用户名: 密码: 验证码:
铝中氢行为的计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢在铝及其熔体中被认为是一种有害元素,由于氢的溶解度在熔体中和固体中有很大的差别,铝在凝固过程中会析出氢气导致组织中产生气孔并降低铸件的疲劳寿命。本文通过计算机模拟技术对铝中氢的行为进行了全面的研究,包含了氢作为气体杂质元素在金属铝中运动的全部过程。
     本文基于铝熔体与氢的相互作用的几个过程的分析,包括:熔体吸氢、氢在铝熔体中的扩散、熔体凝固过程中析氢以及氢气泡长大等过程。探讨了各个影响因素(时间、温度等)对熔体吸氢的作用,建立了相互作用的关系式,并研究了氢阻R与氢扩散系数的关系,分析了影响氢阻R的诸多因素。研究结果表明,在恒温条件下,熔池析氢的速度只与其深度有关,熔池越深,析氢速度越慢。通过对整个凝固过程的分析得出采用常规手段处理后的熔体在凝固过程中气体析出,形成气孔敏感性极大,而析出气体以非自发形核(异质形核)生成气泡。
     本文通过实验检测,研究铝熔体吸氢规律与熔体过热温度的关系。采用分子动力学模拟铝熔体相关结构性质,计算其粘度,并从在不同温度下的铝熔体的结构以及粘度等性质改变导致铝熔体吸氢变化等规律进行了探索。发现铝熔体中氢含量和温度的关系和熔体粘度的变化相对应,都在计算得出的熔体结构突变的温度区间内产生异常。本文认为铝熔体的原子排布规律对氢在其中的溶解产生了一定的影响,这个影响分为两个方面:第一,随着温度升高,熔体中铝原子与近邻原子间距变大,配位数减小,熔体内部自由体积增加,溶氢的能力增强,导致熔体氢含量的上升,然而部分温度的结构突变带来自由体积的突然变化,因此氢含量会产生波动;第二,原子热运动的增强导致原子间相互作用减弱,因此在一定温度范围内,粘度值随温度升高而逐渐降低,熔体粘度突变的温度点也反应了原子团簇内的原子排列方式发生了突然变化,附近亦存在吸氢的突变。铝熔体中氢含量的变化是熔体结构变化外在表现。
     采用从头算分子动力学方法,研究熔体铝中杂质气体元素的存在形态及相互作用机制,揭示气体元素分布与扩散规律。通过实验证明了氯对铝熔体除气的增强效应,并通过模拟比较无氯和含氯铝熔体体系中氢原子的运动行为,阐明了活性气体在除气过程中的作用机理。采用从头算法以及从头算分子动力学方法研究了氢在固体和熔体铝中的扩散行为。通过分析氢在铝晶体中的能量状态以及扩散过程,从原子尺度解释了氢在固态铝中的驻点选取和铝晶体中结构缺陷的关系。
     通过对氢在铝熔体中的扩散以及氯对氢扩散影响的从头算分子动力学等研究,解释了铝熔体除氢时氯气的作用。氢在铝熔体中的扩散受到铝和氯共同影响。在其扩散过程中,氯原子降低了周围氢原子的扩散激活能垒,使得铝原子与氢原子的碰撞几率减小导致铝原子对氢扩散的阻碍被降低。另一方面,考虑到现实情况下的熔体会氧化,因此本文对含氧的体系也进行了分析发现氯的加入明显改变了氧化物中氧的扩散活性,可以说在一定程度上破坏了氧化物的稳定性,从而提高了氢在熔体中的扩散能力。
     通过对氢在固体铝中的扩散路径以及空位对氢扩散影响的从头算法和从头算分子动力学等研究,从动力学的角度描述了空位束缚效应如何具体影响氢原子在铝中的扩散。研究结果表明,一般情况下,四面体间隙是氢在铝晶体中较为稳定的驻点。铝晶体存在空位时,由于氢的扩散受到空位束缚效应影响,任何远离空位方向的氢扩散都会遭遇较大的扩散能垒。当氢原子扩散远离空位后,空位束缚效应极大地减弱。空位积累的畸变能只能通过俘获附近的氢原子得到释放,远离空位的氢原子对其影响甚微。同时,动力学过程的分析着重研究了升温和氢扩散的关系,结果表明氢的扩散受到温度和空位浓度两个作用得共同耦合结果的影响。通过进一步计算得出空位周围的多面体间隙与氢扩散的关系。
Hydrogen in aluminum or its alloys, probably well-known as a harmful impurity,induces porosity and limits fatigue life in cast aluminum alloys due to the largesolubility difference of H in liquid and solid aluminum. The main source of hydrogen inaluminum alloys is water vapor from the atmosphere surrounding the melting andholding furnaces where it reacts with molten aluminum forming monatomic hydrogen.Several processes of the interaction between aluminum melt and hydrogen have beenanalyzed theoretically, including the hydrogen absorption process and the hydrogenevolution process.
