用户名: 密码: 验证码:
基于模拟表位的玉米赤霉烯酮全抗原生物合成及其免疫学检测性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真菌毒素(Mycotoxin)是一类由真菌产生的有毒次级代谢产物,大多显示有特定的器官毒性及致癌性,是食物链中常见的化学性污染物之一,也是目前影响我国食品安全的主要因素。对食品中的真菌毒素进行有效地监控和检测是防止其危害食品安全的重要手段。真菌毒素检测技术经过多年的研究,已经发展衍生出众多类型的检测模式,其中又以竞争型免疫检测体系应用最广。
     建立小分子物质免疫学检测体系的前提和核心是全抗原的合成及抗体的制备。目前,小分子全抗原的制备主要依赖于化学合成的途径,然而该方法存在着合成步骤繁琐、反应时间长、副产物多、批次误差大等缺陷,特别是对于真菌毒素而言,其价格高昂且具致癌毒性,对操作人员及环境易造成毒害和污染,从而限制了免疫学检测方法的广泛使用。
     本研究以常见的真菌毒素一玉米赤霉烯酮(Zearalenone, ZEN)为对象,通过噬菌体展示肽库、外源基因表达及分子定向改造技术,实现ZEN全抗原的生物合成,并将其应用于免疫学检测体系。主要研究内容为:1)ZEN噬菌体展示抗原模拟表位(十二肽)的淘选、鉴定及其结构研究;2)ZEN噬菌体展示抗原模拟表位免疫学检测性能的研究;3)ZEN新型模拟表位表达载体的构建、表达及其免疫学检测性能的研究;4)ZEN抗原模拟表位构效关系的初步研究,主要研究结果如下:
     1淘选获得5种可特异性结合抗ZEN单抗(7G5)的ZEN噬菌体展示抗原模拟表位(十二肽),分别命名为Z5、Z8、Z14、Z15和Z18,采用ExPASy、 Swiss-pdbviewer软件分析其理论等电点、热稳定指数、消光系数、平均亲水性等物化性质并进行了二级结构的预测,结果表明5种模拟表位的两端均为无规则卷曲结构,中间为螺旋结构,理论等电点均小于7.0,对热稳定且具有亲水属性。
     2建立了基于Z5、Z8、Z14、Z15、Z18的间接竞争Phage-ELISA标准曲线,其IC50值分别为23.5±2.0、2.6±0.4、7.0±0.8、1.2±0.3、14±1.6ng/mL。在此基础上,将ZEN抗原模拟表位进行了体外化学合成(多肽制备),并采用马来酰亚胺法将多肽与HRP酶偶联,建立了基于Z5-、Z8-、Z14-、Z15-、Z18-HRP偶联物的直接竞争ELISA标准曲线,其IC50值分别为15±2.4,2.0±0.6,7.2±1.5,0.7±0.1,11±3.1ng/mL。
     3采用SPR研究了ZEN噬菌体展示抗原模拟表位与7G5的生物相互作用及其反应动力学,并进行了结合、解离曲线的分析以及平衡解离常数KD值的计算,结果显示Z5(十二肽)、P4(七肽)与7G5均呈现良好的线性结合关系,两者的反应动力学曲线相似,结合及解离点相近,其KD值分别为39.8,38.7nM, ZEN-BSA与7G5的KD值则为0.31nM。
     4建立了基于ZEN噬菌体展示抗原模拟表位的固相膜免疫检测方法,该方法对于谷物样品中ZEN的Cut-off值为50μg/kg,检测时间10min,且可肉眼判定结果;同时构建了一种PVDF膜免疫快速检测装置,建立了可同时检测5种真菌毒素的PVDF膜免疫检测方法,该方法对于谷物样品中AFB1、ZEN、DON、 OTA、FB1的Cut-off值分别为20,60,1000,20,250μg/kg,检测时间10min且可肉眼判定结果。
     5构建了Z5-, Z8-, Z14-, Z15-, Z18-pMal-PIII和Z15-pRX-AP表达载体,经IPTG诱导后,分别获得了Z5-, Z8-, Z14-, Z15-, Z18-MBP和Z15-AP融合蛋白,建立的间接竞争ELISA标准曲线显示均呈现典型的竞争抑制关系,其IC5o值分别为1.5±0.2,1.6±0.3,3.5±0.5,7.2±0.8,1.8±0.4ng/mL。Z15-AP融合蛋白与AP底物显色液可显色,但与ZEN抗体的结合能力较弱,OD值在0.3-0.5之间。
     6研究了ZEN抗原模拟表位的串联拷贝数、间隔臂及环化结构与其免疫学检测性能的关系,结果显示串联拷贝数、间隔臂并不是影响ZEN模拟表位免疫学检测性能的关键因素;相比于线性结构,ZEN模拟表位的环化结构在作为竞争抗原应用于直接竞争ELISA体系时,其检测灵敏度提高了近60%。建立了基于Z5-MBP融合蛋白的间接竞争ELISA方法检测谷物中的ZEN,与商业化的ZENELISA检测试剂盒(德国Biopharm公司)进行检测比对,结果显示两者之间无显著性的差异,表明ZEN新型模拟表位可实现ZEN全抗原的替代,并应用于免疫学检测体系。
Mycotoxins are toxic secondary metabolites of fungal origin; most of mycotoxins are hazardous to the health of both humans and animals and now recognised as a major cause of food safety issue in China. Detection and control of mycotoxins contamination play an important role in food safety system. Currently, many mycotoxin detection methods have been developed, the competitive immunoassay is now the most applied and representative method for the rapid screening analysis of mycotoxins.
