用户名: 密码: 验证码:
基于GOCE卫星重力测量技术确定地球重力场的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球重力场研究历来是大地测量学领域的核心任务之一。随着卫星重力测量技术的突破性进展,以及和空间技术、卫星精密定轨技术发展的交叉并进,使得我们以前所未有的精度与分辨率确定地球重力场的精细结构成为可能。卫星跟踪卫星(SST)和卫星重力梯度测量(SGG)被国际上公认为当今获取全球高精度高分辨率地球重力场及其时变信息的最有效技术手段。以CHAMP、GRACE为代表的SST技术使地球重力场模型在中长波部分的精度提高了1~2个量级,而以更高精度(100km分辨率、1cm大地水准面)为目标的GOCE卫星也于2009年3月17日成功发射,它结合了SST-hl和SGG两种技术模式,有望使地球重力场的研究取得更大突破。
     随着GOCE卫星的成功发射,围绕GOCE数据处理和应用研究将成为今后几年地学研究的热点问题之一。与此同时,国际三大卫星重力计划(CHAMP、GRACE和GOCE)的相继成功实施对我国大地测量学及相关领域的研究既存在机遇又不乏挑战,加紧开展卫星重力测量技术的研究,建设我国自主的重力卫星系统已是发展所需,因此,当前对卫星重力测量数据处理理论与方法的研究更具有现实意义。在此背景下,本文研究基于GOCE卫星重力测量技术确定地球重力场的理论和方法,研制GOCE卫星重力测量数据处理软件包与仿真模拟平台,不仅为GOCE实测数据处理和相关应用研究奠定基础,同时也为发展我国自主的重力卫星系统积累经验。
     本文的主要研究工作及贡献如下:
     1.在详细论述GOCE卫星重力测量系统的基础上,重点对GOCE观测数据及其噪声进行了模拟研究,包括卫星轨道数据、重力梯度数据和重力梯度测量有色噪声等数据。基于仿真实验,估计和分析了潮汐摄动对GOCE卫星运动和重力梯度测量的影响,结果表明:各项潮汐摄动对SST-hl测量影响较大(最大量级均大于1.0×109m/s2),而对SGG测量影响相对较小(影响量级均小于GOCE重力梯度仪的测量精度3mE)。
     2.深入研究了基于高低卫-卫跟踪技术确定地球重力场的加速度法原理和实用解算模型,在分析卫星加速度误差的有色噪声特性基础上,提出采用去相关滤波抑制卫星加速度的高频误差,并构造了基于三点差分的白化滤波器和ARMA模型的白化滤波器。采用不同噪声背景的GOCE卫星模拟轨道数据进行解算,结果表明去相关滤波法解算的重力场模型精度均要比传统等权方法解算的模型精度高。同时,基于加速度法模拟分析了GOCE轨道误差、加速度计误差和观测粗差对恢复重力场的影响,并对加速度法和能量法恢复重力场的性能进行了比较,得出了有益结论。
     3.详细推导了基于卫星瞬时加速度或均值加速度同时求解加速度计校准参数和重力场位系数的平差模型,并提出了一整套利用加速度法恢复地球重力场的数据处理方案及流程。采用46天的CHAMP数据恢复了60阶次的重力场模型WHUCHAMP-ACC60KP和WHUCHAMP-ACC60KA,结果表明两个模型的精度相当,并且优于EIGEN-1S模型,与EIGEN-2模型精度接近,验证了方法的可行性与实用性。另外,基于加速度法提出利用抗差估计控制粗差或异常值对重力场解算结果的影响,并以98天的CHAMP数据为例,采用IGG3等价权迭代解算了70阶次的重力场模型WHUCHAMP-ACC70K,其精度优于EIGEN-1S和EIGEN-2模型,验证了抗差估计的有效性。
     4.深入研究了GOCE重力场严密求解的空域最小二乘法原理和实用解算模型,分析结果表明GOCE卫星位置误差对重力梯度测量的影响远小于梯度仪测量误差,因此可将卫星轨道作为已知进行直接求解。模拟研究了GOCE重力场解算中病态法方程的Tikhonov正则化方法,结果表明FOT和Kaula正则矩阵的实际处理效果差别较小,两者均能达到稳定求解的目的。实现了GOCE重力梯度观测值有色噪声的ARMA时域滤波方法,数值模拟结果表明该滤波方法实用有效。
     5.提出了基于球谐分析方法确定GOCE卫星重力场模型的数据处理方案,给出了球谐分析方法恢复GOCE重力场所涉及的数据归算、格网化和极空白(PG)等关键问题的解决途径,实现了GOCE沿轨重力梯度测量有色噪声的Wiener滤波预处理方法,并通过数值模拟对其有效性进行了验证,为空域法解算GOCE重力场模型中有色噪声的滤波预处理提供了有效工具。
     6.基于时域最小二乘误差分析方法,设计了卫星重力梯度测量系统关键技术指标仿真分析的计算方案和流程,并分析了轨道高度、倾角、采样间隔、时间跨度、重力梯度测量精度与测量带宽等指标参数、以及不同梯度分量组合与重力场恢复精度的响应关系,研究结果可为重力梯度卫星关键技术指标的设计与论证提供参考。对GOCE预期恢复重力场的性能进行了模拟,采用6个月、1s采样的SGG (Vxx,Vyy,Vzz,Vxz)数据恢复大地水准面和重力异常累积到200阶的误差分别为21.57cm和0.412mGal,而SGG和SST(5s采样的扰动位)联合解对应大地水准面和重力异常的累积误差分别为1.31cm和0.239mGal,这表明必须将SGG和SST联合求解才能达到GOCE的预期目标。
     7.推导了SST和SGG两类数据的最小二乘联合平差模型,给出了观测值最优权确定的方差分量估计(VCE)和参数协方差方法(PCA)。基于加速度法和空域最小二乘法,采用30天、5s采样的GOCE模拟轨道和SGG (Vxx,Vyy,Vzz)数据联合求解了200阶次的重力场模型,结果表明:SST和SGG等权求解并不能得到最优结果,并且VCE和PCA方法得到的加权因子与理论最优值存在一定的偏差,但VCE优于PCA方法;在纬度±83°范围内,SGG (Vxx,Vyy,Vzz)与SST最优联合解算模型的大地水准面和重力异常精度分别为3.81cm和1.056mGal,它比仅采用Vzz分量与SST最优联合求解模型的大地水准面和重力异常精度分别提高了1.0cm和0.280mGal。
     8.深入研究了卫星重力边值问题的随机边值解法,推导出球近似下以GOCE卫星轨道面扰动位T和径向重力梯度Trr为边界条件的超定边值问题随机边值解。同时,以地面重力异常△g为约束边界条件,导出了以卫星轨道面和地面边界条件组成的二界面超定边值问题的随机边值解。采用模拟的GOCE轨道面扰动位T(SST)、径向重力梯度Trr (SGG)和地面重力异常(△g)数据进行联合求解,结果表明:联合解算模型是介于各单类数据解算模型之间的最优解,并且SST+SGG解算模型的中低阶精度相比SGG解算模型有明显提高,而SST+SGG+Δg解算模型的中高阶精度相比SST+SGG解算模型也有明显改善。
     9.研究了最小二乘谱组合的基本原理,推导了多种类型观测数据联合处理的谱权及其谱组合的一般公式。基于球谐分析方法推导出GOCE轨道面扰动位T和径向重力梯度Trr谱组合所对应谱权的具体形式,并在该条件下证明了谱组合方法与卫星重力边值问题随机边值解法的等价性。此外,采用30天、5s采样的GOCE模拟轨道和重力梯度数据(对角线3分量),分别由加速度法和空域最小二乘法独立解算的位系数谱组合求解了200阶次的重力场模型,结果表明:在纬度±83°范围的大地水准面和重力异常精度分别为3.84cm和1.058mGal,该精度与联合平差解算模型的精度相当。
etermination of the earth's gravity field is always one of the main tasks of geodesy. The breakthrough of the satellite gravimetry technique as well as spatial technique and satellite positioning technique makes it possible to determine the fine structure of the earth's gravity field with unprecedented precision and resolution. The Satellite-to-Satellite Tracking (SST) and Satellite Gravity Gradiometry (SGG) are regarded as the most effective techniques for the determination of the earth's gravity field and its temporal variation. The SST technique represented mainly by CHAMP and GRACE satellite gravity missions has improved the accuracy of the earth's gravity field model by 1-2 order of magnitude in the part of long and mid wavelength. Aiming at an accuracy of lcm for the geoid at 100km resolution, the GOCE mission which combined SST-hl and SGG techniques was launched on 17 March 2009. This will bring greater breakthroughs for the investigation of the earth's gravity field.