     The relationship between hydrogen resistance and hydrogen diffucivity has beendiscussed and some factors which influence hydrogen resisitance have been studied.The speed of hydrogen evolution is only related to the depth of melt bath and hasnothing to do with the superfacial area of the melt. It is found that at certain temperature,the deeper the melt bath, the slower the hydrogen evolution is. So when treated withtraditional techniques, the hydrogen can be hardly removed thoroughly.
     The hydrogen content in aluminum melts at different temperature was detected.The structure in aluminum melts was investigated by molecular dynamics simulation.The mechanism of hydrogen absorption has been discussed. The interdependencebetween melt structural properties and hydrogen absorption was obtained. The visicosiy,pair correlation function, first peak position, and coordination number was calculatedand differences in the structural properties were examined. It is considered thatarrangement of aluminum atoms produces a certain effect on the solution of hydrogen inAl melts. On one hand, as temperature grows, the distances between neighbor atomsdecrease, as well as the atomic coordination number, enlarging the internal free volumeof Al melts. However, at some certain temperature, the abrupt change of melt structurebrings the sudden fluctuation of free volume inside the melt, so the hydrogen contentchanges abnormally. One the other hand, the increasing atom motion leads to theweakened interaction between atoms. So in a certain temperature range, viscositydecreases with increasing temperature, but at particular temperature, the arrangement ofatoms within the atomic cluster has a sudden change in aluminum melts and aluminumatoms will be transported based on the new structure. The viscosity affects hydrogendiffusion in the melt, so altering of hydrogen content in molten aluminum is externalrepresentation of melt structural change.
     The effect of chlorine on improving hydrogen diffusion has been discussed. Bystudying the site preference of H in bulk aluminum, the mechanism of H embrittlementand vacancy binding effect has been discussed. The distrubition and concentration ofgas impurities in bulk aluminum has been studied and the diffusion process of hydrogenin aluminum melts was investigated by molecular dynamics simulation.
     Ab initio MD simulations were performed to study hydrogen diffusion in liquidaluminum at various temperature. The property of the structure and dynamics arepredicted in models of H in liquid aluminum. The coordination number of the system isreduced in presence of chlorine reduces and spontaneously interactions betweenaluminum and hydrogen is also weakened by chlorine. By increasing the atomicinterstices and reducing the atomic collision between Al and H, Hydrogen diffusion inliquid aluminum is accelerated by chlorine. Activation energy barrier of each system isalso obtained from the calculations, and relevant to diffusion, Eais much lower whenchlorine is in Al. Moreover, when oxidation is considered, Stability of oxide layer maybe destroyed by chlorine as the diffusicity of oxygen atoms changes.
     Diffusion path of hydrogen in solid aluminum and the impact of vacany onhydrogen diffusion are described by ab initio and ab initio molecular dynamics study.From the perspective of the dynamics vacancy binding effect is described specifically.Under normal circumstances, the tetrahedral interstitial in aluminum crystals is the moststable site for hydrogen. Due to vacancy binding effect, any direction that hydrogendiffuses away from the vacancy confronts with a large diffusion energy barrier. Whenthe hydrogen atoms diffuse away from the vacancy, the vacancy binding effect isgreatly weakened and has little influence on the hydrogen atom far away from it.Distortion energy accumulated by vacancies can only be released by trapping hydrogenatoms nearby. This is why it is extremely difficult to remove hydrogen completely atlow temperature. At the same time, the analysis of dynamic process is focused on anissue that the temperature increasing activates the diffusion of the hydrogen yetincreases the vacancy binding effect which weakens the hydrogen diffusion. Foraluminum processing, at low temperature, the most effective means to reduce thehydrogen content is to minimize vacancies and defects in the bulk metals.
