themagnetopause for southward IMF from global magnetohydrodynamic simulations, J. Geophys. Res.,117,A07207, doi:10.1029/2011JA017441.
    Lopez, R. E., M. Wiltberger, S. Hernandez, and J. G. Lyon (2004), Solar wind density control ofenergy transfer to the magnetosphere, Geophys. Res. Lett.,31, L08804, doi:10.1029/2003GL018780.
    Lu, G., T. G. Onsager, G. Le, and C. T. Russell (2004), Ion injections and magnetic field oscillationsnear the high-latitude magnetopause associated with solar wind dynamic pressure enhancement, J.Geophys. Res.,109, A06208, doi:10.1029/2003JA010297.
    Lu, J. Y., Z.-Q. Liu, K. Kabin, M. X. Zhao, D. D. Liu, Q. Zhou, and Y. Xiao (2011), Threedimensional shape of the magnetopause: Global MHD results, J. Geophys. Res.,116, A09237,doi:10.1029/2010JA016418. Martyn, D. F.(1951), The theory of magnetic storms and auroras, Nature,167,92–94.
    Lu, J. Y., H. Jing, Z.-Q. Liu, K. Kabin, and Y. Jiang (2012), Energy transfer across the magnetopausefor northward and southward interplanetary magnetic fields, J. Geophys. Res.,118,doi:10.1029/2012JA018336.
    Luhmann, J. G., R. J. Walker, C. T. Russell, N. U. Crooker, J. R. Spreiter, and S. S. Stahara (1984),Patterns of Potential Magnetic Field Merging Sites on the Dayside Magnetopause, J. Geophys. Res.,89(A3),1739-1742, doi:10.1029/JA089iA03p01739.
    Lyon, J.(2000), The solar wind-magnetosphere-ionosphere system Science, American Associationfor the Advancement of Science,288,1987-1991, doi:10.1126/science.288.5473.1987.
    Maezawa, K.(1976), Magnetospheric convection induced by the positive and negative z componentsof the interplanetary magnetic field: Quantitative analysis using polar cap magnetic records, J. Geophys.Res.,81,2289, doi:10.1029/JA081i013p02289.
    Maezawa, K., and T. Hori (1988), The distant magnetotail: Its structure, IMF dependence, andthermal properties, in New perspectives on the Earths magnetotail, Geophys. Monogr. Ser., vol.105, editedby A. Nishida et al., pp.1, AGU, Washington, D. C..
    Martyn, D. F.(1951), The Theory of Magnetic Storms and Auroras, Nature,167,92.
    Mead, G. D., and D. B. Beard (1964), Shape of the geomagnetic field solar wind boundary, J.Geophys. Res.,69(7),1169–1179, doi:10.1029/JZ069i007p01169.
    Mead, G. D., and D. H. Fairfield (1975), A quantitative magnetospheric model derived fromspacecraft magnetometer data, J. Geophys. Res.,80,523–534, doi:10.1029/JA080i004p00523.
    Nemecek, Z, J. Safrankova, A. Koval, J.Merka, and L. Prˇech (2011),MHD analysis of propagation ofan interplanetary shock across magnetospheric boundaries, J. Atmos. Sol.-Terr. Phys.,73(1),20.
    Newell, P. T., and C.-I. Meng (1988), The cusp and the cleft/boundary layer: Low-altitudeidentification and statistical local time variation, J. Geophys. Res.,93,14,549–14,556,doi:10.1029/JA093iA12p14549.
    Newell, P. T., C.-I. Meng, D. G. Sibeck, and R. Lepping (1989), Some low-altitude cuspdependencies on the interplanetary magnetic field, J. Geophys. Res.,94,8921–8927,doi:10.1029/JA094iA07p08921.
    Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solarwind-magnetosphere coupling function inferred from10magnetospheric state variables, J. Geophys. Res.,112, A01206, doi:10.1029/2006JA012015.
    Nykyri, K., and A. Otto (2001), Plasma transport at the magnetospheric boundary due to reconnectionin Kelvin-Helmholtz vortices, Geophys. Res. Lett.,28(18),3565-3568, doi:10.1029/2001GL013239.