     ith the successful launch of GOCE satellite, studies on data processing and applications of GOCE mission will become a hot issue in geosciences for the next several years. At the same time, the successful implementation of three international satellite gravity missions (CHAMP, GRACE and GOCE) takes opportunity as well as challenge for our study of geodesy and related fields. Speeding up the research in satellite gravimetry technique, and constructing our own autonomous gravity satellite system has become an inevitable trend. Therefore, researches on the theory and methodology of satellite gravimetry data processing have more realistic significance at present. Under the background of the scientific research, the theory and methods for the determination of the earth's gravity field based on GOCE satellite gravimetry technique are studied in this dissertation. And the corresponding GOCE data processing software package and analog simulation platform with autonomous copyright are developed. The ultimate purpose is not only to establish the foundation of the GOCE practical data processing and related application research, but also to accumulate experiences for the development of our country's gravity satellite system in the future. The main work and contributions in this dissertation are as following:
     fter the GOCE mission is comprehensively introduced, emphasis is focused on simulation study of LGOCE satellite gravimetry data, including satellite orbit data, gravity gradiometry data, gradiometer colored noise series, and so on. The effects of tidal perturbations on the motion of GOCE satellite and its performance of gradiometer measurement are estimated based on the simulation experiments. The results show that the tidal perturbations have greater effects on the observation of SST-hl, the maximum magnitude of each perturbation is larger than 1.0×10-9m/s2, whereas the tidal effects on the observation of SGG are relatively small, the magnitude of each perturbation is much less than GOCE gradiometer measurement accuracy of 3mE.
     he principle and practical numerical model of the acceleration approach for determining the earth's gravity field based on satellite orbit data are deeply studied. Because the noise in the orbit-derived satellite acceleration data is colored, whitening filters based on decorrelation technique are proposed to suppress the noise. Two whitening filters are constructed based on 3-points differential scheme and on ARMA model, respectively. As a test, simulated GOCE orbit data with different type of noises are used to recover the gravity field model. The results demonstrate that the gravity field models recovered from the decorrelation filtering methods have higher accuracy than those from equal weight method. Meanwhile, the effects of GOCE orbit error, accelerometer error and gross error on gravity field recovery are emulationally analyzed based on acceleration approach, and the performance of gravity field recovery using acceleration approach is also compared with energy balance approach, and then some useful conclusions are drawn.
     he adjustment models for simultaneously solving the calibration parameters of accelerometer and the potential coefficients based on point-wise accelerations or average accelerations are derived in detail, then a set of complete data processing scheme and process for recovering the earth's gravity field using acceleration approach is presented. Two earth's gravity field models up to degree and order 60 named WHUCHAMP-ACC60KP and WHUCHAMP-ACC60KA are respectively recovered by acceleration approach from 46 days of CHAMP kinematic orbits and accelerometer data. The results show that the above two models have the same accuracy, which is near to the accuracy of EIGEN-2, and better than EIGEN-1S. In addition, robust estimation is employed to suppress the influence of outliers remained in the preprocessed data, for gravity field recovery using acceleration approach. And a gravity field model up to degree and order 70 named WHUCHAMP-ACC70K is achieved by robust reweighting method based on IGG3 equivalent weight from 98 days of CHAMP data. The results show that WHUCHAMP-ACC70K has a higher accuracy than EIGEN-1S and EIGEN-2, which validate the effectiveness of robust estimation method.
     he principle and practical numerical model of the space-wise least-squares method for rigorously determining GOCE gravity field model are deeply studied. Analysis results show that the effect of GOCE orbit error on SGG is much less than the gradiometer measurement error, so the satellite orbit can be regard as known for GOCE gravity field recovery from gravity gradiomtery data. Two regularization algorithms, including FOT and Kaula, used in the GOCE gravity field determination are discussed. Numerical simulation shows that the two regularization methods can stabilize the solution and the difference of their treatment effects is very small. The ARMA recursive filtering method used to deal with GOCE gravity gradiometry colored noises is realized, and simulation results verify that this filtering method is practicability and effectiveness.
     ata processing scheme and process for the GOCE gravity field recovery based on spherical harmonic analysis approach are presented. The key problems such as data reduction, griding and polar gaps involved in spherical harmonic analysis approach are discussed and their solutions are also given. The wiener orbit filter (WOF) is designed and realized for preprocessing of the GOCE gravity gradiometry colored noises, and its effectiveness is verified by the numerical simulation results. It also provides an effective tool to preprocess of colored noises data for GOCE gravity field determination based on other space-wise methods, such as least-squares collocation method.
     ased on the principle of time-wise least square errors analysis, the calculation scheme and process for analog simulation analysis of the key technical indexes of SGG system are designed. Then the influences of various factors on the gravity field recovery from SGG data are analyzed. These influence factors include orbit height, orbital inclination, sampling interval, time span, gradiometer accuracy, measurement band-width, and combination of different gradient components. The simulation results can be as a reference for design and demonstration of the key technical indexes of SGG system. By simulation, the expected accuracy of GOCE mission is estimated. Using 6 months of SGG (Vxx,Vyy,Vzz,Vxz) data with 1 s sampling interval, the cumulative geoid height errors and cumulative gravity anomaly errors of the estimated gravity field model up to degree and order 200 are 21.57 cm and 0.412 mGal, respectively. When SGG and SST (with 5s sampling interval of disturbing potential) data are combined to estimate the gravity field, the corresponding cumulative errors are decreasing to 1.31 cm and 0.239 mGal, respectively. It proves that in order to achieve the aim of GOCE mission, SGG and SST data must be combined together for the gravity field recovery.
     he combined adjustment model for processing of SST and SGG data is derived, and two approaches for the determination of optimal weight are also investigated, including variance component estimate (VCE) and parametric covariance approach (PCA). On the basis of acceleration approach and space-wise least-squares method, the combined gravity field model up to degree and order 200 is recovered from 30 days of simulated GOCE orbits and SGG (Vxx,Vyy,Vzz) data with 5s sampling interval. The results show that the combined solution from combining SST and SGG data with equal weight is not optimal, and VCE method is better than PCA method for determining the optimal weight. However, the optimal weight determinated by VCE method also has some deviations from the theoretically optimal value that derived from the criterion of minimum RMS geoid error. For the SST and SGG optimal combined model, its accuracy of geoid heights and gravity anomalies between±83°latitude areas are 3.81cm and 1.056mGal respectively. Comparing to the combined solution solved from SST and component Vzz only, the accuracy of SST and SGG combined solution are improved about 1.0cm in geoid heights and 0.280mGal in gravity anomalies, respectively.