引文
[1] H. Liu, M. Bouchard, L. Zhang. An Exerimental Study of Hydrogen Solubility in LiquidAluminum. Journal of Materials Science[J].1995,30(17):4309-4315.
    [2][苏]切尔涅茄.有色金属及其合金中的气体[M].北京:冶金工业出版社,1989.
    [3]杨道明.金属力学性能失效分析[M].北京:冶金工业出版社,1991.
    [4] P. Waite. A Technical Perspective on Molten Aluminum Processing[C]. Light Metals,2002:841-848.
    [5] V. S. Warke, S. Shankar, M. M. Makhlouf. Mathematical modeling and computer simulation ofmolten aluminum cleansing by the rotating impeller degasser: Part II. Removal of hydrogen gas andsolid particles [J]. Journal of Materials Processing Technology,2005,168(1):119-126.
    [6]巫瑞智,倪红军等.铝熔体吹气除氢净化技术[J].铸造技术,2003,24(3):166-167.
    [7]G. K. Sigworth. Practical Degassing of Aluminum[J]. Modern casting,1988,78(3):42-44.
    [8]G. K. Sigworth. A Novel Method for Gas Measurement in Aluminum[C]. Light Metals,1993:981-989.
    [9] R. Owens R, D. V. Neff. Nonferrous molten metal processes[C]. ASM Handbook. USA,1988,15:445-496.
    [10] E. L. Rooy. Aluminum and Aluminum Alloys[C]. ASM Handbook. USA,1988,15:743-770.
    [11] D. V. Neff. The Benefits of Flux Injection Combined with Rotor Dispersion for ProducingClean Aluminum Casting Alloys [C]. Proceedings of3rd International conference on aluminumprocessing.1992:591-610.
    [12] F. Lihl, A. Schwaiger. Umwandlungen in flussigen Aluminium[J]. Zeitschrift für Metallkunde,1967,58:776-779.
    [13] J. G. Qi, J. Z. Wang, B. Wang and D. Q. Cang. Viscosity of Liquid Aluminum Modified byElectric Pulse[J]. International Journal of Modern Physics B,2009,23(06-07):869-874.
    [14] A. M. Samuel, F. H. Samuel. Review Various Aspects involved in the Production ofLow-hydrogen Aluminum Castings[J]. Journal of Materials Science,1992,27:6533-6563.
    [15] G. Popescu, I. Gheorghe, et al. Vacuum Degassing of Aluminum Alloys[A]. Materials scienceforum[C],1996,217:147-152.
    [16] T. A. Utigard. Properties of Fluxes used in Molten. Aluminum Refining[C]. Proceedings of theInternational Symposium on Extraction, Refining, and Fabrication of Light Metals, Ottawa, Canada:CIM,1991:353-365.
    [17] J. Cleave. The Road to Cleaner Aluminum Melts[J]. Foundry Trade Journal,1991,165(3438):558-571.
    [18]高以熹.对无公害精炼剂的反应过程及其有无毒性的探讨[J].特种铸造及有色合金,1986,3:16-19.
    [19]林柏年,田桦萌.关于铝合金无毒精炼、变质剂的争论[J].特种铸造及有色合金,1986,2:22-27.
    [20]李凤鸣.对铸造铝合金无毒精炼剂及变质剂的机理和效果的商榷意见[J].特种铸造及有色合金,1987,1:5-10.
    [21] T. Douguang, at el. Rare Earth Alloy-A Superior Choice for Refining and Modifying CastAluminum Alloys[C]. Proceedings of the second China international die casting congress,2000,116.
    [22] R. Ferro, et al. Rare Earth Metal in Light Alloys[J]. Journal of Rare Earths,1997,15(1):45-61.
    [23]唐多光.铸造铝合金精炼变质的好材料稀土合金[J].特种铸造及有色合金,1999,(5):42-44.
    [24]彭学仕,陈德林. SNIF净化工艺参数对铝熔体除氢效果的影响[J].轻金属,1989,(4):47-51.