     The preparation of antibody and complete antigen is the precondition and core of setting up competitive immunoassay for small analytes. However, at present, the complete antigen preparation of small analytes including mycotoxins is mainly dependent on the chemical synthesis approach, while the process of chemical synthesis is time-consuming, costly and might be toxic to manufacturers and users, which often hinders its extensive application.
     In this study, we combine the technology of phage displayed peptide library, molecular simulation and exogenous gene expression to develop the method of biosynthesis of complete antigen for model small molecules mycotoxin, zearalenone(ZEN) and achieve its application in immunoassay. The main contents of research are:(i) the biopanning of ZEN mimotope by phage displayed peptide library (12-mer) and its identification;(ii) the research of the immunological detection performance of ZEN mimotope;(iii) construction and expression of ZEN mimotope-based vectors and the research of immunological detection performance of expression fusion proteins;(iv) elucidating the structure-activity relationship of the ZEN mimotopes. The main research results are as follows:
     1. Monoclonal antibody (7G5), which recognizes the ZEN, was used to select for peptides that mimic ZEN by employing a library of filamentous phages that have12-mer peptides on their surfaces. After three rounds of biopanning, five mimotope peptides were obtained to be able to mimic ZEN in binding with the7G5and designated Z5, Z8, Z14, Z15, and Z18. The theoretical isoelectric point, heat stability index, extinction coefficient, average hydrophilic physicochemical properties and secondary structure of ZEN mimotope were analyzed by ExPasy and Swiss-pdbviewer softwares. The results showed that five mimotope have the same secondary structure, which were predominantly in radom coil and helix, and the same hydrophilic, heat stable properties.
     2. The inhibition curves of ZEN by indirect competitive ELISA were established with ZEN mimotopes, the IC50value was23.5±2.0、2.6±0.4、7.0±0.8、1.2±0.3、14±1.6ng/mL for Z5, Z8, Z14, Z15, and Z18, respectively. Furthermore, the peptides which have the same amino acids as ZEN mimotope were synthesized and conjugated with HRP (Z5-, Z8-, Z14-, Z15-, and Z18-HRP) by maleimide method; the inhibition curves of ZEN by direct competitive ELISA were established with peptide-HRP conjugates, and the IC50value was15±2.4,2.0±0.6,7.2±1.5,0.7±0.1,11±3.1ng/mL for Z5-, Z8-, Z14-, Z15-, and Z18-HRP, respectively.
     3. The Z5(12-mer), P4(7-mer), and ZEN-BSA conjugates were immobilized on sensor chip, the reaction kinetics between mimotope/conjugates and7G5were detected by surface plasmon resonance (SPR) analysis. The results showed that sensorgram curves obtained were well-behaved and the SPR response unit (RU) caused by7G5binding increased as the concentration of antibody increased, which is in accordance with the indirect immunoassay principle. The equilibrium dissociation constant (KD) measured for P4:7G5(KD=38.7nM) and Z5:7G5(KD=39.8nM) was-100-fold higher than that measured for ZEN-BSA:7G5(KD=0.31nM).
     4. A polyvinylidene fluoride (PVDF) membrane-based test device was constructed to develop a non-instrumental assay performed with ZEN mimotope. The cut-off level for this method of detecting ZEN, assessed visually, was50μg kg-1and the final results can be obtained within10min. Furthermore, a PVDF membrane-based dot immunoassay for rapid and simultaneous detection of multi-mycotoxins in cereal samples is also developed. The cut-off level for this method, assessed visually, were20,60,1000,20, and250μg kg-1for aflatoxin B1, zearalenone, deoxynivalenol, ochratoxin A, and fumonisins B1respectively, the final results can be obtained within10min.