     atellite gravimetry boundary value problem solved from random boundary value conditions is investigated in detail. The solution of overdetermined random boundary value problem is derived, with spherical approximation boundary conditions of disturbing potential T and the radial gradient component Trr from the GOCE orbital plane. Furthermore, the solution of two boundaries (satellite orbital plane and earth's surface) overdetermined boundary value problem is also given, with terrestrial gravity anomaliesΔg as a constrained boundary condition. As a test, simulated disturbing potential T (SST) and radial gradient component Trr(SGG) on the GOCE orbital plane, and terrestrial gravity anomalies (Δg) data are combined to recover the gravity field model. The results show that the combined models are the optimal solution than those solved from only one type of observations. The combined solution from SST+SGG observations has an obvious improvement in the part of mid and low degrees, comparing with the solution from SGG observations only. And the accuracy of combined model from SST+SGG+Δg observations is better than the combined model from SST+SGG observations, especially in the part of high and mid degrees.
     he principle of least-squares spectral combination is studied, and then the general formulae of spectral weight and spectral combination for combining different type of observations are derived. On the basis of spherical harmonic analysis, the concrete forms of spectral weights corresponding to the disturbing potential T and radial gradient component Trr from the GOCE orbital plane are derived in detail. And the spectral combination formulae for processing of disturbing potential T and gradient component Trr are also given. We find that the solution of spectral combination is equivalent to the solution of satellite gravimetry boundary value problem, and their formulae have the same form and effectiveness. Furthermore, a spectral combination gravity field model up to degree and order 200 is constructed based on the principle of potential coefficients combination, using 30 days of simulated GOCE orbits and SGG (Vxx,Vyy,Vzz) data with 5s sampling interval. The above spectral combination model is combined from SST and SGG model, the SST model is solved by acceleration approach, and the SGG model is recovered from space-wise least-squares method. The results show that the accuracy of geoid heights and gravity anomalies between±83°latitude areas are 3.84cm and 1.058mGal respectively, which are similar to the accuracy of combined adjustment solution.
引文
[1]边少锋.大地测量边值问题数值解法与地球重力场逼近[博士论文].武汉:武汉测绘科技大学,1992
    [2]陈俊勇.现代低轨卫星对地球重力场探测的实践和进展.测绘科学,2002,27(1):8-10
    [3]程学光,宁津生,罗志才.卫星重力梯度边值问题的随机边值解.两岸重力及水准面研讨会论文集,2003年9月,台湾
    [4]费志凌.利用卫星重力梯度数据确定地球重力场的单层位模型.测绘学报,1994,23(1):29-36
    [5]郭俊义编著.地球物理学基础.北京:测绘出版社,2001
    [6]何光渝,高永利Visual Fortran常用数值算法集.北京:科学出版社,2002
    [7]赫尔墨特·莫里兹著.宁津生,管泽霖译.陈俊勇校.高等物理大地测量学.北京:测绘出版社,1984
    [8]胡雷鸣,张兴福,沈云中.CHAMP姿态数据间断的处理方法与精度分析.大地测量与地球动力学,2006,26(2):84-86
    [9]胡明城,鲁福.现代大地测量学(上、下册).北京:测绘出版社,1994
    [10]胡小工,陈剑利,周永宏,黄珹等.利用GRACE空间重力测量监测长江流域水储量的季节性变化.中国科学D辑(地球科学),2006,36(3):225-232
    [11]胡新启.拟微分算子在大地测量边值问题中的应用[博士论文].武汉:武汉大学,2002
    [12]纪兵.卫星重力梯度测量相关技术研究[硕士论文].郑州:解放军信息工程大学,2005
    [13]姜卫平,章传银,李建成.重力卫星主要有效载荷指标分析与确定.武汉大学学报(信息科学版),2003,28(5):104-109
    [14]李德仁.误差处理和可靠性理论.北京:测绘出版社,1988
    [15]李济生.人造卫星精密轨道确定.北京:解放军出版社,1995
    [16]李建成.物理大地测量中的谱方法[博士论文].武汉:武汉测绘科技大学,1993
    [17]李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定.武汉:大学出版社武汉,2003
    [18]李迎春.利用卫星重力梯度测量数据恢复地球重力场的理论与方法[硕士论文].郑州:解放军信息工程大学,2004
    [19]李征航,徐德宝,董挹英等.空间大地测量理论基础.武汉:武汉测绘科技大学出版社,1998
    [20]刘林.航天器轨道理论.北京:国防工业出版社,2000
    [21]柳响林, Pavel Ditmar.基于B_spline和正则化算法的低轨卫星轨道平滑.地球物理学报,2006,49(1):99-105
    [22]罗佳.利用卫星跟踪卫星确定地球重力场的理论与方法[博士论文].武汉:武汉大学,2003
    [23]罗志才.利用卫星重力梯度数据确定地球重力场的理论和方法[博士论文].武汉:武汉测绘科技大学,1996a
    [24]罗志才,宁津生,晁定波.重力-重力梯度边值问题的准解.地球物理学报,1996b,39(增刊),190-195
    [25]罗志才,宁津生,晁定波.卫星重力梯度分量的球谐综合.武汉测绘科技大学学报,1996c,21(1):103-108
    [26]罗志才,钟波,宁津生,杨光.GOCE卫星轨道摄动的数值模拟与分析,武汉大学学报(信息科学版),2009a,34(7):757-760
    [27]罗志才,吴云龙,钟波,杨光.GOCE卫星重力梯度测量数据的预处理,武汉大学学报(信息科学版),2009b, 34(10),1163-1167
    [28]孟嘉春,刘尚余.卫星重力梯度测量与地球引力场的精度研究.地球物理学报,1993,36(6):725-739
    [29]宁津生,邱卫根,陶本藻.地球重力场模型理论.武汉:武汉测绘科技大学出版社,1990
    [30]宁津生,罗志才.卫星跟踪卫星技术的进展及应用前景.测绘科学,2000,25(4):14
    [31]宁津生.跟踪世界发展动态致力地球重力场研究.武汉大学学报(信息科学版),2001,26(6):471-474
    [32]宁津生.卫星重力探测技术与地球重力场研究.大地测量与地球动力学,2002,22:1-5
    [33]宁津生,钟波,罗志才,罗佳.基于能量守恒的星间距离变率与地球重力场频谱关系的建立与分析,武汉大学学报(信息科学版),2008,33(3):221-255
    [34]宁津生,钟波,罗志才,汪海洪.基于卫星加速度恢复地球重力场的去相关滤波法,测绘学报,2010,39(3),已接收(待刊)
    [35]申文斌.引力位虚拟压缩恢复法.武汉大学学报信息科学版,2004,29(8):720-724
    [36]申文斌,晁定波.联合两个界面的数据求解超定边值问题的途径.黑龙江工程学院学报(自然科学版),2006,20(4):5-9
    [37]沈云中.应用CHAMP卫星星历精化地球重力场模型的研究[博士论文].武汉:中国科学院测量与地球物理研究所,2000
    [38]沈云中,许厚泽,吴斌.星间加速度解算模式的模拟与分析.地球物理学报,2005,48(4):807-811
    [39]沈云中.基于滤波因子的病态方程解法.同济大学学报(自然科学版),2006,34(6):844-847
    [40]石磐.扰动位的综合确定.测绘学报,1984,13(4):241-248
    [41]石磐.利用局部重力数据改进重力场模型.测绘学报,1994,23(4):276-281
    [42]孙文科.低轨人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场:卫星重力大地测量的最新发展及其对地球科学的重大影响.大地测量与地球动力学,2002,22(1):92-100
    [43]王庆宾,吴晓平,王世忠CHAMP星载加速度计数据分析.测绘科学技术学报,2006,23(1):26-28
    [44]王正涛.卫星跟踪卫星测量确定地球重力场的理论与方法[博士论文].武汉:武汉大学,2005
    [45]吴晓平.利用卫星重力梯度与地面数据确定地球重力场的分析.解放军测绘学院学报,1991,1:19-32
    [46]吴晓平,陆仲连.卫星重力梯度向下沿拓的最佳积分核谱组合解.测绘学报,1992,21(2):123-133
    [47]吴星,张传定,赵东明.卫星重力梯度分量的广义轮胎调和分析.测绘学报,2009,38(2):101-107
    [48]肖云.基于卫星跟踪卫星数据恢复地球重力场的研究[博士论文].郑州:解放军信息工程大学,2006a
    [49]肖云,夏哲仁,王兴涛.高低卫卫跟踪模式恢复地球重力场的误差分析.测绘学报,2006b,35(2):106-111
    [50]徐天河,杨元喜,王兴涛CHAMP卫星加速度计数据的使用.测绘通报,2003,11:3-6