    [25] C. E. Ransley, D. E. Talbot, H. C. Barlow. An instrument for measuring the gas content ofaluminum alloys during melting and casting[J]. Journal of Institute of Metals,1957,86:212-219.
    [26] J. E. Dore, B. R. Milligan. MINT: an in-line treatment system for remving impurities fromaluminium alloy melts[J]. Institute of Metals,1986:101-110.
    [27] J. A. Clumpner, R. E. Hershey, W. L. Hoffmann. MINT-an In-Line Melt Purification System:Predicting Commercial Performance with Aluminum Alloys[J]. Light Metals,1986:815-819.
    [28] R. Davis, R. N. Dokken. Product quality improvements through in-line refining with SNIF[C].Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, Pennsylvania),1987:711-716.
    [29] J. Bildstein, J. M. Hicter. Development of the ALPUR systems for the in-line treatment ofmolten aluminum and aluminum alloys[C]. Light Metals: Proceedings of Sessions, AIME AnnualMeeting (Warrendale, Pennsylvania),1985:1209-1224.
    [30] D. T. Hampton, A. Moores, J. L. Tessandori. Review of operation and performance of the rapiddegassing equipment for molten aluminum[C]. Light Metals: Proceedings of Sessions, AIMEAnnual Meeting (Warrendale, Pennsylvania),1991:1159-1163.
    [31]洪永先,张群尧.向熔体深处引入高温气流精炼铝熔体[J].轻合金加工技术,1989,5:11-12.
    [32]熊艳才.铝锂合金真空除氢工艺研究[J].特种铸造及有色合金,1999,1:7-9.
    [33] X. G. Chen, F. J. Klinkenberg, S. Engler, L. Heusler, W. Schneider. Comparing HydrogenTesting Methods for Wrought Aluminum[J]. The Journal of the Minerals, Metals&MaterialsSociety (TMS),1994,9:34-38.
    [34] S. A. Levy. Evaluation of molten metal quality for aluminum alloys[J]. AFS Transactions,1985,93:889-894.
    [35] J. Neil, A. C. Burr. Initial bubble test for determination of hydrogen content in moltenaluminum[J]. AFS Transactions,1961,69:272-275.
    [36] T. E. Acklin, N. J. Davidson. The measurement of gas in molten aluminum casting alloys[C].Proceedings of2ndInternational Conference on Molten Aluminum Processing. Sponsored by AFS,1989:19-22.
    [37]孙宝德,王俊,李天晓.铝合金中的氢及其检测方法[J].铸造,1998,(9):45-48.
    [38]孟庆海.西南铝研制出铝智能测氢仪[J].中国有色金属学报,2000,1:50-55.
    [39] E. Fromm. Bestimmung von Gasen, insbesondere Wasserstoff, in Schmelzen[C]. Erstarrungmetallischer Schmelzen, Oberursel. Germany, DGM,1988:115-124.
    [40] X. G. Chen, S. Engler. Measuring Hydrogen Content in Molten Aluminum Alloys using theCHAPEL Technique[J]. Cast Metals,1993,6(2):99-108.
    [41] N. A. Szokefalvi, L. Stojanova, E. Fromm. Novel method for the determination of the hydrogensolubility in aluminum and aluminum alloy melts[J]. Metallurgical and Materials Transactions B,1998,29B (2):421-427.
    [42]邱大年.计算机在材料科学中的应用[M].北京:北京工业大学出版社,1990.
    [43] H. C. Anderson. Molecular dynamics simulations at constantpress and/or temperature[J].Journal of Chemical Physics,1980,72:2384-2393.
    [44] R. Car, M. Parrinello. Unified approach for molecular dynam-ics and density-functional theory.Physical Review Letters,1985,55:2471-2474.
    [45]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    [46]陈瞬麟.计算材料科学[M].北京:化学工业出版社,2005.
    [47] M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids[M]. Oxford: Clarendon Press,1987.
    [48]严辉,杨巍,宋雪梅等.第一原理方法在材料科学中的应用[J].北京工业大学学报,2004,30:210-213.
    [49] M. W. Finnis. The Theory of Metal-Ceramic Interfaces[J]. Journal of Physics: CondensedMatter,1996,8:5811-5836.