     5. Five ZEN mimotope-pMal-pⅢ expression vector (Z5-, Z5-, Z8-, Z14-, Z15-, and Z18-pMal-pⅢ) were constructed to express mimotope-MBP fusion proteins which mime ZEN complete antigen. The mimotope-MBP fusion proteins were coated in microplates, and the inhibition curves of ZEN by indirect competitive ELISA were established, the IC50value was1.5±0.2,1.6±0.3,3.5±0.5,7.2±0.8,1.8±0.4ng/mL for Z5-, Z5-, Z8-, Z14-, Z15-MBP fusion protein coated microplates, respectively. Z15-pRX-AP expresssion vector was also constructed to express Z15-AP fusion proteins, whilie the binding ability between Z15-AP and7G5is very low.
     6. The structure-activity relationship of the ZEN mimotopes was studied, the results showed that the linker peptides and multi-copies structure were not key factors which effect the immunological detection performance of ZEN mimotope; while the cyclized Z15based direct immunoassay is more sensitive than Z15based.
引文
[1]Paschke M. Phage display systems and their applications[J]. Appl Microbiol Biotechnol, 2006,70(1):2-11.
    [2]Matsuo AL, Juliano MA, Figueiredo CR, et al. A new phage-display tumor-homing peptide fused to antiangiogenic peptide generates a novel bioactive molecule with antimelanoma activity[J]. Mol Cancer Res,2011,9 (11):1471-8.
    [3]Molek P, Strukelj B, Bratkovic T. Peptide phage display as a tool for drug discovery: targeting membrane receptors[J]. Molecules,2011,16(1):857-87.
    [4]Bastings MM, Helms BA, van Baal I, et al. From phage display to dendrimer display: insights into multivalent binding[J]. J Am Chem Soc,2011,133(17):6636-41
    [5]Cung K, Slater RL, Cui Y, et al. Rapid, multiplexed microfluidic phage display[J]. Lab Chip,2012,12(3):562-5.
    [6]厉艳,陈长法,赵文军等.噬菌体展示技术及其应用[J].植物检疫,2011,25(4):70-74.
    [7]Wang KC, Wang XW, Zhong PY,et al. Adapterdirected display:a modular design for shuttling display on phage surfaces[J]. J Mol Biol,2010,395(5):1088-1101.
    [8]孟繁梅,张朝辉,艾云灿.噬菌体展示系统发展进展[J].遗传,2011,33(10):1113-1120.
    [9]郑俊梅,张映.噬菌体展示肽库的研究及应用进展[J].当代畜牧养殖业,2010,1,7-9.
    [10]王详卫,叶刚,张远宁等.基于抗原表位预测的MUC1模拟肽表位筛选[J].重庆医科大学学报,2009,34(9):1148-1150.
    [11]蔡炯,钟彦伟,荆霞,等.噬菌体展示技术筛选甲型H1N1流感病毒抗原模拟表位的研究[J].解放军医学杂志,2010,35(1):61-63.
    [12]Lindley Kathryn M,Su Jiu-Lan, HodgesP.K, et al. Production of monoclonal antibodies using recombinant baculovirus displaying gp64-fusion proteins[J]. Journal of Immunological Methods,2000,234:123-135.
    [13]徐立,樊代明,徐宏勇,等.噬菌体抗原模拟表位的免疫原性研究[J].中华肿瘤杂志,2001,23(3):187-189
    [14]Ghafourifar P, Colton C. A. Mitochondria and nitricoxide [J]. Antioxid Redox Signal,2003, 5(3):249-250.
    [15]Park H.Y., Park H.C., Yoon M.Y. Screening for peptides binding on Phytophthora capsicia extracts by phage display[J]. Journal of Microbiological Methods,2009, (78):54-58.
    [16]Catherine P.B., Adrian L., Francois S., et al. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF[J]. BMC Biochemistry,2008,9(33):1-11.
    [17]Chan Y.K., Savard M.E., Reid L.M., et al. Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat[J]. BioControl,2009, (54):567-574.
    [18]Naduri V., Sorokulova I.B., Samoylov A.M., et al.Phage as a molecular recognition element in biosensors immobilized by physical adsorption[J]. Biosensors and Bioelectronics,2007,22: 986-992.
    [19]Naduri V.,Balasubramanian S., Sista S., et al. Highly sensitive phage-based biosensor for the detection of β-galactosidase[J]. Analytica Chimica Acta,2007,589,166-172.
    [20]Wan J.H., Shu H.H., Huang S.C., et al. Phage-based magnetoelastic wireless biosensors for detecting Bacillus anthracis spores[J]. IEEE sensor Journal,2007,7(3):470-477.