    [51]徐天河.利用CHAMP卫星轨道和加速度计数据推求地球重力场模型[博士论文].郑州:解放军信息工程大学,2004a
    [52]徐天河,杨元喜.利用CHAMP卫星星历及加速度计数据推求地球重力场模型.测绘学报,2004b,33(2):95-99
    [53]徐天河,杨元喜.利用现有重力场模型求定CHAMP卫星加速度计修正参数.测绘学报,2004c,33(3):200-204
    [54]徐天河,杨元喜.利用卫星轨迹交叉点标定CHAMP卫星加速度计数据.武汉大学学报(信息科学版),2004d,29(11):955-959
    [55]徐天河,杨元喜.基于能量守恒方法恢复CHAMP重力场模型.测绘学报,2005a,34(1):1-6
    [56]徐天河,杨元喜.CHAMP轨道及加速度计误差对恢复重力场的影响.大地测量与地球动力学,2005b,25(2):75-81
    [57]徐天河,贺凯飞.抗差估计在CHAMP重力场恢复中的应用.大地测量与地球动力学,2008,28(2):81-85
    [58]徐天河,贺凯飞.移动开窗检验法及其在GOCE数据粗差探测中的应用.测绘学报,2009,38(8):391-396
    [59]徐新禹,李建成,邹贤才,褚永海.最小二乘法求解三类卫星重力梯度边值问题的研究.武汉大学学报(信息科学版),2006,31(11):987-990
    [60]徐新禹.卫星重力梯度及卫星跟踪卫星数据确定地球重力场的研究[博士论文].武汉:武汉大学,2008
    [61]许厚泽.卫星重力研究:21世纪大地测量研究的新热点.测绘科学,2001,26(3):1-3
    [62]杨元喜.抗差估计理论及应用.北京:八一出版社,1993
    [63]于锦海.物理大地测量边值问题的理论[博士论文].武汉:中国科学院测量与地球物理研究所,1992
    [64]张传定.卫星重力测量—基础、模型化方法与数据处理算法[博士论文].郑州:解放军信息工程大学,2000
    [65]张玲华,郑宝玉.随机信号处理.北京:清华大学出版社,2003
    [66]张树京,齐立心.时间序列分析简明教程.北京:清华大学出版社,2003
    [67]张兴福.利用低轨卫星跟踪数据反演地球重力场模型[博士论文].上海:同济大学,2007a
    [68]张兴福,沈云中.利用动力法标校CHAMP卫星加速度计数据.武汉大学学报(信息科学版),2007b,32(2):176-179
    [69]赵东明.卫星跟踪卫星任务的引力谱分析和状态估计方法[博士论文].郑州:解放军信息工程大学,2004
    [70]赵齐乐,施闯,柳响林,葛茂荣.重力卫星的星载GPS精密定轨.武汉大学学报(信息科学版),2008,33(8):810~814
    [71]郑伟,邵成刚,罗俊,许厚泽.基于卫-卫跟踪观测技术利用能量守恒法恢复地球重力场的数值模拟研究.地球物理学报,2006,49(3):712-717
    [72]郑伟,许厚泽,钟敏,员美娟,等.基于半解析法有效和快速估计GRACE全球重力场的精度.地球物理学报,2008,51(6):1704-1710
    [73]钟波,罗志才,罗佳,吴云龙.高低卫-卫跟踪模式主要技术指标的模拟分析与验证,武汉大学学报(信息科学版),2008,33(8):864-867
    [74]钟敏,段建宾,许厚泽,彭鹏,等.利用卫星重力观测研究近5年的中国陆地水量中长空间尺度的变化趋势,科学通报,2009,54(9):1290-1294
    [75]周旭华.卫星重力及应用研究[博士论文].武汉:中国科学院测量与地球物理研究所,2005a
    [76]周旭华,吴斌,许厚泽,彭碧波.数值模拟估算低低卫-卫跟踪观测技术反演地球重力场的空间分辨率.地球物理学报,2005b,48(2):282-287
    [77]周旭华,吴斌,彭碧波,许厚泽.利用CHAMP科学轨道数据和星载加速度计数据反演地球重力场.武汉大学学报(信息科学版),2006,31(2):172-175
    [78]邹贤才.卫星轨道理论与地球重力场模型的确定[博士论文].武汉:武汉大学,2007a
    [79]邹贤才,李建成,罗佳,徐新禹.星载加速度计的动力法校准.武汉大学学报(信息科学版),2007b,32(12):1152-1155
    [80]朱灼文,于锦海.超定大地边值问题的准解.中国科学B辑,1992,1:103-112
    [81]Gunter Seeber著,卫星大地测量学.赖锡安,游新兆等译.北京:地震出版社,1998
    [82]Shameem Akther, Jason Roberts著,李宝峰,富弘毅,李韬,译.多核程序设计技术—通过软件多线程提升性能.北京:电子工业出版社,2007
    [83]Albertella A., F. Sanso, N. Sneeuw. Band-limited functions on abounded spherical domain:the Slepian problem on the sphere, Journal of Geodesy,1999,73:436-447
    [84]Albertella A., F. Migliaccio, F. Sanso. Data gaps in finite-dimensional boundary value problems for satellite gradiometry, Journal of Geodesy,2001,75:641-646
    [85]Albertella A., F. Migliaccio, F. Sans6. GOCE:The Earth gravity field by space gradiometry. Celestial Mechanics and Dynamical Astronomy,2002,83:1-15
    [86]Arabelos D., C. Tscherning. Calibration of satellite gradiometer data aided by ground gravity data. Journal of Geodesy,1998,72:617-625
    [87]Arabelos D. and C. C.Tscherning. On a strategy for the use of GOCE gradiometer data for the development of a geopotential model by LSC.3rd Int. GOCE user workshop, ESA-ESRIN,6-8 2006, ESA-SP-627, pp.69-75
    [88]Arabelos D. and C. C. Tscherning. Error-covariances of the estimates of spherical harmonic coefficients computed by LSC, using second-order radial derivative functionals associated with realistic GOCE orbits. Journal of Geodesy,2008,83:419-430
    [89]Austen G. Ramuliche Schwerefeldanalyse aus semi-kontinuierlichen Ephemeriden niedrigfliegender GPS-vermessener Satelliten vom Typ CHAMP, GRACE und GOCE, Diplomarbeit, Universitat Stuttgart Geodatisches Institut,2000
    [90]Balmino G, G. Beutler, K. H. Ilk, et al(eds.), GOCE:Preparation of the GOCE Level 1 to Level 2 Data Processing. ESA/ESTEC Contract No.14986/01/NL/DC. Final report. European Space Agency. Nordwijk,2002
    [91]Berry M. M. and L. M. Healy. Implementation of Gauss-Jackson integration for orbit propagation. The journal of the Astronautical Sciences,2004,52(3):331-357
    [92]Bock H, A. Jaggi, D. Svehla, et al. Precise orbit determination for the GOCE satellite using GPS. Advances in Space Research,2007,39:1638-1647
    [93]Bouman J., Quality of Regularization Methods. DEOS Report 98.2, Delft University Press, Delft,1998
    [94]Bouman J., Quality assessment of satellite-based global gravity field models [Ph.D. thesis]. Delft University of Technology, Geodetic Engineering,2000
    [95]Bouman J., R. Koop, C.C.Tscherning, and P. Visser. Calibration of GOCE SGG data using high-low SST, terrestrial gravity data, and global gravity field models, Journal of Geodesy,2004a,78:124-137
    [96]Bouman J., Quick-look outlier detection for GOCE gravity gradients. Newton's Bull,2004b,2:78-87
    [97]Bouman J., S. Rispens, T. Gruber, el al. Preprocessing of gravity gradients at the GOCE high-level processing facility. Journal of Geodesy,2008,83:659-678
    [98]Chen J. L., C. R. Wilson, B. D. Tapley et al. Seasonal global mean sea level change from satellite altimeter GRACE,and geophysical models, Journal of Geodesy,2005,79(9):532-539
    [99]Chen J. L., B. D. Tapley, C. R. Wilson. Alaskan mountain melting observed by satellite gravimetry, Earth and Planetary Science Letter,2006, Vol.248:353-363
    [100]Chen J. L., C. R. Wilson, B. D. Tapley et al. Antarctic regional ice loss rates from GRACE, Earth and Planetary Science Letter,2008, Vol.266:140-148
    [101]Chen X. The torus-based semi-analytical approach in spaceborne gravimetry[Ph. D. thesis]. Calgary:the University of Calgary,2008
    [102]Colombo O. L. Numerical methods for harmonic analysis on the sphere, Report No.310, Dept. of Geodetic Science, The Ohio State University, Columbus,1981
