用户名: 密码: 验证码:
中国手足口病动力学模型与数据模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手足口病(Hand,foot and mouth disease(HFMD))是由肠道病毒引起的传染病,多发生于5岁以下儿童,小于三岁的年龄组发病率最高,可引起手、足、口腔等部位的疱疹,少数患儿可引起心肌炎、肺水肿、无菌性脑膜脑炎等并发症。个别重症患儿病情发展快,导致死亡。引发手足口病的肠道病毒有20多种(型),其中以柯萨奇病毒A16型(Cox A16)和肠道病毒71型(EV71)最为常见。而中国每年感染手足口病的患者累计超过100万人。事实上,对于手足口病而言,目前还没有有效的疫苗,也没有特效的抗病毒治疗方案,因此我们如果能提出切实可行的预防控制措施将会是很有意义的。
     本文分为四章,在第一章里介绍了传染病动力学模型的背景,手足口病病原学、流行病学、诊断鉴别及研究现状及预备知识。
     在第二章中,研究了一个具有非单调发生率的手足口病模型并提出一些控制方案。通过对无病平衡点的全局渐近稳定分析,地方病平衡点的存在性与全局分析,我们得到了疾病流行的充分条件,同时,对后向分支、双稳态进行了探讨。数值模拟证实了理论的正确性,最后给出了手足口病的预防方针。我们认为双稳态的产生是手足口病仍然在中国大范围流行的一个重要的原因。
     在第三章中,我们建立了具有非单调接触率的时滞SEIQRS传染病模型,首先研究了无病平衡点、地方病平衡点的存在性,分析了该模型的渐近行为,使用Lyapunov泛函方法得到了无病平衡点及地方病平衡点稳定的充分条件。
     在第四章里,我们关注中国2008年到2012年间手足口病患病数据的研究。先后建立了两个动力学模型,借助数据,运用拟合优度的方法,分别得出了两个模型的最优参数。通过统计推断的卡方检验,证实了模型的参数值都是合理的。我们得到了每一年的基本再生数都大于1。因此,断定在当前条件下,手足口病仍会流行。此外,我们给出了详细的预防控制措施,如果运用文中的预防措施,手足口病将会得到迅速的控制,患者的数量会得到急剧的减少。文章的最后,我们运用2011年和2012年模拟出的参数对2013年患病人数做了预测,预测结果表明,与手足口病实际流行情形是吻合的。
Hand, foot and mouth disease (HFMD), an infectious disease caused by en-terovirus and Coxsackievirus, usually happens to children under age of five, with an especially high incidence being observed for those under three. It can result in herpes in such body parts as hands, feet and mouth and even other complications such as myocarditis, pulmonary edema, and aseptic meningoencephalitis in some children. Some severely affected patients may die due to the quick progress of the disease. There are over twenty types of enterovirus leading to HFMD, Coxsackievirus A16and EV71are the most common, and cause severe mortality in children. And there are more than one million children infected with HFMD every year in China. As a matter of fact, there is no effective vaccine or antiviral treatment specifically for HFMD, but if we can provide some preventive measures to control the HFMD, it will be very meaningful.
     This thesis has been divided into four chapters, the first chapter introduces the background of epidemic dynamics, etiology, epidemiology, diagnostication, research status and pre-knowledge of HFMD.
     In chapter two, an epidemic model with non-monotonic contact rate is devel-oped to explore the control of HFMD. By analyzing globally asymptotic stability of disease-free equilibrium, existence and global analysis of endemic equilibria, we establish the sufficient conditions for the extinction of the endemic disease. Mean-while, backward bifurcation, bistable states are investigated. Numerical simulations are presented to verify the theoretical result and then preventive measures of HFMD are proposed in the end. The huge infected population is the important reason that HFMD is still epidemic in China.
     In chapter three, we formulate a time-delay SEIQRS epidemic model with non-monotonic contact rate. Firstly, the existence of the disease-free equilibrium and the endemic equilibria is discussed. We further analyze the asymptotic behaviors of the dynamical model. With the help of Lyapunov functional methods we derive the sufficient conditions for the stability of these two equilibria in the end.
     In the fourth chapter, we concentrates on the HFMD data of China from2008to2012. We set up two mathematical models to fit those data with the goodness of fit and obtain the optimal parameter values of the model. By the Chi-square test of statistical inference, the optimal parameter values of the models are reasonable. We get the basic reproductive number of the disease for each year, and it is larger than1. Thus, we conclude that HFMD will persist in China under the current conditions. So we investigate the preventive measures to control the HFMD, the HFMD will be controlled quickly and the number of infections will decline rapidly in a period of time. Finally, we make use of the parameter values of the year2011and2012to simulate and forecast the number of patients of2013, and the predictive results inosculate well with the real-world situations.
