用户名: 密码: 验证码:
高精度K频段星间微波测距技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球重力场的精确测量对大地测量、地球物理、地球动力学和海洋学等学科的发展具有极其重要的意义。利用卫星对地球重力场进行测量具有划时代的意义,是当今大地测量领域的研究前沿和关注热点之一。国际上卫星重力场测量主要有三种模式,即高低卫卫跟踪(SST-h1,如CHAMP卫星);低低卫卫跟踪(SST-11,如GRACE卫星);卫星重力场梯度测量(如GOCE卫星)。其中低低卫卫跟踪技术是地球重力场测量最有价值和应用前景的方法之一。
     低低卫卫跟踪重力场测量卫星包括三大有效载荷,即高精度加速度计、双频GPS接收机、高精度K频段星间测距系统(KBR,K Band Ranging System)。其中高精度加速度计、双频GPS接收机,国家在计划中已经投入了大量财力和人力进行预研,取得了一定的成果,而KBR系统的研究因为各种原因仍处于研究阶段。KBR系统所需达到的微米量级测量精度使其成为测距技术的制高点,美国用了20多年时间才研制成功,目前处于高度保密状态。由于系统非常复杂、技术难点多,在我国KBR系统还没有成熟产品。因此,能否研制出星间高精度KBR系统是我国重力场测量卫星能否成功的瓶颈之一。在KBR系统中,作为频率基准的超稳晶振(USO,Ultra-stable oscillators)的技术性能对系统测量精度的影响至关重要,当前国内的技术水平与应用要求相比差距还很大,需要重点攻关突破。
     本文在研究国内外有关卫卫跟踪(SST,Satellite-to-satellite tracking)技术的基础上,针对现实需要,对用于我国重力场测量卫星的KBR系统方案进行了研究,并提出了关键技术,对关键技术之一——USO进行了深入研究,研制出了满足我国重力场测量卫星使用的USO。本文所研究的主要内容和相关结论如下:
     1.介绍了卫星重力场测量的基本原理及主要方法。讨论分析了国际上现有的三种重力场测量卫星工作模式的特点,阐述了采用低低卫卫跟踪模式的原因及优点。
     2.深入研究了星间双单路微波测距原理,提出了一种用于我国重力场测量卫星的KBR系统设计方案,描述了KBR系统的主要结构,详细分析研究了KBR系统需要突破的七项关键技术,初步提出了各项关键技术的攻关途径;
     3.对影响KBR系统精度的各种误差来源进行了深入地分析,建立了误差仿真模型,并对各单项误差和系统总体误差进行了初步估算;
     4.介绍了星载双频GPS接收机的发展过程,分析了星载双频GPS接收机的关键技术及系统设计要点,对GPS接收机和KBR系统一体化设计平台进行了分析;
     5.在着重分析影响USO频率稳定度,特别是短期频率稳定度的各种因素的基础上,对超稳晶振的主要组成部分石英谐振器、振荡电路、恒温控制系统进行了优化设计,研制成功的USO短期频率稳定度指标达到5×10~(-13)/s(阿伦方差),满足使用要求;
     6.对KBR系统低频倍频链路进行了研究,研制了用于KBR的八倍频器电路,经过测试,性能满足使用要求。
     本文的主要创新点为:
     1.在分析微波测距理论的基础上,提出了我国用于重力场测量卫星的KBR系统设计方案,该方案在全国重力场测量研讨会上得到了专家的认可。对需要突破的关键技术进行了研究和分析;
     2.对关键技术之一——USO进行深入研究,成功研制出满足我国KBR系统需求的USO和八倍频器,USO短期稳定度指标达到5×10~(-13)/s(阿伦方差),远远超过了国内KBR系统研制初期提出的技术指标要求2×10~(-12)/s(阿伦方差),达到国内领先水平。
     本文所作的KBR系统基础理论分析及关键技术之一——USO研究,促进了我国KBR系统自主研发进程。KBR关键技术的突破,不仅有利于我国重力场测量卫星的发展,同时对卫星编队飞行、卫星自主导航以及复杂系统设计、高稳定基准频率源、高精度测相等相关技术领域的发展都有深远的影响。
The accurate determination of gravity field is essential to a variety of geophysical applications, including geodesy, geophysics, geodynamics and oceanographic. Among many methods to measure the Earth's gravity field, the use of satellite date has become critically important. At present, there are 3 models in gravity field measurement: high-low satellite-to-satellite tracking (SST-hl, such as CHAMP satellite), low-low satellite-to-satellite tracking (SST-ll, such as GRACE satellite) and satellite gravity gradiometry (SGG, such as GOCE satellite). And among them, the SST-11 is one of the most promising and valuable methods in measurement of gravity field.