    O’Brien, T. P., and R. L. McPherron (2000), An empirical phase space analysis of ring currentdynamics: Solar wind control of injection and decay, J. Geophys. Res.,105(A4),7707-7719,doi:10.1029/1998JA000437.
    ieroset,M., J. Raeder, T. D. Phan, S.Wing, J. P.McFadden,W. Li,M. Fujimoto, H. Rame, and A.Balogh (2005), Global cooling and densification of the plasma sheet during an extended period of purelynorthward IMF on October22-24,2003, Geophys. Res. Lett.,32, L12S07, doi:10.1029/2004GL021523.
    ieroset, M., P. E. Sandholt, W. F. Denig, and S. W. H. Cowley (1997), Northward interplanetarymagnetic field cusp aurora and high-latitude magnetopause reconnection, J. Geophys. Res.,102(A6),11,349-11,362, doi:10.1029/97JA00559.
    Olson, W. P.(1969), The shape of the tilted magnetopause, J. Geophys. Res.,74,5642–5651.
    Palmroth, M., P. Janhunen, T. I. Pulkkinen, and W. K. Peterson (2001), Cusp and magnetopauselocations in global MHD simulation, J. Geophys. Res.,106(A12),29,435–29,450,doi:10.1029/2001JA900132.
    Palmroth, M., T. I. Pulkkinen, P. Janhunen, and C.‐C. Wu (2003), Stormtime energy transfer inglobal MHD simulation, J. Geophys. Res.,108(A1),1048, doi:10.1029/2002JA009446.
    Palmroth, M., Laitinen, T., and Pulkkinen, T.(2006), Magnetopause energy and mass transfer: resultsfrom a global MHD
    Palmroth, M., T. V. Laitinen, C. R. Anekallu, T. I. Pulkkinen, M. Dunlop, E. A. Lucek, and I.Dandouras (2011), Spatial dependence of magnetopause energy transfer: Cluster measurements verifyingglobal simulations, Ann. Geophys.,29,823-838.
    Petrinec, S. M., and C. T. Russell (1993), An empirical model of the size and shape of the near‐Earth magnetotail, Geophys. Res. Lett.,20(23),2695–2698.
    Petrinec, S. M., and C. T. Russell (1996), Near‐Earth magnetotail shape and size as determined fromthe magnetopause flaring angle, J. Geophys. Res.,101(A1),137–152.
    Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw (1999), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys.,154,284–309.
    Pudovkin, M. I., V. S. Semenov, M. F. Heyn, and H. K. Biernat (1986), Implications of theStagnation Line Model for energy input through the dayside magnetopause, Geophys. Res. Lett.,13(3),213-216, doi:10.1029/GL013i003p00213.
    Rae, I. J., et al.(2010), Comparison of the open‐closed separatrix in a global magnetosphericsimulation with observations: The role of the ring current, J. Geophys. Res.,115, A08216,doi:10.1029/2009JA015068.
    Ridley, A. J., K. C. Hansen, G. Tóth, D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell (2002),University of MichiganMHDresults of the Geospace Global Circulation Model metrics challenge, J.Geophys. Res.,107(A10),1290, doi:10.1029/2001JA000253.
    Roelof, E. C., and D. G. Sibeck (1993), Magnetopause shape as a bivariate function of interplanetarymagnetic field Bz and solar wind dynamic pressure, J. Geophys. Res.,98(A12),21,421–21,450.
    Rosenqvist, L., S. Buchert, H. Opgenoorth, A. Vaivads, and G. Lu (2006), Magnetospheric energybudget during huge geomagnetic activity using Cluster and ground-based data, J. Geophys. Res.,111,A10211, doi:10.1029/2006JA011608.
    Rosenqvist, L., H. J. Opgenoorth, L. Rastaetter, A. Vaivads, and I. Dandouras (2008), Comparison oflocal energy conversion estimates from Cluster with global MHD simulations, Geophys. Res. Lett.,35,L21104, doi:10.1029/2008GL035854.