引文
[1]彭文伟,传染病学,北京:人民卫生出版社,2001,45-57.
    [2]中国疾病预防控制中心,网址:http://www.chinacdc.cn/tjsj/.
    [3]世界卫生组织,网址:http://www.who.int/zh/.
    [4]陆征一,周义仓,数学生物学进展,北京:科学出版社,2006.
    [5]马知恩,周义仓,王稳地,靳祯,传染病动力学的数学建模与研究,北京:科学出版社,2004.
    [6]中华人民共和国国家卫生和计划生育委员会,网址:http://www.nhfpc.gov.cn/.
    [7]中华人民共和国国家统计局,网址:http://www.stats.gov.cn/.
    [8]陆征一,王稳地,生物数学前沿,北京:科学出版社,2008.
    [9]陈兰荪,宋新宇,陆征一,数学生态学模型与研究方法,四川:四川科学技术出版社,2003.
    [10]M. Kermack, A. Mckendrick, Contributions to the mathematical theory of epi-demics:Part Ⅰ, Proc. Roy. Soc. A,115 (1927) 700-721.
    [11]P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci.,180 (2002) 29-48.
    [12]J.M. Heffernan, R.J. Smith, L.M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface,2 (2005) 281-293.
    [13]M. Kermack, A. Mckendrick, Contributions to the mathematical theory of epi-demics:Part Ⅱ, Proc. Roy. Soc. A,138 (1932) 55-83.
    [14]X. A. Zhnag, R. Simon, Estimating the number of rate limiting genomic changes for human breast cancer, Breast Cancer Res. Tr.,91 (2005) 121-124.
    [15]F. Wang, Z.E. Ma, A competition model of HIV with recombination effect, Math. Comput. Model.,38 (2003) 1051-1065.
    [16]A. Tripathi, R. Naresh, D. Sharma, Modelling the effect of screening of unaware infectives on the spread of HIV infection, Appl. Math. Comput.,184 (2007) 1053-1068.
    [17]Y.L. Yang, J.Q. Li, Z.E. Ma, L.J. Liu, Global stability of two models with incomplete treatment for tuberculosis, Chaos Solitons Fract.,43 (2010) 79-85.
    [18]M. C. Gomesa, A. Margheri, C. Rebelo, Stability and persistence in a com-partment model of pulmonary tuberculosis, Nonlinear Analy.-Theor.,48 (2002) 617-636.
    [19]Y.C. Zhou, Z.E. Ma, A discrete epidemic model for SARS transmission and control in China, Math. Comput. Model.,40 (2004) 1491-1506-
    [20]J. Zhang, J. Lou, Z.E. Ma, J.H. Wu, A Compartmental Model for the Analysis of SARS transmission patterns and outbreak control measures in China, Appl. Math. Comput.,162 (2005) 909-924.
    [21]H.W. Hethcote, Y. Li, Z.J. Jing, Hopf bifurcation in models for pertussis epi-demiology, Math. Comput. Model.,30 (1999) 29-45.
    [22]I.M. Elmojtaba, J.Y.T. Mugisha, M. H. A. Hashim, Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan, Appl. Math. Comput.,217 (2010) 2567-2578.
    [23]Z.H. Lu, X.B. Chi, L.S. Chen. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Math. Comput. Model.,36 (2002) 1039-1057.
    [24]A. Berger, A. Reitter, P.N. Harter, H. Buxmann, R. Allwinn, F. Louwen, H.W. Doerr, Problems and challenges in the diagnosis of vertical infection with human cytomegalovirus (CMV):lessons from two accidental cases, J. Clin. Virol.,51 (2011) 285-288.
    [25]Z. Jin, Z.E. Ma, M.A. Han, Global stability of an SIRS epidemic model with delays, Acta Math. Sci.,26 (2006) 291-306.
    [26]J.P. Gabriel, H. Hanisch, W.M. Hirsch, Dynamic equilibria of helminthic in-fections, in:D. G. Chapman, V. F. Gallucci (Eds.), Quantitative Population Dynamics, Statistical Ecology Series, Vol.13. Maryland:International Coop-erative Publishing House,1981:83-104.