     The SST-11 of gravity field measurement consists of 3 payloads: High Accuracy Accelerometer, Dual-frequency GPS Receiver, High Accuracy KBR System (K Band Ranging System). For High Accuracy Accelerometer and Dual-frequency GPS Receiver, China has put a lot of financial and human resources in the preliminary research, and achieved certain results. Due to various reasons, the research of KBR System is still in the initial stage. KBR System requires micron level measurement accuracy, which pushes it to the commanding height of ranging technology. The United States spent 20 years before the successful development of KBR System, which is now classified as high secret. KBR System is very complex and technically difficult, and there isn't mature product in our country yet. Accordingly, the development of high accuracy KBR System is the bottleneck of our country's gravity field measurement. In the KBR System, as the frequency base, the USO (Ultra-stable oscillators) 's technical performance is essential to the system's measurement accuracy, and the technical level lags greatly behind the application requirements in our country in this area.
     Based on domestic and international studies on SST, the paper did research on our country's KBR System concept on gravity field measurement, and conducted in-depth research on one of the key technologies-USO. The main research contents and related conclusions are as follows:
     1. Introducing the theory and major methods of satellite gravity field measurement, and makes analysis of the 3 existing methods in the world, and also the reasons and benefits for choosing the SST-11 are analyzed.
     2. Making in-depth study on inter-satellite dual-one-way microwave-ranging theory, and put forwards the KBR System main structure used in the gravity field measurement in China, and makes detailed analysis of 7 key technologies which are needed to get breakthrough, and also provides initial methods to do that.
     3. Making in-depth analysis on various sources of errors affecting the KBR System, and establishes the error simulation model, and makes preliminary estimation on single or general system errors.
     4. Introducing the development of satellite-loaded dual-frequency GPS receiver, of which the key technologies and system's designing methods are analyzed, and also analyzes the integrated platform of GPS receiver and KBR System.
     5. Making optimized design of USO's critical components, including quartz crystal, oscillator circuit and constant temperature control system, on the basis of analysis on the factors affecting USO frequency stability. The successfully developed short-term frequency USO stability indicators have reached 5×10~(-13) / s (Allan deviations).
     6. Making study on the KBR system's frequency multiplier circuit, and having developed 8 multiplier circuit used for KBR, and the results of test indicate that the requirements of the performance are met.
     The key innovative points of this paper are as follow:
     1. On the basis of Microwave-ranging theory analysis, the paper put forward the KBR System designing proposal for China's gravity field measurement, and this proposal has been approved by related experts.
     2. Making in-depth research on one of the key technologies-USO, and successfully developed the USO and the 8 frequency multiplier, and USO short-term stability indicators reached 5×10~(-13) / s(Allan deviations), exceeding China's requirement of 2×10~(-12) /s(Allan deviations).
     The key KBS System breakthroughs achieved in this paper are not only conducive to gravity field measurement satellite development in our country, but also have far-reaching influence on the satellite formation flying, satellite autonomous navigation, complex system design, high-stability frequency reference source, as well as high-precision measurement and related studies.
引文
[1]宁津生,刘经南,陈俊勇,陶本藻等.现代大地测量理论与技术[M].武汉:武汉大学出版社,2006.
    [2]许厚泽.重力测量技术及重力学研究进展[J].地理空间信息,2003,1(3):3-4.
    [3]罗佳.利用卫星跟踪卫星确定地球重力场的理论和方法[D].武汉:武汉大学,2003.
    [4]宁津生.卫星重力探测技术与地球重力场研究[J].大地测量与地球动力学,2002,22(1):1-5.