    [21]Thirumala-Devi K., Miller J. S., Reddy G., et al. Phage-displayed peptides that mimic aflatoxin B1 in serological reactivity [J]. Journal of Applied Microbiology,2001,90,330-336.
    [22]Yuan Q., Pestka J. J., Hespenheide, B. M., et al. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody [J]. Applied and Environmental Microbiology,1999,65,3279-3286.
    [23]Liu R.R., Yu Z., He Q.H.,et al. A immunoassay for ochratoxin A without the mycotoxin[J]. Food Control,2007,27,18:872-877.
    [24]Lai W.H., Fung D.Y.C., Xu Y.et al. Development of a colloidal gold strip for rapid detection of ochratoxin A [J]. Food Control,2009,20:791-795.
    [25]罗翠红,王弘,刘细霞,等.抗呋喃它酮代谢物的衍生物噬菌体单链抗体库的构建[J].食品科学,2010,31(19),283-287.
    [26]Tu Z., Xu Y., He Q.H., et al. Isolation and characcterisation of deoxynivalenol affinity binders from a phage display library based on single domain camelid heavy chain antibodies(VHHs) [J]. Food and Agricultural Immunology,2011,1-9.
    [27]刘媛,梁颖,王耕,等.抗独特型抗体在小分子农药、真菌毒素免疫检测中的应用[J].浙江农业学报,2010,22(3):398-402.
    [28]Maragos, C. M. Recent advances in the development of novel materials for mycotoxin analysis[J]. Analytical and Bioanalytical Chemistry,2009,395,1205-1213.
    [29]陈福生,周启,罗信昌.黄曲霉毒素B1抗独特型抗体的制备和应用研究Ⅰ.抗独特型抗 体的制备和性质研究[J].菌物学报,2004,23(1):93-101.
    [30]Michelangelo P., Annalisa De G., Angelo V. Use of itaconic acid-based polymers for solid-phaseextraction of deoxynivalenol and application to pasta analysis[J]. Analytica chimica acta,2008,609:131-138.
    [31]Faverie A., Hamon F., Di Primo C., et al. Nucleic acids targeted to drugs:SELEX against a quadruplex ligand[J]. Biochimie,2011,93(8),1357-1367.
    [32]Xu D.M., Wu M., Zou Y., et al. Application of aptamers in food saftey[J]. Chinses Journal of Analytical Chemistry,2011,39 (6),925-933.
    [33]杨金易,王弘,潘科,等.小分子化合物高特异性识别体制备新技术[J].食品科学,2007,28(1),366-369.
    [34]Lehn J.M., Chemistry, Nobel lecture,1987,444.
    [35]Van Dorst B., Mehta J., Rouah-Martin E., et al. Selection of PCB binding phages as potential biorecognition elements for food and enviromental monitoring[J]. Analytical Method, 2011,8,1865-1871.
    [36]Kim H.J., Techera A.G., Sapienza G., et al. Phage-borne peptidomimetics accelerate the development of polyclonal antibody-based heterologous immunoassays for detection of pesticide metabolites[J]. Environ. Sci. Technol,2008,42(6):2047-2053.
    [37]何庆华,许杨.玉米赤霉烯酮毒性研究及检测方法进展[J].卫生研究,2005,34(4):502-503.
    [38]孟昭赫.真菌毒素研究进展.北京:人民卫生出版社,1979:216-252
    [39]Abdellah Z., Jose M. Review on the toxicit y, occur rence, metabolism, deto-xification,regulations and intake of zearalenone:An oestrogenicmycotoxin[J]. Food and Chemical Toxicology,2007,45:1-8.
    [40]张丞,刘颖莉.2009年中国饲料和原料中霉菌毒素污染情况调查[J].中国家禽,2010,32(6):67-69.
    [41]Plcinta C.M, D'Mello J.P.E, Macdonald A.M.C. A review of worldwide containination of cereal grains and animal feed with fusarium mycotoxins[J]. Animal feed science and technology,1999,78:21-37.
    [42]朱彤霞.玉米赤霉烯酮产生菌在我国的分布及其特征[J].真菌学报,1991,10(2):141-148
    [43]中华人民共和国国家标准,GB2761-2011食品安全国家标准-食品中真菌毒素限量.
    [44]苏福荣,王松雪,孙辉,等.国内外粮食中真菌毒素限量标准制定的现状与分析[J].粮油 食品科技,2007,15(6):57-59.
    [45]Zhu L, Yuan H, Guo C, et al. Zearalenone induces apoptosis and necrosis in porcine granulosa cells via a caspase-3- and caspase-9-dependent mitochondrial signaling pathway[J]. J Cell Physiol,2012,227(5):1814-20.