    [103]Colombo O. L. Notes on the Mapping of the Gravity Field using Satellite Data, in:Lecture Notes in Earth Sciences,7, Mathematical and Numerical Techniques in Physical Geodesy, H. Sunkel(eds.), Springer-Verlag, Berlin Heidelberg,1986
    [104]Colombo O.L. The global mapping of the gravity field with an orbiting full-tensor gradiometer:An error analysis, Proceeding s of the I.A.G Symposia, XIX General Assembly IUGG, pp.250-266, Vancouver,1987
    [105]Colombo O.L. Advanced techniques for high-resolution mapping of the gravitational field, in:Theory of Satellite Geodesy and Gravity Field Determination, Sanso F. and Rummel R. (eds.), Lecture Notes in Earth Sciences, Vol.25, Springer-verlag, New York,1989
    [106]Ditmar P., R. Klees. A method to compute the Earth's gravity field from SGG/SST data to be acquired by the GOCE satellite. Delft:Delft University Press,2002.
    [107]Ditmar P., R. Klees, F Kostenko. Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. Journal of Geodesy,2003a,76:690-705
    [108]Ditmar P., J. Kusche. Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite:regularization issues. Journal of Geodesy,2003b,77:465-477
    [109]Ditmar P., P. Visser, R. Klees. On the joint inversion of SGG and SST data from the GOCE mission. Advances in Geosciences,2003c, (1):87-94.
    [110]Ditmar P., A. A. van Eck van der Sluijs. A technique for modeling the earth's gravity field on the basis of satellite accelerations. Journal of Geodesy,2004,78:12-33
    [111]Ditmar P., V. Kuznetsov, A. A. van Eck van der Sluijs, et al.'DEOS_CHAMP-01C_70':a model of the Earth's gravity field computed from accelerations of the CHAMP satellite. Journal of Geodesy,2006,79:586-601
    [112]Ditmar P., R. Klees, X. Liu. Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. Journal of Geodesy 2007a,81:81-96
    [113]Ditmar P., X. Liu. Dependent of the earth's gravity model derived from satellite accelerations on a priori information. Journal of Geodynamic,2007b,43:189-199
    [114]Drinkwater M. R., R. Floberghagen, R. Haagmans, et al. GOCE:ESA's First Earth Explorer Core Mission. Space Science Reviews,2003,00:1-14
    [115]Drinkwater M., M. Kern. Calibration and Validation Plan for L1b Data Products, Technical Report. EOP-SM/1363/MD-md, ESA ESTEC, Noordwijk, The Netherlands,2006
    [116]ESA. Gravity Field and Steady-State Ocean Circulation Mission, ESA sp-1233(1). Report for mission selection of the four candidate Earth Explorer mission,1999
    [117]ESA. Announcement of opportunity:"Scientific pre-processing, external calibration and validation of level 1B data products for the GOCE mission",2003
    [118]ESA. http://esamultimedia.esa.int/docs/GOCE_factsheet_13_03_08_LR2.pdf,2009
    [119]Foldavry L, D. Svehla, C. Gerlach et al. Gravity model TUM-2Sp based on the energy balance approach and kinematic CHAMP orbits. In:Reigber C. et al (eds.). Earth Observation with CHAMP results from three years in orbit. Berlin:Springer,2004.13-18.
    [120]Forste C., P. Schwintzer, C. Reigber. Format Descripton:The CHAMP Data Format. GFZ Potsdam,2002
    [121]Forste C, F. Flechtner, R. Schmidt, et al. A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission altimetry/gravimetry surface gravity data. European Geosciences Union General Assembly 2005, Vienna, Austria, Apr.2005.
    [122]Forste C., R. Schmidt, R. Stubenvoll, et al. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models:EIGEN-GL04S1 and EIGEN-GL04C. Journal of Geodesy,2008a,82(6):331-346
    [123]Forste C., F. Flechtner, R. Schmidt, et al. EIGEN-GL05C-A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, General Assembly European Geosciences Union (Vienna, Austria 2008), Geophysical Research Abstracts, Vol.10, Abstract No. EGU2008-A-06944,2008b
    [124]Frederik J. S., F. A. Dahlen. Spherical Slepian functions and the polar gap in geodesy, Geophys. J. Int.,2006,166: 1039-1061
    [125]Gelderen M. van, R. Rummel. The Solution of the General Geodetic Boundary Value Problem, Journal of Geodesy,2001,75:1-11
    [126]Gerlach C., N. Sneeuw, P. Visser,et al. CHAMP gravity field recovery using energy balance approach. Advances in Geosciences,2003,1:73-80
    [127]Gotzelmann M, W. Keller, T. Reubelt. Gross error compensation for gravity field analysis based on kinematic orbit data. Journal of Geodesy,2006,80:184-198
    [128]Han S. C., C. Jekeli, C. K. Shum. Efficient Gravity Field Recovery Using in Situ Disturbing Potential Observables from CHAMP. Geophysical Research Letters,2002,29(16)
    [129]Han S. C. Efficient Determination of Global Gravity Field from Satellite-to-Satellite Tracking Mission. Celestial Mechanics and Dynamical Astronomy.2004,88:69-102
    [130]Heiskanen W. A. and H. Moritz. Physical Geodesy. Freeman, San Francisco,1967
    [131]Holota P. Boundary value problems and invariants of the gravitational tensor in satellite gradiomtery. In:Theory of satellite of geodesy and gravity field determination, Sans6 F. and Rummel R.(eds.), Lecture Notes in Earth Sciences, Vol.25,1989, pp.447-457, Springer-verlag
    [132]Howe E., L. Stenseng, C. C. Tscherning. Analysis of one month of CHAMP statevector and accelerometer data for the recovery of the gravity potential. Advances in Geosciences,2003, (1):1-4
    [133]Huber P. J. Robust estimation of a location parameter, Annals of Mathematical Statistics,1964,35:73-101
    [134]Hwang C. Gravity recovery using COSMIC GPS data:application of orbital perturbation theory. Report No.463, Dept. of Geodetic Science, The Ohio State University, Columbus,1998
    [135]Hwang C. Gravity recovery using COSMIC GPS data:application of orbital perturbation theory. Journal of Geodesy,2001,75:117-136.