    [5]许厚泽.卫星重力研究-21世纪大地测量研究的新热点[J].测绘科学,2001,26(3):1-3.
    [6]陈俊勇,魏子卿,胡建国,杨元喜,李建成,朱耀仲等.迈入新千年的大地测量学[J].测绘学报,2000,29(1):1-11.
    [7]许厚泽,周旭华,彭碧波.卫星重力测量[J].地理空间信息,2005,3(1):1-3.
    [8]王正涛.卫星跟踪卫星测量确定地球重力场的理论与方法[D].武汉:武汉大学,2005.
    [9]Baker R M L.Orbit Determination From Range And Range-rate Data[C].Semi-Annual Meeting of the American Rocket Society.Los Angeles:ARS Preprint,1960,1220-1260.
    [10]Wolff M.Direct Measurements of the Earth's Gravitational Potential Using a satellite Pair[J].Journal of Geophysical Research,1969,74(22):5295-5300.
    [11]Tapley B D,Bettadpur S,Watkins M,Reigber C.The Gravity Recovery And Climate Experiment:Mission Overview And Early Results[J].Geophys.Res.Lett.,31(9)L09607,2004.
    [12]徐文霞,刘品雄,申振荣,刘经南.重力场测量卫星研究概况[J].航天器工程,2005,14(3):79-85.
    [13]沈云中.应用CHAMP卫星星历精化地球重力场模型的研究[D].武汉:中国科学院测量与地球物理研究所,2000.
    [14]Bertiger W,Bar-Sever Y,Bettadpur S.GRACE:Millimeters and microns in Orbit[C].Proceedings of ION GPS,Portland,Oregon,September 2002.
    [15]Kim J.Simulation Study of a Low-Low Satellite-to-satellite Tracking Mission[D].Austin:The University of Texas at Austin,2000.
    [16]Bertiger W,Dunn C,Harris I.Relative Time and Frequency Alignment between two Low Earth Orbiters:GRACE[C].Proceedings of the 2003 UFFC Conference,Tampa,Florida,May,2003.
    [17]Furun,W.Study on Center of Mass Calibration and K-band Ranging System Calibration of the GRACE Mission[D].Austin:The University of Texas at Austin, 2003.
    [18]李克行,彭冬菊,黄珹等.GOCE卫星重力计划及其应用[J].天文学进展,2005,23(1):29-39.
    [19]宁津生,罗志才.卫星跟踪卫星技术的进展及应用前景[J].测绘科学,2000,25(4):1-4.
    [20]Sharma J.Precise Determination of the Geopotential with a Low-Low Satellite-to-Satellite Tracking Mission[D].Austin:The University of Texas at Austin,1995.
    [21]Kaula W.M.Theory of Satellite Geodesy[M].Waltham-London:Blaisdell publishing Company,1966.
    [22]宁津生,李建成,罗志才等.我国地球重力场研究的进展[J].东北测绘,2002,25(4):6-9.
    [23]周旭华,吴斌,许厚泽等.数值模拟估算低低卫-卫跟踪观测技术反演地球重力场的空间分辨率[J].地球物理学报,2005,48(2):282-287.
    [24]唐富荣,薛大同,达道安.低低卫-卫跟踪重力测量物理模型及部分姿轨控技术需求[J].宇航学报,2004,25(5):531-534
    [25]沈云中,许厚泽,吴斌.星间加速度解算模式的模拟与分析[J].地球物理学报,2005,48(4):807-811.
    [26]佘世刚,王锴,周毅,申健,吴国富,黄欹昌.高精度星间微波测距技术[J].宇航学报,2006,27(3):85-89.
    [1]郭俊义.地球物理学基础[M].北京:测绘出版社,2001.
    [2]管泽霖,许厚泽等.地球形状及外部重力场(上、下)[M].北京:测绘出版社,1981.
    [3]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社,1992.
    [4]张传定.卫星重力测量—基础、模型化方法与数据处理算法[D].郑州:解放军信息工程大学,2000
    [5]宁津生,邱卫根,陶本藻.地球重力场模型理论[M].武汉:武汉测绘科技大学出版社,1990.
    [6]王家映.地球物理反演理论[M].武汉:中国地质大学出版社,1998.