    [46]Gresakova L, Borutova R, Faix S, et al. Effect of lignin on oxidative stress in chickens fed a diet contaminated with zearalenone[J]. Acta Vet Hung,2012,60(1):103-14.
    [47]Yu JY, Zheng ZH, Son YO, et al. Mycotoxin zearalenone induces AIF- and ROS-mediated cell death through p53- and MAPK-dependent signaling pathways in RAW264.7 macrophages[J]. Toxicol In Vitro,2011,25(8):1654-63.
    [48]Pfeiffer E, Kommer A, Dempe JS, et al. Absorption and metabolism of the mycotoxin zearalenone and the growth promotor zeranol in Caco-2 cells in vitro[J]. Mol Nutr Food Res, 2011,55(4):560-7.
    [49]Ayed Y, Ayed-Boussema I, Ouanes Z, et al. In vitro and in vivo induction of chromosome aberrations by alpha-and beta-zearalenols:comparison with zearalenone [J]. Mutat Res,2011,726(1):42-6.
    [50]Salah-Abbes JB, Abbes S, Abdel-Wahhab M, et al. Immunotoxicity of zearalenone in Balb/c mice in a high subchronic dosing study counteracted by Raphanus sativus extract[J]. Immunopharmacol Immunotoxicol,2010,32(4):628-36.
    [51]梁梓森,马勇江,刘长永,等.玉米赤霉烯酮对小鼠肝脏及肾脏的毒性作用[J].中国兽医学报,2010,30(5):673-676.
    [52]刘宁,郭炳红.玉米赤霉烯酮对Hela细胞生长抑制作用和细胞超微结构损伤观察[J].中国地方病防治杂志,2011,26(2):96-98.
    [53]Yu Z.L. Effects of zearalenone on mRNA expression and activity of cytochrome P450 1A1 and 1B1 in MCF-7 cells[J]. Ecotoxicology and enviroment safety,2004 58 (2):187-193.
    [54]Benzoni E, Minervini F, Giannoccaro A, et al. Influence of in vitro exposure to mycotoxin zearalenone and its derivatives on swine sperm quality[J]. Reprod Toxicol,2008,25(4):461-7
    [55]Gajecka M, Rybarczyk L, Zwierzchowski W, et al. The effect of experimental, long-term exposure to low-dose zearalenone mycotoxicosis on the histological condition of ovaries in sexually immature gilts[J]. Theriogenology,2011,75(6):1085-94.
    [56]Stadnik A, Borzecki A. Influence of the zearalenone on the activity of chosen liver enzymes in a rat[J]. Ann Agric Environ Med,2009,16(1):31-5.
    [57]Abid-Essefi S, Bouaziz C, Golli-Bennour EE, et al. Comparative study of toxic effects of zearalenone and its two major metabolites alpha-zearalenol and beta-zearalenol on cultured human Caco-2 cells[J]. J Biochem Mol Toxicol,2009,23(4):233-43.
    [58]Ayed Y, Ayed-Boussema I, Ouanes Z, et al. In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols:comparison with zearalenone[J]. Mutat Res. 2011,726(1):42-6.
    [59]Belli P, Bellaton C, Durand J, et al. Fetal and neonatal exposure to the mycotoxin zearalenone induces phenotypic alterations in adult rat mammary gland[J]. Food Chem Toxicol. 2010,48(10):2818-26.
    [60]Dong M, He XJ, Tulayakul P, et al. The toxic effects and fate of intravenously administered zearalenone in goats[J].Toxicon,2010,55(2-3):523-30.
    [61]Zhang X, Liu W, Logrieco AF, et al. Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC-FLD[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2011:1-9.
    [62]Trucksess MW, Fu WS, Oles CJ, et al. Determination of zearalenone in botanical dietary supplements, soybeans, grains, and grain products by immunoaffinity column cleanup and liquid chromatography:single-laboratory validation[J]. J AOAC Int,2011,94(2):589-95.
    [63]Han Z, Ren Y, Zhou H, et al. A rapid method for simultaneous determination of zearalenone, alpha-zearalenol, beta-zearalenol, zearalanone, alpha-zearalanol and beta-zearalanol in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr B Analyt Technol Biomed Life Sci, 2011,879(5-6):411-20.
    [64]Vendl O, Berthiller F, Crews C,et al. Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS[J]. Anal Bioanal Chem,2009,395(5):1347-54.
    [65]Takagi M, Mukai S, Kuriyagawa T, et al. Detection of zearalenone and its metabolites in naturally contaminated follicular fluids by using LC/MS/MS and in vitro effects of zearalenone on oocyte maturation in cattle[J]. Reprod Toxicol,2008,26(2):164-9.