    [136]Ilk K.H., T. Mayer-Guerr, M. Feuchtinger. Gravity field recovery by analysis of short arcs of CHAMP. In: Reigber C, et al(eds.). Earth Observation with CHAMP results from three years in orbit. Berlin:Springer,2004, pp.127-132
    [137]Ilk K.H., J. Flury, R. Rummel, et al. Mass Transport and Mass Distribution in the Earth System, Proposal for a German Priority Research Program(Report). GOCE-Projektburo Deutschland, TUM, GFZ,2005
    [138]Jekeli C. The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mechanics and Dynamical Astronomy,1999,75:85-101
    [139]Jing Xie. Implementation of Parallel Least-Square Algorithm for Gravity Field Estimation, Report No.74, Dept. of Geodetic Science, The Ohio State University, Columbus,2005
    [140]Kaplan M. H. Modern Spacecraft Dynamics & Control. Wiley & Sons, New York,1976
    [141]Kargoll B. Comparison of some robust parameter estimation techniques for outlier analysis applied to simulated GOCE mission data, in:Gravity, Geoid and Space Missions, C Jekeli, Bastos L. and Fernandes J.(eds.), LAG symposium,2005, Vol.129, pp.77-82, Springer
    [142]Kaula W. M. Theory of Satellite Geodesy, Blaisdell Publishing Company, Waltham Massachusetts,1966
    [143]Keller W. On the treatment of an overdetermined boundary value problem by pseudo-differential operators. In: Sacerdote F., Sanso F.(eds):Proceedings of the Ⅱ. Hotine-Marussi Symposium on Mathematical Geodesy,1987, pp.575-619
    [144]Keller W. Application of boundary value techniques to satellite gradiometry. In:Sanso F, Rummel R.(eds): Geodetic Boundary Value Problems in View of One Centimeter Geoid. Berlin:Springer,1997, pp.543-557
    [145]Keller W., M. A. Sharifi. Satellite gradiometry using a satellite pair. Journal of Geodesy,2005,78:544-557
    [146]Kern M., K. P. Schwarz, N. Sneeuw. A study on the combination of satellite, airborne and terrestrial gravity data. Journal of Geodesy,2003,77:217-225
    [147]Kern M., T. Preimesherger, M. Allesch, et al. Outlier detection algorithm and their performance in GOCE gravity field processing. Journal of Geodesy,2005,78:509-519
    [148]Kim J. Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Ph.D Dissertation, Austin:The University of Texas at Austin,2000
    [149]Kim J., B. D. Tapley. Error Analysis of a Low-Low Satellite-to-Satellite Tracking Mission. Journal of Guidance, Control and Dynamics,2002,25(6):1100-1106
    [150]Klees R., R. Koop, P. Visser, et al. Efficient gravity field recovery from GOCE gravity gradient observations. Journal of Geodesy,2000,74:561-571
    [151]Klees R., P. Broersen. How to handle colored noise in large least-squares problems. Building the optimal filter. Delft University Press, Delft,2002a
    [152]Klees R., R. Koop, Van Geemert R., et al. GOCE gravity field recovery using massive parallel computing, in: Gravity, Geoid and Geodynamics 2000, F Sanso(eds.), IAG symposium,2002b, Vol.123, pp.109-116, Springer
    [153]Klees R., P. Ditmar, P. Broersen. How to handle colored observation noise in large-scale least-squares problems. Journal of Geodesy,2003,76:629-640
    [154]Koch K. R., J. Kusche. Regularization of geopotential determination form satellite data by variance components, Journal of Geodesy,2002,76(5):259-268
    [155]Koop R. and D. Stelpstra. On the Computation of the Gravitational Potential and its First and Second Order Derivatives, Manuscripta Geodaetica,1989,14:373-382
    [156]Koop R. Global gravity field modeling using satellite gravity gradiometry, Netherlands Geodetic Commission, Publications on Geodesy,1993, No.38, Delft
    [157]Koop R., J. Bouman, E. Schrama, P. Visser. Calibration and error assessment of GOCE data. In:Vistas for Geodesy in the New Millennium, J. Adam and Schwarz (eds.), International Association of Geodesy Symposia, Vol.125, pp.167-174, Springer,2002
    [158]Kusche J. Implementation of multigrid solvers for satellite gravity anomaly recovery. Journal of Geodesy,2001, 74:773-782
    [159]Kusche J., R. Klees. Regularization of the gravity field estimation from satellite gravity gradients, Journal of Geodesy,2002,76:359-368
    [160]Lerch F. J. Optimum data weighting and error calibration for estimation of gravitational parameters, Bulletin Ge odesique,1991,65:44-52
    [161]Li J. A Formula for Computing the Gravity Disturbance from the Second Radial Derivative of the Disturbing Potential, Journal of Geodesy,2002,76(4):226-231
    [162]Liu X. Global Gravity Field Recovery from Satellite-to-Satellite Tracking Data with the Acceleration Approach, Ph.D thesis, Delft University of Technology, Delft,2008
    [163]Luthcke S.B., H. J. Zwally, W. Abaalati, et al. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations, Science,2006, DOI:10.1126/science.1130776
    [164]Martinec Z. Green's Function Solution to Spherical Gradiometric Boundary-value Problems. Journal of Geodesy, 2004,77:41-49
    [165]Matthew Rodell, J. L. Chen, Hiroko Kato et al. Estimating groundwater storage changes in the Mississippi River basin(USA) using GRACE. Hydrogeology Journal,2007,15:159-166
    [166]Mayer-Guerr T., M. Feuchtinger, J. Kusche. A comparison of various procedures for global gravity field recovery from CHAMP orbits. In:Reigber C, et al. eds. Earth Observation with CHAMP results from three years in orbit. Berlin:Springer,2004, pp.151-156
    [167]Mayer-Guerr T., K. H. Ilk, A. Eicker, et al. ITG-CHAMP01:A CHAMP Gravity Field Model from short Kinematical Arcs of a One-Year Observation Period. Journal of Geodesy,2005,78,462-480
    [168]McCarthy D. D. IERS Conventions 1996. IERS Technical Note No.21, Observatoire de Paris,1996
    [169]McCarthy D.D. and G. Petit. IERS Conventions 2003. IERS Technical Note No.32, Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main,2004
    [170]Metzler B., R. Pail. GOCE data processing:the spherical cap regularization approach. Stud. Geophys.Geod,2005, 49:441-462
    [171]Migliaccio F., F. Sacerdote, F. Sans6. The boundary value problem approach to the data reduction for a spaceborne gradiometer mission, In:Gravtiy, Gradiometry and Gravimetry, R. Rummel, R. Hipkins(eds.), IAG Symposium, No.103,1990, pp.67-77
    [172]Migliaccio F., M. Reguzzoni, F. Sanso. Space-wise approach to satellite gravity field determination in presence of coloured noise. Journal of Geodesy,2004,78:304-313
    [173]Migliaccio F., M. Reguzzoni, F. Sanso, et al. On the use of gridded data to estimate potential coefficients,3rd International GOCE User Workshop-Frascati, Italy,2006
    [174]Montenbruck O., E.Gill. Satellite Orbits:Models, Methods and Applications. Berlin:Springer-Verlag,2000
    [175]Moore P., J. F. Turner, Z. Qiang. Errors Analyses of CHAMP Data for Recovery of the Earth's Gravity Field. Journal of Geodesy,2003,77:369-380
    [176]Oberndorfer H. and J. Mueller. R. Rummel, et al. A simulation tool for the new gravity filed satellite missions. Advances in Space Research,2002a,30(2):227-232
    [177]Oberndorfer H. and J. Mueller. GOCE closed-loop simulation. Journal of Geodynamics,2002b,33:53-63
    [178]OpenMP. OpenMP Application Program Interface, Version3.0,2008, http://www.openmp.org.