    [7]周旭华,许厚泽,吴斌等.用GRACE卫星跟踪数据反演地球重力场[J].地球物理学报,2006,49(3):718-723.
    [8]黄珹,胡小工.GRACE重力计划在揭示地球系统质量重新分布中的应用[J].天文学进展,2004,22(1):35-44.
    [9]宁津生,刘经南,陈俊勇,陶本藻等.现代大地测量理论与技术[M].武汉:武汉大学出版社,2006.
    [10]宁津生.地球重力场模型及其应用[J].冶金测绘,1994,3(2):1-8.
    [11]张兴福,沈云中.应用卫卫跟踪数据恢复地球重力场的模拟分析[J],同济大学学报(自然科学版)2005,33(10):1410-1413.
    [12]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [13]赵齐乐,刘经南,葛茂荣,施闯,杜瑞林.用PANDA对GPS和CHAMP卫星精密定轨[J].大地测量与地球动力学,2005,25(2):113-116.
    [14]陆仲连,吴晓平.人造地球卫星与地球重力场[M].北京;测绘出版社,1994.
    [1]刘闿.电磁波测距原理[M].北京:测绘出版社,1983.
    [2]黄荣府.星间精密测距技术[D].南京:南京理工大学,2005.
    [3]周泽园,薛令瑜.电磁波测距[M].北京:测绘出版社,1991.
    [4]袁宇正.电磁波测距技术基础[M].北京:国防工业出版社,1990.
    [5]Thomas J B.An Analysis of Gravity-Field Estimation based on Inter-satellite Dual-1-Way Biased Ranging[R].JPL Publication,California,1999.
    [6]佘世刚,王锴,周毅,申健,吴国富,黄欹昌.高精度星间微波测距技术[J].宇航学报,2006,27(3):85-89.
    [7]MacArthur J L,Posner A S.Satellite-to-Satellite Range-Rate Measurement[J].IEEE Transactions on Geosciences and Remote Sensing,1985,23(4):517-523.
    [8]Mazanek D D,Kumar R R,Seywald H,et al.GRACE Mission Design:Impact of Uncertainties in Disturbance Environment and Satellite Force Models[A].In:Proceedings of the AAS/AIAA Space Flight Mechanics Meeting[C].Clearwater,2000,967-986.
    [9]Kim J,Roesset P L,Bettadpur S V,et al.Simulations of the Gravity Recovery and Climate Experiment(GRACE) Mission[A].In:Proceedings of the AAS/AIAA Space Flight Mechanics Meeting[C].Breckenridge,1999,613-622
    [10]姜卫平,章传银,李建成.重力卫星主要有效载荷指标分析与确定[J].武汉大学学报(信息科学版),2003,28(特刊):104-109.
    [11]宁津生,罗佳,汪海洪.GRACE模式确定重力场的关键技术探讨[J].武汉大学学报(信息科学版),2003,28(特刊):13-17.
    [12]罗佳,宁津生.地球重力场与KBR系统频谱关系的建立与分析[J].武汉大学学报(信息科学版),2004,29(11):951-954.
    [13]Paul H.Young.Electronic Communication Techniques(Fourth Edition)英文影印版[M].北京:科学出版社,2003.
    [14]孙国安.电磁场与电磁波理论基础[M].南京:东南大学出版社,1999.
    [15]Kim J,Tapley B.Simulation of dual one-way ranging measurements[J].Journal of Spacecraft and Rockets,2003,40(3):419-425.
    [16]Kim J,Key K W,Tapley B.Simulation of high accuracy inter-satellite ranging measurements[J].Advances in the Astronautical Sciences,2001,108(1):641-654.
    [17]Kim J.Flight Performance Analysis of a High Accuracy Inter-Satellite Ranging Instrument[C].In:Proceedings of the AAS/AIAA Space Flight Mechanics Meeting,2007.
    [18]斯科尔尼克著,林茂庸译.雷达系统导论[M].北京:国防工业出版社,1992.
    [19]西北电讯工程学院.雷达系统[M].北京:国防工业出版社,1983.
    [20]周建明,赵征,费元春.雷达测距系统中高精度相位测试方法的研究[J].电讯技术,2003,(1):26-29.