    [66]Kinani S, Bouchonnet S, Bourcier S, et al. Study of the chemical derivatization of zearalenone and its metabolites for gas chromatography-mass spectrometry analysis of environmental samples[J]. J Chromatogr A.2008,1190(1-2):307-15.
    [67]Schwadorf K, Muller HM. Determination of alpha-and beta-zearalenol and zearalenone in cereals by gas chromatography with ion-trap detection. J Chromatogr.1992,595(l-2):259-67.
    [68]杨福江,计融.反相高效液相色谱法测定小麦中玉米赤霉烯酮[J].中国卫生检验杂志,2009,19(12):2743-2744.
    [69]Saeger S.. Analysis of zearalenone and cp-zearalenol in animal feed using high-performance liquid chromatography [J]. Analytica Chimica Acta,2003 (487):137-143
    [70]刘胜利,王莹,何成华,等.玉米赤霉烯酮的高效液相色谱-荧光法检测研究[J].南京农业大学学报,2011,34(6):100-104.
    [71]Rahmani A, Jinap S, Soleimany F. Validation of the procedure for the simultaneous determination of aflatoxins ochratoxin A and zearalenone in cereals using HPLC-FLD [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2010,27(12):1683-93.
    [72]De Boevre M, Di Mavungu JD, Maene P, et al. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess.2012.
    [73]Vendl O, Berthiller F, Crews C, et al. Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS[J]. Anal Bioanal Chem,2009,395(5):1347-54.
    [74]罗雪云,胡霞,李玉伟.小麦,小麦制品中玉米赤霉烯酮的薄层色谱法测定[J].卫生研究,1993,22(2):112-115
    [75]王照鹏,李小兵,王哲.玉米赤霉烯酮检测方法进展[J].中国畜牧兽医,2009,36(5):216-218.
    [76]陈必芳,李兰.饲料中镰刀菌毒素DON, T-2,和ZEN气相色谱测定方法研究[J].中国饲料,1995,10:32-34.
    [77]Weber D, Kneschke N, Grimm S, et al. Rapid and sensitive determination of protein-nitrotyrosine by ELISA:Application to human plasma[J]. Free Radic Res. 2012,46(3):276-85.
    [78]Bojanich MV, Marino GL, Lopez MA, et al. An evaluation of the dot-ELISA procedure as a diagnostic test in an area with a high prevalence of human Toxocara canis infection[J]. Mem Inst Oswaldo Cruz,2012,107(2):194-7.
    [79]Depontieu F, Caires ND, Gourcerol D, et al. Development of monoclonal antibodies and ELISA specific for the mouse vascular endocan[J]. J Immunol Methods.2012.
    [80]El-Seify MA, El-Bahy NM, Desouky AY, Bazh EK. ELISA and some biochemical tests of heterophyidae infection in laboratory animals[J]. Parasitol Res,2012,110(2):679-87.
    [81]Liu M.T.Indirect enzyme-linked immunosorbent assay for mycotoxin Zearalenone [J]. J Appl Environ Microbiol.1985,50 (2):332-336
    [82]王景琳,张志东等.竞争间接ELISA检测谷物饲料中的玉米赤霉烯酮[J].中国兽医学报,14(2):154-158
    [83]王玉平,计融,江涛等.玉米赤霉烯酮ELISA定量检测试剂盒研制[J].卫生研究,2006,35(2):221-224.
    [84]Sun X.L., Zhao X.L., Tang J., et al. Development of an immunochromatographic assay for detection of aflatoxin B1 in food. Food control,2006,17:256-262.
    [85]Wang X.H., Liu T., Xu N., et al. Enzyme-linked immunosorbent assay and colloidal gold immunoassay for ochratoxin A:investigation of analytical conditions and sample matrix on assay performance [J]. Anal Bioanal Chem,2007,389:903-911.
    [86]Shim W.B., Kim K.Y., Chung D.H. Development and validation of a gold nanoparticle immunochromatograohic assay (ICG) for the detection of zearalenone[J]. J.Agric.Food Chem, 2009,57:4035-4041.
    [87]Kolosova, A. Y., De Saeger, S., et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol[J]. Analytical and Bioanalytical Chemistry,2001,389,2103-2107.
    [88]吴文晔,徐炜,李艳,等.同时检测两种真菌毒素的胶体金试纸条的研制[J].食品工程,2011,4:46-53.
    [89]Zhu Y, Xu L, Ma W, et al. G-quadruplex DNAzyme-based microcystin-LR (toxin) determination by a novel immunosensor[J]. Biosens Bioelectron.2011,26(11):4393-8.