    [50]朱梓忠,黄梅纯,张志鹏等.复杂材料体系的第一原理研究[J].厦门大学学报(自然科学版)2001,40:260-266.
    [51] W. Koch, M. C. Holthausen. A chemist’s guide to density functional theory, second edition[M].D-69469Weinheim: Wiley-VCH Verlag GmbH,2001.
    [52] M. D. Segall, P.J. D. Lindan, M. J. Probert, et al. First-principles simulation: ideas, illustrationsand the CASTEP code[J]. Journal of physics: Condensed Matter,2002,14:2417-2744.
    [53]叶恒强.材料界面结构与特性[M].北京:科学出版社,1999.
    [54] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. PhysicalReview B1992,46:6671-6687.
    [55] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B1990,41:7892-7895.
    [56] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple[J].Physical Review Letters.1996,77:3865-3868.
    [57] H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations[J]. Physical ReviewB.1976,13:5188-5192.
    [58] D. A. Hilton. Quantitative Measurement of Hydrogen in Molten Aluminum Alloys by aReduced Pressure Technique[C].36th Annual Meeting of The Investment Casting Institute,1988.
    [59] D. P. Kanicki, W. M. Rasmussen. Processing Molten Aluminum-Part2: Cleaning up yourMetal[J]. Modern Casting,1990,80(2):55-58.
    [60] T. Iida, I. L. Rodarick. The Properties of Liquid Metal[M]. Oxford: Clavendon Press,1993.
    [61] S. S. Xu. Advancement of X-ray Diffractometry[M]. Beijing: Science Press,1986.
    [62] Q. Fu, D. Xu and J. W. Evans. Chlorine fluxing for removal of magnesium from moltenaluminum: Part I. Laboratory-scale measurements of reaction rates and bubble behavior[J].Metallurgical and Materials Transactions B,1998,13:447-450.
    [63] G. Lu, K. Efthimios. Hydrogen Embrittlement of Aluminum: The Crucial Role of Vacancies[J].Physical Review Letters,2005,94,155501:1-4.
    [64] S. M. Myers, et al. Hydrogen interactions with defects in crystalline solids[J]. Reviews ofModern Physics,1992,64,559-617.
    [1]孟庆海.西南铝研制出铝智能测氢仪[J].中国有色金属学报,2000,1:50-55.
    [2] G. K. Sigworth. A scientific basis for degassing aluminum[J]. AFS Transactions,1987,81:73-78.
    [3]王立秋,李见.双相滞热传导方程[M].山东大学出版社,2000.
    [4] J. P. Rao, C. Y. Ouyang, M. S. Lei and F. Y. Jiang. First principles investigation of interactionbetween interstitials H atom and Nb metal[J]. Acta Physica Sinca,2012,61(4),047105:1-5.
    [5] X. Cao, J. Campbell. A critical review of techniques for the removal of oxide films (including theheat treatment of liquid metal)[C]. Proc. from the2ndinternational aluminum casting technologysymposium,2002:135-146
    [6]胡赓祥,蔡珣.材料科学基础[M].上海交通大学出版社,2000.
    [7] J. G. Qi, J. Z. Wang, B. Wang and D. Q. Cang. Viscosity of Liquid Aluminum Modified byElectric Pulse[J]. International Journal of Modern Physics B,2009,23(06-07):869-874.
    [8]杨道明.金属力学性能失效分析[M].北京:冶金工业出版社,1991.
    [1] F. Q. Zu. Liquid-Liquid Phase Transition in Pb-Sn Metal[J]. Physical Review B,2001,64(18):1802031-4.
    [2] Iida T. Physical Preoperties of Liquid Metals[M]. Oxford: Clarendon Press,1993.
    [3] C. A. Angell. Structure instability and relaxation in liquid and glassyphases near the fragile liquidlimit[J]. Journal of Non-Crystalline Solids,1998,102(1-3):205-22`.
    [4] C. A. Angell. Liquid Fragility and the Glass Transition in Water and Aqueous Solutions.Chemical Review,2002,102:2627-2649.
    [5] I. Egry. On the relmion between surfacee tension and viscosity for liquid metals. ScriptaMetallurgica el Materialia,1993,28:1273-1276.