    [21]戈稳.雷达接收机技术[M].北京:电子工业出版社,2006.
    [22]Missling K D,Daedelow H,Maass H,et al.Multimission raw data center for GRACE[J].Acta Astronautica,2005,56(1-2):331-335.
    [23]K.Case,G.Kruizinga,and S.Wu.GRACE Level 1B Data Product User Handbook[R].JPL Publication D-22027,2002.
    [24]张兴福,沈云中,胡雷鸣.卫星重力测量数据处理软件系统的设计[J],测绘科学技术学报,2006,23(6):393-395.
    [25]钟兴旺,熊之凡,陈豪.重力测量卫星的星星跟踪测量技术[C].2005年卫星有效载荷技术研讨会,2005,276-285.
    [1]Kim J,Roesset P J,Bettadpur S V,Tapley B,Watkins M.Error Analysis of the Gravity Recovery and Climate Experiment(GRACE) Mission[C].AAS/AIAA Space Flight Mechanics Conference,1999.
    [2]Kim J,Tapley B.Error analysis of a low-low satellite-to-satellite tracking mission[J].Journal of Guidance,Control,and Dynamics,2002,25(6):1100-1106.
    [3]Mazanek D.D.,Kumar R.R.,Qu M.and Seywald H.,Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment(GRACE) Spacecraft[R].NASA/TM-2000-210095,2000.
    [4]Kim J.Simulation Study of a Low-Low Satellite-to-satellite Tracking Mission[D].Austin:The University of Texas at Austin,2000.
    [5]寇艳红,张其善.GPS接收机中晶振误差的模拟方法[J].电子与信息学报,2004,26(8):1319-1324.
    [6]罗佳,宁津生.地球重力场与KBR系统频谱关系的建立与分析[J].武汉大学学报(信息科学版),2004,29(11):951-954.
    [7]Elliott D.Kaplan著,邱致和,王万义译.GPS原理与应用[M].北京:电子工业出版社,2002.
    [8]周坤芳,周湘蓉,余军浩.GPS接收机码/载波跟踪环技术及其抗干扰能力分析[J].电子信息对抗技术,2006,21(2):36-39.
    [9]王举思.USB测距电离层延迟误差分析[J].飞行器测控学报,2002 21(3):24-31.
    [10]张瑜,郝文辉.大气介质对电磁波测距精度的影响[J].电波科学学报,2006,21(4):632-637.
    [11]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [12]杨铁军,黄顺吉.GPS接收机跟踪环的多径误差分析[J].系统工程与电子技术,2002,24(9):13-15.
    [13]孙宏伟,李志刚,李焕信等.卫星双向时间比对原理及比对误差估算[J].宇航计测技术,2001,21(2):55-58.
    [14]刘利,韩春好.卫星双向时间比对及误差分析[J].天文学进展,2004,22(3):219-226.
    [15]Kim J,Tapley B.Effect of GPS orbit errors on a Low-Low Satellite-to-satellite Tracking Mission[J].Advances in the Astronautical Sciences,2002,112(2):1449-1460.
    [16]钟兴旺,陈豪.卫星运动对星间双向法时间同步的影响分析与校正[J].中国空间科学技术,2007,(6):54-58.
    [17]周忠谟,易杰军.GPS卫星测量原理与应用[M].北京:测绘出版社,1992.
    [18]Larson K M,Ashby Neil,Hackman C,Bertiger W.An Assessment of Relativistic Effects for Low Earth Orbiters:the GRACE satellites[C].AAS/AIAA Space Flight Mechanics Conference,2006.
    [19]周旭华,吴斌,许厚泽等.模拟研究低低卫-卫跟踪星间隔的选择问题[J].天文学报,2005,46(1):62-69.
    [20]Kim J,Dai K U,Bertiger W,Frank F.Evaluation of the GRACE inter-satellite ranging instrument with GPS measurements[C].Proceedings of the Institute of Navigation-19th International Technical Meeting of the Satellite Division,ION GNSS 2006,266-275.
    [21]孙凤鸣,耿建民.电磁干扰测量与误差分析[J].宇航计测技术,1992,(3):27-32.