    Russell, C. T.(1972), The configuration of the magnetosphere, in Critical problems ofmagnetospheric physics, edited by E. R. Dyer, p.1, IUCSTP, Nat Acad..
    Roelof, E. C., and D. G. Sibeck (1993),Magnetopause shape as a bivariate function of interplanetarymagnetic field Bz and solar wind dynamic pressure, J. Geophys.Res.,98(A12),21421,doi:10.1029/93JA02362.
    afránková, J.,. Du ík, and Z. Něme ek (2005), The shape and location of the high‐latitudemagnetopause, Adv. Space Res.,36(10),1934–1939.
    Schield, M. A.(1969), Pressure balance between solar wind and magnetosphere, J. Geophys. Res.,74(5),1275–1286.
    Shepherd, S. G., R. A. Greenwald, and J. M. Ruohoniemi (2002), Cross polar cap potentials measuredwith Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic fieldconditions, J. Geophys. Res.,107,1094, doi:10.1029/2001JA000152.
    Shi, Q. Q., et al.(2009), Cluster observations of the entry layer equatorward of the cusp undernorthward interplanetary magnetic field, J. Geophys. Res.,114, A12219, doi:10.1029/2009JA014475.
    Shue, J. H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. Singer (1997), A newfunctional form to study the solar wind control of magnetopause size and location, J. Geophys. Res.,102(A5),9497–9511.
    Shue, J. H., et al.(1998), Magnetopause location under extreme solar wind conditions, J. GeophysRes.,103(A8),17,691–17,700.
    Sibeck,485D. G., J. A. Slavin, E. J. Smith, and B. T. Tsurutani (1986), Twisting of the geomagnetictail, in Solar Wind-Magnetosphere Coupling, p.731, Terra Sci., Tokyo.
    Sibeck, D. G., R. E. Lopez, and E. C. Roelof (1991), Solar wind control of the magnetopause shape,location, and motion, J. Geophys. Res.,96(A4),5489–5495.
    Smith, M. F., and M. Lockwood (1996), Earth’s magnetospheric cusps, Rev. Geophys.,34,233.
    Song, P., and C. T. Russell (1992),Model of the Formation of the Low-Latitude Boundary Layer forStrongly Northward Interplanetary Magnetic Field, J. Geophys. Res.,97(A2),1411-1420,doi:10.1029/91JA02377.
    Song, P., D. L. DeZeeuw, T. I. Gombosi, C. P. T. Groth, and K. G. Powell (1999), A numerical studyof solar wind‐magnetosphere interaction for northward interplanetary magnetic field, J. Geophys. Res.,104(A12),28,361–28,378.
    Sotirelis, T., and C.-I. Meng (1999), Magnetopause from pressure balance, J. Geophys. Res.,104(A4),6889–6898, doi:10.1029/1998JA900119.
    Spreiter, J. R., and B. R. Briggs (1962), Theoretical determination of the form of the boundary of thesolar corpuscular stream produced by interaction with the magnetic dipole field of the Earth, J. Geophys.Res.,67(1),37–51, doi:10.1029/JZ067i001p00037.
    Spreiter, J. R., A. Y. Alksne, and B. Abraham‐Shrauner (1966), Theoretical proton velocitydistributions in the flow around the magnetosphere, Planet. Space Sci.,14,1207–1220.
    Spreiter, J. R., A. Y. Alksne, and A. L. Summers (1968), External acrodynamics of themagnetosphere, in Physics of the Magnetosphere, edited by R. L. Carovillano, J. F. McClay, and H. R.Radoski, pp.301–375, D. Reidel, Hingham, Mass.
    Suvorova, A. V., A. V. Dmitriev, J.-K. Chao, M. Thomsen, and Y.-H. Yang (2005), Necessaryconditions for the geosynchronous magnetopause crossings, J. Geophys. Res.,110, A01206,doi:10.1029/2003JA010079.