    [6] I. Egry, G. Lohofer, S. Sauerland. Surface tension and viscosity of liquid metals. Journal ofNon-Crystalline Solids,1993,156-158:830-832.
    [7] Y. Waseda. The Structure of Non-crystalline Materials[M]. New York: MCGRAM-Hill,1981.
    [8] M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids[M]. Oxford: Clarendon Press,1987
    [9]T. Yamasaki, S. Kanatani, Y. Ogino and A. Inoue. Viscosity measurements for liquid A1-Ni-Laand AI-Ni-Mm (Mm: Mischmetal) alloys by an oscillating crucible method. Non-Crystalline Solids,1993,156-158:44l-444.
    [10]王文,刘志刚,陈钟顾.流体粘度的计算机模拟[J].计算物理,1998,15(6),687-691.
    [11]李如生.平衡和非平衡统计力学[M].清华大学出版社,1995.
    [12] E J. Cheme III and E A.Deymier. Calculation of the transport properties of liquid aluminumwith equilibrium and non-equilibrium molecular dynamics[J]. Scripta Materialia,2001,45:985-991.
    [13] M. S. Daw, M. I. Baskes. Embedded atom method: Dedvation and application to impurities,surface, and other defects in metals[J]. Physical Review B,1984,29(12):6443-6453.
    [14] M. S. Daw and M. I. Baskes. Semiempirical, Quantum Mechanical Calculation of HydrogenEmbrittlement in Metals[J]. Physical Review Letters,1983,50(17):1285-1288.
    [15]李辉,边秀房,李玉忱.贵金属Au的液态结构分子动力学模拟[J].物理化学学报,1998,14(7):630-634.
    [16] H. Li, X. F. Bian, J. Zhang. Computation of liquid Cu70Ni30alloy structures using EAM in rapidcooling and heating process[J]. Materials Science and Engineering A,1999,271(1-2):116-121.
    [17] E. J. Cheme, M. I. Baskes. Properties of liquid nickel: A critical comparison of EAM andMEAM calculations[J]. Physical Review B,65,024209:1-9.
    [18] W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst and B. Moran.Lennard-Jones triple-point bulk and shear viscosity, Green-Kubo theory, Hamiltonian mechanics andnonequilibrium moleculardynamics[J]. Physical Review A,1980,122(4):1690-1697.
    [19] W. H. Zhu, P. Wu, H. M. Jin, H. L. Liu. Effects of Ag and Ni Additives on Zn Diffusion inSteel Hot-Dip Galvanizing: An Ab initio Molecular Dynamics Simulation[J]. Chemistry of Materials,2004,16:5567-5573.
    [20] S. Ozgen, E. Duruk. Melecular dynamics simulation of solidification kinetics of aluminumusing Sutton-Chen version of EAM[J]. Materials Letters,2004,58:1071-1075.
    [21] A. P. Sutton, J. B. Pethica, H Rafaii-Tabar and J A Nieminen. Electron theory in alloydesign[M]. Institute of Materials, The Alden Press, Oxford,1992:191-233.
    [22] C. S. Tian, H. Yu, C. Zhang, Q. K. Lu. The First Principle Calculation of Green-Kubo Formulawith the Two-Time Ensemble Techique[J]. Communications in Theoretical Physics,2001,35(4):412-416.
    [23] M. J. Assael, K. Kakosimos, R. M. Banish, et al. Reference Data for the Density and Viscosityof Liquid Aluminumand Liquid Iron[J]. Journal of Physical and Chemical Reference Data,2006,35(1):285-300.
    [24] W. Brockner, K. T rklep and H. A. ye. Viscosity of Sodium Fluoride-Aluminium FluorideMelt Mixtures[J]. Berichte der Bunsen-Gesellschaft für Physikalische Chemie,1979,83(1):12-19.
    [25] H. Ruppersberg, H. J. Seeman. The Atomic Distribution Curves for Solid and Molten Alaccording to Investigations in SAP[J]. Zeitschrift für Naturforschung A,1965,20:104-109.
    [26] W. Y. Young. Structural and Thermodynamic Properties of NFE Liquid Metals and BinaryAlloys[J]. Reports on Progress in Physics,1992,55:1769-1853.