    [22]张世箕.测量误差及数据处理[M].北京:科学出版社,1979.
    [23]总装备部军训教材编委会.遥测数据处理[M].北京:国防工业出版社,2002.
    [24]钟兴旺,熊之凡,陈豪.重力测量卫星的星星跟踪测量技术[C].2005年卫星有效载荷技术研讨会,2005,276-285. 行性。
    [1]周忠谟,易杰军.GPS卫星测量原理与应用[M].北京:测绘出版社,1992.
    [2]潘科炎.GPS在航天器编队飞行任务中的基础性作用[J].航天控制,2003,(3):53-60.
    [3]张训械,张冬娅,胡雄等.星载掩星观测GPS接收机[J].全球定位系统,2004,(1):10-14.
    [4]Harris J,Wu S,Bertiger W.GPS time interval and state measurement for PARCS[C].In:Proceedings of the IEEE International Frequency Control Symposium.Tampa,2003.185-190.
    [5]Bauer F H,Hartman K,Lightsey E G.Spaceborne GPS current status and future visions[C].In Proceedings of the ION GPS-98 Conference.Nashville,1998.195-208.
    [6]Dunn C,Bertiger W,Bar-Sever Y,et al.Instrument of GRACE:GPS augments Gravity Measurements[J].GPS World,2003,14(2):16-28.
    [7]Dunn C,Bertiger W,Franklin G,et al.The Instrument on NASA's GRACE Mission:Augmentation of GPS to Achieve Unprecedented Gravity Field Measurements[R].California:JPL Publication,2002.
    [8]Bertiger W,Dunn C,Harris I.Relative Time and Frequency Alignment between two Low Earth Orbiters:GRACE[C].Proceedings of the 2003 UFFC Conference,Tampa,Florida,May,2003.
    [9]Montenbruck O,Kroes R.In-flight Performance Analysis of the CHAMP Blackjack GPS Receiver[J].GPS Solutions,2003,(7):74-86.
    [10]Montenbruck O,Fernandez M G,Williams J.Performance comparison of semicodeless GPS receivers for LEO satellites[J].GPS Solutions,2006,(10):249-261.
    [11]杨春宝,张海云,邱宗德,尤政.航天GPS接收机设计[J].全球定位系统,2004,(3):19-24.
    [12]刘钝.L2载波无码半无码接收技术简析[J].全球定位系统,2003,(6):11-14.
    [13]刘基余,李征航,王跃虎等.全球定位原理及其应用[M].北京:测绘出版社,1993.
    [14]Kang Z,Tapley B,Bettadpur S,et al.Precise orbit determination for the GRACE mission using only GPS data[J].Journal of Geodesy,2006,80(6):322-331.
    [15]Missling K D,Daedelow H,Maass H,et al.Multimission raw data center for GRACE [J].Acta Astronautica,2005,56(1-2):331-335.
    [16]Wu,S.C.,G.Kruizinga and W.Bertiger.Algorithm Theoretical Basis Document for GRACE Level-1B Data Processing V1.1[R].Jet Propulsion Laboratory.California Institute of Technology,2004.
    [17]K.Case,G.Kruizinga,and S.Wu.GRACE Level 1B Data Product User Handbook[R].JPL Publication D-22027,2002.
    [18]邱宗德,尤政,杨春宝,张海云.星载GPS接收机的设计与应用[J].中国航天,2003,(11):23-26.
    [19]Elliott D.Kaplan著,邱致和,王万义译.GPS原理与应用[M].北京:电子工业出版社,2002.
    [20]Thomas J B.Signal-processing theory for the TurboRogue receiver[R].JPL Publication,1995.
    [21]Thomas J B.Functional Description of Signal Processing in the Rogue GPS Receiver[R].JPL Publication,1988.
    [22]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [1]荆震.高稳定晶体振荡器[M].北京:国防工业出版社,1975.
    [2]吴培才,刘进忙,胡国平.温度补偿晶体振荡器[M].北京:国防工业出版社,1994.
    [3]伍晓芳.小型高稳恒温晶体振荡器的研制[D].武汉:华中科技大学,2004.