    [90]Hayat A, Barthelmebs L, Marty JL. Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of okadaic acid[J]. Anal Chim Acta. 2011,690(2):248-52.
    [91]Mohammed MI, Desmulliez MP. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers:a review[J]. Lab Chip. 2011,11(4):569-95.
    [92]Arevalo FJ, Gonzalez-Techera A, Zon MA,et al. Ultra-sensitive electrochemical immunosensor using analyte peptidomimetics selected from phage display peptide libraries[J]. Biosens Bioelectron.2012,32(l):231-7.
    [93]Omidfar K, Zarei H, Gholizadeh F,et al. A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41-polyvinyl alcohol nanocomposite and colloidal gold nanoparticles[J]. Anal Biochem.2012,421(2):649-56.
    [94]王海明,钱凯先.表面等离子共振技术在生物分子互作研究中的应用[J].浙江大学学报(工学版),2003,3:354-361.
    [95]Yuan J., Deng D.W., Lauren D.R.,et al. Surface plasmon resonance biosensor forthe detection of ochratoxin A in cereals and beverages[J]. Analytica Chimica Acta,2009,656:63-71.
    [96]Kadota T., Takezawa Y., Hirano S., et al. Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay[J]. Analytica Chimica Acta,2010, 673:173-178.
    [97]Meneely J.P., Sulyok M., Baumgartner S., et al. A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food[J]. Talanta, 2010,81:630-636.
    [98]Liu Y, Qin Z., Wu X. Immune-biosensor for aflatoxin Bl based bio-electrocatalytic reaction on microcomb electrode[J]. Biochemical Engineering Journal,2006,32(3):211-217.
    [99]Nagwa H.S., Ammida, Laura M., et al. Electrochemical immunosensor for determination of aflatoxin B1 in barley[J]. Analytica Chimica Acta,2004,5:159-164.
    [100]Nancy V.P., Franco A.B., Eloy S., et al. Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems[J]. Biochemical Engineering Journal,2010,51:7-13.
    [101]Mak A. C., Osterfeld S. J., Yu, et al. Sensitive giant magnetorisistive based immunoassay for multiplex mycotoxin detection[J]. Biosensors and Bioelectronics,2010,25,1635-1639.
    [102]Thiemann TC, Brault AC, Ernest HB, Reisen WK. Development of a high-throughput microsphere-based molecular assay to identify 15 common bloodmeal hosts of Culex mosquitoes[J]. Mol Ecol Resour,2012,12(2):238-46.
    [103]Quint KD, Geraets DT, van den Munckhof HA, et al. Evaluation of a novel Chlamydia trachomatis microsphere suspension assay for detection and genotyping of the different serovars in clinical samples[J]. J Mol Diagn,2011,13(2):152-9.
    [104]Wong RP, Karunajeewa H, Mueller I, Siba P, Zimmerman PA, Davis TM. Molecular assessment of Plasmodium falciparum resistance to antimalarial drugs in Papua New Guinea using an extended ligase detection reaction fluorescent microsphere assay. Antimicrob Agents Chemother.2011,55(2):798-805.
    [105]Wood BA, O'Halloran KP, Vandewoude S. Development and validation of a multiplex microsphere-based assay for detection of domestic cat (Felis catus) cytokines[J]. Clin Vaccine Immunol,2011,18(3):387-92.
    [106]Bernhard OK, Mathias RA, Barnes TW, et al. A fluorescent microsphere-based method for assay of multiple analytes in plasma[J]. Methods Mol Biol,2011,728:195-206.
    [107]宋慧君,王玫,于珂等.玉米赤霉烯酮液相芯片定量检测方法的研究.沈阳农业大学学报[J].2011,42(4):479-482.
    [108]Kim H.J., Techera A.G., Sapienza G., et al. Phage-borne peptidomimetics accelerate the development of polyclonal antibody-based heterologous immunoassays for detection of pesticide metabolites[J]. Environ. Sci. Technol,2008,42(6):2047-2053.
    [109]Yuan Q.P., Pestka J.J., Hespenheide B.M., et al. I dentification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody[J]. Applied and Environmental Microbiology,1999,65(8):3279-3286.
    [110]张园园,裴世春,郑东和.噬菌体展示技术在食品真菌毒素检测领域的应用[J].中国农学通报,2009,24(3):87-89.
    [111]张林,江涛,计融.应用随机肽库筛选展示河豚毒素模拟表位噬菌体[J].卫生研究,2010,39(3):299-305.
    [112]Kobayashi N., Kubota K.., Oiwa H. Idiotype-anti-idiotype-based noncompetitive enzyme-linked immunosorbent assay of ursodeoxycholic acid 7-N-acetylglucosaminides in human urine with subfemtomole range sensitivity. Journal of Immuological Methods,2003, 272:1-10.