    [1] Q. Fu, D. Xu and J. W. Evans. Chlorine fluxing for removal of magnesium from moltenaluminum: Part I. Laboratory-scale measurements of reaction rates and bubble behavior. Metall.Mater. Trans. B.1998,13:447-450.
    [2] P. Waite, A Technical Perspective on Molten Aluminum Processing[C]. Light Metals,2002:841-848.
    [3] L. Wang, X. Liu, Y. Zhang. The Structure and Transport Property of Liquid Al with DifferentEAM Model. Physica B,2004,351:208-212.
    [4] H. Gunaydin, S. V. Barabash, K. N. Houk and V. Ozolins. First-principles theory of hydrogendiffusion in aluminum. Physical Review Letters,2008,101:075901-075906.
    [5] G. Hill, J. Holman. Chemistry in context[M]. Imperial College Press,2000.
    [6] A. Haaland. Molecules and models: the molecular structures of main group element compounds[M]. Oxford University Press,2008.
    [7] A. Kumar. A text book of inorganic chemistry[M]. New Age International Publisher,2003.
    [8] R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances inHalides and Chaleogenides[J]. Acta Crystallographica Section A,1976.32:751-755.
    [9] A. B. Belonoshko, A. Rosengren, Q. Dong, G. Hultquist, C. Leygraf. First-principles study ofhydrogen diffusion in α-Al2O3and liquid alumina[J]. Physical Review B,2004,69:024302-024305.
    [10] E. Hashimoto and T. Kino. Hydrogen diffusion in aluminum at high temperatures[J]. Journal ofPhysics F: Metal Physics,1983,13:1157-1161.
    [11] D. E. J. Talbot and P. N. Anyalebechi. Solubility of hydrogen in liquid aluminum[J]. MaterialsScience and Technology,1988,4:1-4.
    [12] G. A. Young jr and J. R. Scully. The diffusion and trapping of hydrogen in high purityaluminum[J]. Acta Materialia,1998,46:6337-6349.
    [13] S. Linderoth. Hydrogen Diffusivity in Aluminum[J]. Philosophical Magazine Letters,1988,57:229-234.
    [14] S. Linderoth, H. Rajainmaki, R. M. Nieminen. Defect recovery in aluminum proton irradiated at20K[J]. Physical Review B,1987,35:5524-5528.
    [1] E. Lunarska and O. Chernyaeva. Effect of precipitates on hydrogen transport and hydrogenembrittlement of aluminum alloys. Materials Science,2004,40(3):399-407.
    [2] S. M. Myers, et al. Hydrogen interactions with defects in crystalline solids[J]. Reviews ofModern Physics,1992,64,559-617.
    [3] Y. Fukai. Superabundant Vacancies Formed in Metal-Hydrogen Alloys[J]. Physica Scripta,2003,T103,11-14.
    [4] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al. First-principles simulation: ideas, illustrationsand the CASTEP code[J]. Journal of physics: Condensed Matter,2002,14:2417-2744.
    [5] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B1990,41:7892-7895.
    [6] C. Wolverton, V. Ozolins, M. Asta. Hydrogen in Aluminum: First-Principle Calculations ofStructure and Thermodynamics[J]. Physical Review B,2004,69:144109-144113.
    [7] H. K. Birnbaum, et al. Calculation of the radial distribution function of bubbles in the aluminumhydrogen system[J]. Journal of Alloys and Compounds,1997,253-254:260-264.
    [8] R. E. Watson, M. Weinert. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides[J].Physical Reviw B,1998,58:5981-5988.
    [9] Z. Alahmed, H. Fu. First-principles determination of chemical potentials and vacancy formationenergies in PbTiO3and BaTiO3[J]. Physical Review B,2007,76:224101-224108.
    [10] A. B. Belonoshko, A. Rosengren, Q. Dong, G. Hultquist, C. Leygraf. First-principles study ofhydrogen diffusion in-Al2O3and liquid alumina[J]. Physical Review B,2004,69:024302-214307.
    [11]陈树强,陈学工,王丽青.判定检测点是否在多边形内的新方法[J].微电子学与计算机,2006,23(8):194-199.
    [12]吴坚,郑康平,王小椿.一种检测点是否在多边形或多面体内的方法[J].小型微型计算机系统,2003,24(12):2200-2203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700