    [4]赵声衡.石英晶体振荡器[M].长沙:湖南大学出版社,1997.
    [5]Norton J R,Cloeren J M.Brief History of the Development of Ultra-precise Osciliators for Ground and Space Applications[C].1996 IEEE International Frequency Control Symposium,1996,47-57.
    [6]Norton J R.Advanced Technology Oscillator for Small Spacecraft[C].In Proc.1995IEEE International Frequency Control Symposium,1995,614-619.
    [7]DeBoy C,Haskins C,Brown A.The RF Telecommunications System for the New Horizons Mission to Plutol[C].IEEE Aerospace Conference Proceedings 2004,1463-1478.
    [8]周渭,马京路.我国的精密晶体振荡器的技术发展[C],全国时间频率控制研讨会,2006.116-120..
    [9]张俊.高稳定晶体振荡器研究[D].兰州:兰州物理研究所,2005.
    [10]罗福臻.高精密SC切谐振器.湖南大学学报,1988,15(3):253-256.
    [11]高益.精密恒温晶体振荡器的设计与研制[D].武汉:华中科技大学,2004.
    [12]蒋平虎.高稳定低相位噪声晶体振荡器的研究、设计和CAD[D].上海:上海海运学院,2003.
    [13]赵声衡,罗华浩.低老化率5MHz石英晶振的设计和性能[J].湖南大学学报,1982,9(3):1-11.
    [14]赵声衡.晶体管参数对高稳晶振频率稳定度的影响[J].湖南大学学报,1994,21(1):55-60.
    [15]Karlquist,R K.The Theory of Zero-Gradient Crystal Ovens[C].In:Proc.50th Annual Symposium on Frequency Control,1996:898-908.
    [16]Warner,W A.Design and Performance of Ultraprecise 2.5 MHz Quartz Crystal Units[R].Bell System Tech,1986,20(9):193-201.
    [17]周辉,熊民选,周渭.几种提高晶体振荡器性能的实用技术[J].宇航计测技术,2001,21(1):26-38.
    [18]Hui Zhou,Wei Zhou.Some practical techniques to improve performances of the crystal oscillators[J].Journal of Astronautic Metrology and Measurement,2001,21(1):25-30.
    [19]蔡林洋,刘刚,高峻雄等.小型SC切恒温晶体振荡器的研制[J].微电子学,2002,32(4):316-319.
    [20]杨凤云.高稳定压控晶体振荡器[C].中国电子学会电子元件年会,2000,171-180.
    [21]赵声衡.精密恒温槽原理[M].长沙:湖南科学技术出版社,1991.
    [22]伍晓芳,刘刚,高峻雄,于军.新型vcocxo控温原理及实现方法研究[J].华中科技大学学报(自然科学版),2004,32(2):46-48.
    [23]WEI ZHOU.An experiment study of OCXO based on a new temperature control method[C].2001 IEEE International Frequency Control Symposium,2001:744-777.
    [24]陈亚良,李冬来,徐金荣.晶体振荡器隔振系统理论研究[J].电子机械工程,2005,21(5):26-29.
    [25]中国计量科学研究院.计量科学研究50年[M].北京:中国计量出版社,2005.
    [1]张有正,陈尚勤,周正中.频率合成技术[M].北京:人民邮电出版社,1984.
    [2]И.Х.里茨金著;邓亚桥译.倍频器与分频器[M].北京:人民邮电出版社,1982.
    [3]清华大学通信教研组.高频电路 上册[M].北京:人民邮电出版社,1981.
    [4]陈为怀,李玉梅.微波振荡源[M].北京:人民邮电出版社,1984.
    [5]W.P.罗宾斯著;秦士,姜尊富译.相位噪声[M].北京:人民邮电出版社,1988.
    [6]Inder Bahl,Prakash Bhartia著;郑新等译.微波固态电路设计[M].北京:电子工业出版社,2006
    [7]束永江,何勤.基于二倍频技术的宽带八倍频器设计[C].2004年全国第十届微波集成电路与移动通信学术年会,2004,102-105.
    [8]AT42035,Up to 6 GHz Medium Power Silicon Bipolar Transistor Technical Data.Agilent Technologies,Inc.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700