    [179]Pail R., G. Plank. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. Journal of Geodesy,2002,76:462-474
    [180]Pail R. and G. Plank. Comparison of numerical solution strategies for gravity field recovery from GOCE SGG observations implemented on a parallel platform. Advances in Geosciences,2003a,1:39-45
    [181]Pail R., M. Wermuth. GOCE SGG and SST quick-look gravity field analysis, Advances in Geosciences,2003b,1: 5-9
    [182]Pail R. GOCE Data Archiving and Processing Center(DAPC) Graz, Phase la, Final Report, Graz University of Technology,2003c
    [183]Pail R., G. Plank. GOCE gravity field processing strategy. Stud. Geophys. Geod.,2004,48:289-309
    [184]Pavlis N. K., S. A. Holmes, S. C. Kenyon, et al. An Earth Gravitational Model to Degree 2160:EGM2008, presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18,2008
    [185]Preimesberger T., R. Pail. GOCE quick-look gravity solution:application of the semianalytic approach in the case of data caps and non-repeat orbits. Stud. Geophys. Geod,2003,47:435-453
    [186]Rapp R. H. The direct combination of satellite and gravimetric data for mean anomaly determination. Reports of the Department of Geodetic Science,1971, Report No.131, The Ohio State University, Columbus
    [187]Rapp R. H. Combination of satellite, altimetric and terrestrial gravity data. In:Theory of satellite of geodesy and gravity field determination, Sanso F. and Rummel R.(eds.), Lecture Notes in Earth Sciences, Vol.25,1989, pp.261-284, Springer-verlag
    [188]Reguzzoni M. From the time-wise tho space-wise GOCE observables, Advances in Geoscience,2003,1:137-142
    [189]Reigber C. Gravity field recovery from satellite tracking data. Theory of Satellite Geodesy and Gravity Field Determination. Sansd F. and Rummel R (eds.), Lecture Notes in Earth Sciences, Vol.25, Springer-verlag, New York,1989
    [190]Reigber C., H. Ltihr, P. Schwintzer. CHAMP Mission Status. Advances in Space Research,2002a,30(2):129-134
    [191]Reigber C., G. Balmino, P. Schwintzer, et al. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry(EIGEN-1S). Geophysical Research Letters,2002b,29(14):371-374
    [192]Reigber C., H. Jochmann, J. Wunsch, et al.. Earth Gravity Field and Seasonal Variability from CHAMP. Earth Observation with CHAMP-Results from Three Years in Orbit. C. Reigber, P. Schwintzer and J. Wickert. Berlin, Springer Verlag,2005a
    [193]Reigber C., R. Schmidt, F. Flechtner, et al. An Earth gravity field model complete to degree and order 150 from GRACE:EIGEN-GRACE02S. Journal of Geodynamics,2005b,391(1):1-10
    [194]Reubelt T, G. Austen, E. W. Grafarend. Harmonic analysis of Earth's gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study:CHAMP. Journal of Geodesy,2003a,77:257-278
    [195]Reubelt T., G. Austen, E. W. Grafarend. Space gravity spectroscopy-determination of the earth's gravitation field by mean of Newton interpolated LEO ephemeris case studies on dynamic (CHAMP Rapid Science Orbit) and kinematic orbit. Advances in Geosciences,2003b,1:127-135
    [196]Rummel R., C. Reigber, K. H. Ilk. The Use of Satellite-to satellite Tracking for Gravity Parameter Recovery. Proc. Of the European workshop on Space Oceanography, Navigation and Geodynamics, ESA SP-137,1978, pp.153-161
    [197]Rummel R. Determination of Short-wavelength Components of the Gravity Field from Satellite-to-Satellite Tracking or Satellite Gradiometry:An Attempt to and Identification of Problem Areas, Manuscripta Geodetica, 1979,4:107-148
    [198]Rummel R. Geoid Heights, Geoid Height Differences, and Mean Gravity Anomalies from "Low-Low" Satellite-to-Satellite Tracking-An Error Analysis. Department of Geodetic Science Report No.306, Ohio State University, Columbus,1980
    [199]Rummel R. From the Observational Model to Gravity Parameter Estimation. K.P.Schwarz (eds.):Proceedings In Summer School on Local Gravity Field Approximation, Beijing, China,1984, pp.67-106
    [200]Rummel R., O. L. Colombo. Gravity field determination from satellite gradiometry. Bulletin Geodesique,1985, 59:233-246
    [201]Rummel R. Satellite gradiometry. In:Mathematical and Numerical Techniques in Physical Geodesy (H. Sunkel, eds.), pp.317-363. Springer-Verlag, Berlin-Heidelberg,1986
    [202]Rummel R., P. Teunissen, van M. Gelderen. Uniquely and Overdetermined Geodetic Boundary Balue Problems by Least Squares, Bulletin Geodesique,1989,63:1-33
    [203]Rummel R. Gelderen van M. Spectral analysis of the full gravity tensor. Geophysiccal Journal International,1992, 111:159-169
    [204]Rummel R., M. van Gelderen, R. Koop, et al. Spherical harmonic analysis of satellite gradiometry, Netherlands Geodetic Commission, Publications on Geodesy,1993, No.39, Delft
    [205]Rummel R., G. Balmino, J. Johannessen, et al. Dedicated gravity field mission-principles and aims. Journal of Geodynamics,2002,33:3-20
    [206]Rummel R. How to Climb the Gravity Wall. Space Science Reviews,2003,108:1-14
    [207]Sacerdote F, F. Sanso. Over-determined boundary value problem inphysical geodesy. Manuscripta Geodaetica, 1985,10:48-64
    [208]Sanso F., C. C. Tscherning. Fast spherical collocation:theory and examples. Journal of Geodesy,2003,77: 101-112
    [209]Schafer Ch. Space gravity spectroscopy:The sensitivity analysis of GPS-tracked satellite missions (case study CHAMP), PhD. thesis, Geodetic Institute-Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, 2000, Stuttgart
    [210]Schmidt R., P. Schwintzer, F. Flechtner, et al. GRACE observations of changes in continental water storage. Global and Planetary Change,2006,50:112-126
    [211]Schrama E. J. O. The role of orbit errors in processing of satellite altimeter data, Neth Geod Comm, Publications on Geodesy,1989, No.33, Delft
    [212]Schrama E. J. O., Gravity field error analysis:Application of GPS receivers and gradiometers on low orbiting platforms, NASA TM-100769, GSFC Greenbelt Md.20771,1990
    [213]Schrama E. J. O., Gravity field error analysis:Application of Global Positioning System receivers and gradiometers on low orbiting platforms, Journal of Geophysical Research,1991,96(B12):20041-20051
    [214]Schuh W. D. Tailored Numerical Solution Strategies for the Global Determination of the Earth's Gravity Field. Technical Report, Technical University Graz, Graz,1996
    [215]Schuh W. D. Scientic Data Processing Algorithms. From Eotvos to Milligal. Draft Final Report,2000, pp.97-167