    Tanskanen, E., T. I. Pulkkinen, H. E. J. Koskinen, and J. A. Slavin (2002), Substorm energy budgetduring low and high solar activity:1997and1999compared, J. Geophys. Res.,107,1086,doi:10.1029/2001JA900153.
    Terasawa, T., etal.(1997), Solar wind control of density and temperature in the near-Earth plasmasheet: WIND/Geotail collaboration, Geophys. Res. Lett.,24,935.
    Tsyganenko, N. A., and T.Mukai (2003), Tail plasma sheet models derived fromGeotail particle data,J. Geophys. Res.,108,1136, doi:10.1029/2002JA009707.
    Toffoletto, F., S. Sazykin, R. Spiro, and R. Wolf (2003), Inner magnetospheric modeling with theRice Convection Model, Space Sci. Rev.,107,175–196.
    Tóth, G., et al.(2005), Space Weather Modelling Framework: A new tool for the space sciencecommunity, J. Geophys. Res.,110, A12226, doi:10.1029/2005JA011126.
    To′th, G., D. L. De Zeeuw, T. I. Gombosi, W. B. Manchester, A. J. Ridley, I. V. Sokolov, and I. I.Roussev (2007), Sun-to-thermosphere simulation of the28-30October2003storm with the Space WeatherModeling Framework, Space Weather,5, S06003, doi:10.1029/2006SW000272.
    Tsyganenko, N. A.(1996), Effects of the solar wind conditions on the global magnetosphericconfiguration as deduced from data-based field models, in Proceedings of the Third InternationalConference on Substorms (ICS-3), Eur. Space Agency Spec.Publ., ESA SP-389181–185.
    Tsyganenko, N. A.(1998), Modeling of twisted/warped magnetospheric configurations using thegeneral deformation method, J. Geophys. Res.,103(A10),23,551–23,564, doi:10.1029/98JA02292.
    Verigin, M. I., G. A. Kotova, V. V. Bezrukikh, G. N. Zastenker, and N. Nikolaeva (2009), Analyticalmodel of the near‐Earth magnetopause according to the data of the Prognoz and Interball satellite data,Geomagn. Aeron.,49(8),1176–1181.
    Watanabe M., K. Kabin, G. J. Sofko, R. Rankin, T. I. Gombosi, A. J. Ridley, and C. R. Clauer,(2005),Internal reconnection for northward interplanetary magnetic field, J. Geophys. Res.,110, A06210,doi:10.1029/2004JA010832.
    Welling, D. T., and A. J. Ridley (2010), Validation of SWMF magnetic field and plasma, SpaceWeather,8, S03002, doi:10.1029/2009SW000494.
    Wing, S., and P. T. Newell (2002),2D plasma sheet ion density and temperature profiles fornorthward and southward IMF, Geophys. Res. Lett.,29(9),1307, doi:10.1029/2001GL013950.
    Wu, C. C.(1984), The effects of dipole tilt on the structure of the magnetosphere, J. Geophys. Res.,89,11,048–11,052, doi:10.1029/JA089iA12p11048.
    Yang, Y.‐H., J. K. Chao, C.‐H. Lin, J.‐H. Shue, X. Y. Wang, P. Song, C. T. Russell, R. P.Lepping, and A. J. Lazarus (2002), Comparison of three magnetopause prediction models under extremesolar wind conditions, J. Geophys. Res.,107(A1),1008, doi:10.1029/2001JA000079.
    Zhang, J., et al.(2007), Understanding storm‐time ring current development through data‐modelcomparisons of a moderate storm, J. Geophys. Res.,112, A04208, doi:10.1029/2006JA011846.
    Zhou, X. W., and C. T. Russell (1997), The location of the high-latitude polar cusp and the shape ofthe surrounding magnetopause, J. Geophys. Res.,102(A1),105–110, doi:10.1029/96JA02702.
    Zhou, X. W., C. T. Russell, G. Le, S. A. Fuselier, and J. D. Scudder (1999), The polar cusp location
    and its dependence on dipole tilt, Geophys. Res. Lett.,26(3),429–432, doi:10.1029/1998GL900312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700