    [113]陈福生,周启,罗信昌.黄曲霉毒素B1抗独特型抗体的制备和应用研究Ⅰ.抗独特型抗体的制备和性质研究[J].菌物学报,2004,23(1):93-101.
    [114]刘媛,梁颖,王耕,等.抗独特型抗体在小分子农药、真菌毒素免疫检测中的应用[J].浙江农业学报,2010,22(3):398-402.
    [115]Zwick M.B., Bonnycastle L.C., Noren K.A.,et al. The maltose-binding protein as a scaffold for monovalent display of peptides derived from phage libraries. Analytical Biochemistry, 1998,264:87-97.
    [116]Techera A.G, Failache M.U., Obal S.C., et al. High-throughput method for ranking the affinity of peptide ligands selected from phage display libraries[J].Bioconjugate Chem,2008, 19:993-1000.
    [117]Huang X., Zhang X.E., Zhou Y.F., et al. Construciton of a high sensitive Escherichia coli alkaline phosphatase reporter system for screening affinity peptide[J]. J.Biochem.Biophy. Methods,2007,70:435-439.
    [118]Binz K., Amstutz P., Pluckthun A. Engineering novel binding proteins from nonimmunoglobulin domains[J].Nature Biotechnology,2005,23:1257-1268.
    [119]Saphire E.O., Montero M., Menendez A., et al. Structure of a high-affinity "mimotope" peptide bound to HIV-1-neutralizing antibody b12 explains its inability to elicit gp 120 cross-reactive antiboies[J]. J. Mol. Biol.,2007,369(3):696-709.
    [120]何庆华.采用噬菌体展示技术淘选玉米赤霉烯酮模拟表位的研究[D].南昌大学,2006.
    [121]刘仁荣.用噬菌体展示技术建立赭曲霉毒素A无毒酶联免疫吸附检测方法的研究[D].南昌大学,2005.
    [122]朱明,蔡黎.噬菌体展示肽库技术及其应用现状[J].中国病原生物学杂志.2007,2:152-158.
    [123]Doorbar J., Winter G., Isolation of a peptide antagonist to the thrombin receptor using phage display[J]. J.Mol. Biol.1994,244:361-369.
    [124]Fuh G., Sidhu S.S. Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein [J]. FEBS Letter.2000,480:231-234.
    [125]Goldman E.R., Pazirandeh M.P., Mauro J.M. et al. Phage-displayed peptides as biosensor reagents [J]. Journal of molecular recognition.2000,13:382-387.
    [126]张微微.表面等离子共振技术快速测定海水中天然雌激素方法的研究[D].大连海事大学,2007.
    [127]欧惠超,姜浩,周宏敏等.五种SPR传感芯片的再生制备及其应用[J].中国生物工程杂志.2009,1:44-49.
    [128]Basova E.Y., Goryacheva I.Y., Burmistrova N.A., et al. An immunochemical test for rapid screening of zearalenone and T-2 toxin[J]. Anal.Bioanal.Chem.2010,397:55-62.
    [129]刘夏.抗免疫球蛋白G Fc段单域重链抗体的淘选、鉴定及表达;抗AFB1单域重链抗体文库淘选方法的研究[D].南昌大学,2010.
    [130]Lores Arnaiz S., D Amico G., Czerniczyniec A., et al. Brain mitochondrial nitric oxide synthase:in vitro and in vivo inhition by chlorpronazine[J]. Arch. Biochem.Biophys. 2004,430:170-177.
    [131]洪孝庄主编.蛋白质连接技术[M].北京:中国医药科技出版社,1993:2-56.
    [132]聂新华,张涛,李元等.多肽结构与功能相互关系的研究进展[J].大连大学学报.2009,3:45-49.
    [133]张军,杨雅麟,田子罡等.多肽串联基因构建策略[J].中国生物工程杂志.2009,29: 107-112.
    [134]Mansur M., Cabello C., Hernandez L., et al. Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris[J]. Biotechnol Lett.2005,27:339-345.
    [135]Danuta P., Marta O., Jacek W., et al. Highly potent side-chain to side-chain cyclized enkephalin analogues containing a carbonyl bridge:symthesis, biology and conformation[J]. J.peptide Sci.2001,7:128-140.
    [136]Irea B., Nga N.G., Carole L., et al. Dicarba analogues of the cyclic enkephalin peptides H-Tyr-c [d-Cys-Gly-Phe-d-(orl)-Cys] NH retain high opioid activity [J]. J. Med.Chem. 2007,50:1414-1417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700