    [216]Schuh W. D., R. Pail, G. Plank. Assessment of different numerical solution strategies for gravity field recovery, Proceedings of the "International GOCE User Workshop", ESTEC, Noordwijk,2001
    [217]Schuh W. D. Improved modeling of SGG-data sets by advanced filter strategies. From Eotvos to mGal+, Final Report,2002, pp.113-181
    [218]Schuh W. D. The processing of band-limited measurements:filtering techniques in the least squares context and in the presence of data gaps. Space Science Reviews,2003,108:67-78
    [219]Schwarz K. P. Data types and their spectral properties. In:Schwarz KP(ed) Proc Beijing International Summer School on local Gravity Field Approximation, China,1984, pp.1-66
    [220]Sjoberg L. A recurrence relation for the βn function. Bull. Geod.,1980,54:69-72
    [221]Sjoberg L. Least squares combination of satellite and terrestrial data in physical geodesy. Ann. Geophys.,1981, 37:25-30
    [222]Sneeuw N. J. Inclination Functions. Group theoretical Background and a Recursive Algorithm, Delft University of Technology,1991a
    [223]Sneeuw N. J., Non-Singular Cross-track Derivatives of the Gravitational Potential using Rotated Spherical Harmonics, Proceedings of the XX General Assembly of the IUGG, IAG Symposium G3, Vienna,1991b
    [224]Sneeuw N. J., Representation Coefficients and their use in Satellite Geodesy, Manuscripta Geodaetica,1992,17: 117-123
    [225]Sneeuw N. J. A semi-analytical approach to gravity field analysis from satellite observations, Ph.D. Thesis, University of Munchen,2000
    [226]Sneeuw N. J., J. van den Ussel, R. Koop, et al. Validation of fast pre-mission error analysis of the GOCE gradiometry mission by a full gravity field recovery simulation. Journal of Geodynamics,2002,33:43-52
    [227]Sneeuw N. J. Space-wise, time-wise, torus and Rosborough representation in gravity field modeling, Space Science Reviews,2003,108(1-2):37-46
    [228]Sunkel H. (eds.). From Eotvos to mGal, Final Report, ESA/ESTEC contract No.13392/98/NL/DC,2000
    [229]Sunkel H. (eds.). From Eotvos to mGal+, Final Report, ESA/ESTEC contract No.14287/00/NL/DC,2002
    [230]Svehla D., M. Rothacher. Kinematic and reduced-dynamic precise orbit determination of the low earth orbiters. Advances in Geosciences,2003, (1):47-56
    [231]Swenson S., Pat J.-F. Yeh, J. Wahr, et al. A Comparison of Terrestrial Water Storage Variations from GRACE with In Situ Measurements from Illinois. Geophysical Research Letters,2006,33(16), doi:10.1029/2006GL026962
    [232]Tapley B. D., S. Bettadpur, M. Watkins, et al. The Gravity Recovery and Climate Experiment:Mission Overview and Early Results. Geophysical Research Letter,2004,31:9607-9610
    [233]Tapley B.D., J. Ries, S. Bettadpur, et al. (2005). GGM02 an Improved Earth Gravity Field Model from GRACE. Journal of Geodesy,79:467-478
    [234]Tikhonov A.N., V. Y. Arsenin. Solutions of Ill-posed Problems. John Wiley and Sons, New York,1977
    [235]Tscherning C. C. Computation of spherical harmonic coefficients and their error estimates using Least Squares Collocation. Journal of Geodesy,2001,75:12-18
    [236]Tscherning C. C. and D. Arabelos. Computation of a geopotential model from GOCE data using Fast Spherical collocation-a simulation study. IAG Proceedings,2004, Vol.128, pp.310-313, Springer-verlag
    [237]Tscherning C. C., M. Veicherts, D. Arabelos. Calibration of GOCE gravity gradient data using smooth ground gravity. In:Proceedings of the GOCINA Workshop, Vol.25, Cahiers du Centre Europeen de Geodynamique et de Seismologie,2006, pp.63-67
    [238]van Loon J. P. Robust Estimation and Robust Re-Weighting in Satellite Gravity Modelling, in:VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Xu P., Liu J. and Dermanis A.(eds.), IAG symposium, Vol.132,pp.43-48, Springer,2008
    [239]Visser P. N. A. M., K. F. Wakker, and B. A. C. Ambrosius. Global gravity field recovery from the ARISTOTELES satellite mission, Journal of Geophysical Research,1994,99(B2):2841-2851.
    [240]Visser P. N. A. M., J. van den Ussel, R. Koop, R. Klees. Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE. Journal of Geodesy,2001,75:89-98
    [241]Visser P. N. A. M., N. Sneeuw, C. Gerlach. Energy integral method for gravity field determination from satellite orbit coordinates. Journal of Geodesy,2003,77:207-216
    [242]Visser P. N. A. M. Low-Low satellite-to-satellite tracking:a comparison between analytical liner orbit perturbation theory and numerical integration. Journal of Geodesy,2005,79:160-166
    [243]Visser P. N. A. M. GOCE gradiometer validation by GPS. Advances in Space Research,2007,39(10): 1630-1637
    [244]Visser P. N. A. M, J. van den Ijssel, T. Van Helleputte, et al. Orbit determination for GOCE satellite. Advances in Space Research,2009,43:760-768
    [245]Wagner C. A. Direct Determination of Gravitational Harmonics From Low-Low GRAVSAT data. Journal of Geophysical Research,1983,88(B12):10 309-10 321
    [246]Wenzel H. G. Zur Geoidbestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit Hilfe von Integralformeln. Z. Vermess,1981,3:102-111
    [247]Wenzel H. G. Geoid computation by least-squares spectral combination using intergral kernels. In:Proceedings of the General IAG Meeting, Tokyo,1982, pp.438-453
    [248]Wermuth M. K. Gravity Field Analysis from the Satellite Missions CHAMP and GOCE[Ph.D. Thesis], University of Munchen,2008
    [249]Wichiencharoen C. A comparison of gravimetric undulations computed by the modified Molodenskij truncated method and the method of least squares spectral combination by optimal integral kernels. Bulletin Geodesique, 1984,58:494-509
    [250]Wittwer T. An Introduction to Parallel Programming(First edition). VSSD uitgeverij, Delft,2006
    [251]Wolff M. Direct measurements of the Earth's gravitational potential using a satellite pair, J. Geophys. Res.,1969, 74(22):5295-5300
    [252]Xu Guochang. GPS Theory, Algorithms and Applications (Second Edition). Berlin:Springer-Verlag,2007
    [253]Xu P. L., R. Rummel. Generalized Ridge Regression with Applications in Determ ination of Potential Fields. Manuscripta Geodaetica,1995,19:18-31
    [254]Xu P. L. Truncated SVD Methods for Discrete Linear Ill-posed Problems. Geophysical Journal International, 1998,135:505-514
    [255]Yang Y. Robust estimation for dependent observations. Manuscripta geodaetica,1994,19:10-17
    [256]Yang Y, L. Song, T. Xu. Robust estimator for correlated observations based on bifactor equivalent weight. Journal of Geodesy,2002,76:353-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700