    [27]B. Mukhopadhyay, R. Bhattacharyya, Analysis of a spatially extended nonlin-ear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal-Real.,17 (2008) 585-598.
    [28]H. Herbert H, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci.,180 (2002) 141-160.
    [29]L.L. Wu, Z.L. Feng, Homoclinic bifurcation in an SIQR Model for childhood diseases, J. Differ. Equations,168 (2000) 150-167.
    [30]S.R.J. Jang, On a discrete west nile epidemic model, Comput. Appl. Math.,26 (2007) 397-414.
    [31]X.Y. Shi, J.A. Cui, X.Y. Zhou, Stability and hopf bifurcation analysis of an eco-epidemic model with a stage structure, Nonlinear Analy.-Theor.,74 (2011) 1088-1106.
    [32]Z.H. Zhang, J.G. Peng, A SIRS epidemic model with infection-age dependence, J. Math. Anal. Appl,331 (2007) 1396-1414.
    [33]G.C. Gonzalez-Parra, A.J. Arenas, D.F. Arandac, R.J. Villanueva, L. Jodar, Dynamics of a model of toxoplasmosis disease in human and cat populations, Comput. Math. Appl.,57 (2009) 1692-1700.
    [34]M. Ghosh, P. Chandra, P. Sinha P, J.B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004) 385-402.
    [35]Y. Nakata, T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl.,363 (2010) 230-237.
    [36]D.M. Xiao, S.G. Ruan, Global Analysis of an Epidemic modal with nonmono-tone incidence rate, Math. Biosci.,208 (2007) 419-429.
    [37]Z.D. Teng, Y.P. Liu, L. Zhang, Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality, Nonlinear Analy.-Theor.,69 (2008) 2599-2614.
    [38]T.L. Zhang, Z.D. Teng, Permanence and extinction for a nonautonomous SIRS epidemic Model with time delay, Appl. Math. Model.,33 (2009) 1058-1071.
    [39]J.L. Liu, T.L. Zhang, Analysis of a nonautonomous epidemic model with density dependent birth rate, Appl. Math. Model.,34 (2010) 866-877.
    [40]R. Simon, X. A. Zhang, On the dynamics of breast cancer development in women carrying germline BRCAl and BRCA2 mutations, Int. J. of Cancer,122 (2008) 1916-1917.
    [41]D. Greenhalgh, Q.J.A. Khan, F.I. Lewis, Hopf bifurcation in two SIRS density dependent epidemic models, Math. Comput. Model.,39 (2004) 1261-1283.
    [42]X.Z. Li, J. Wang, M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination, Appl. Math. Model.,34 (2010) 437-450.
    [43]Z.L. Feng, W.Z. Huang, C.C. Chavez, Global behavior of a muli-group SIS epidemic model with age structure, J. Differ. Equations,218 (2005) 292-324.
    [44]S.J. Gao, L.S. Chen, Z.D. Teng, Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear Anal.-Real.,9 (2008) 599-607.
    [45]M. Song, W.B. Ma, Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comput. Appl. Math.,201 (2007) 389-394.
    [46]J. Hou, Z.D. Teng, Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates, Math. Comput. Simulat.,79 (2009) 3038-3054.
    [47]X.Z. Meng, L.S. Chen, B. Wu, A delay SIR epidemic model with pulse vacci-nation and incubation times, Nonlinear Anal.-Real.,11 (2010) 88-98.
    [48]X.Z. Meng, J.J. Jiao, L.S. Chen, Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination, Chaos Solitons Fract.,40 (2009) 2114-2125.
    [49]公共卫生科学数据中心,网址:http://www.phsciencedata.cn/Share/index.jsp.
    [50]李燕婷,手足口病的流行病学特征及预防控制,上海预防医学杂志,20(2008)316-317.
    [51]徐令兰,刘琳琳,窦峰,论手足口病,中国民康医学,20(2008)2708.
    [52]纪文静,张晓艳,手足口病的流行病学,中国社区医师,24(2008)12.
    [53]孙军玲,张静,手足口病流行病学研究进展,中华流行病学杂志,30(2009)973-976.
    [54]中国疾病预防控制中心传染病预防控制所,网址:http://www.icdc.cn/.
    [55]中华人民共和国卫生部,网址:http://wsb.moh.gov.cn/.
    [56]N.J. Schmidt, E.H. Lennette, H.H. Ho, An apparently new enterovirus isolated from patients with disease of the central nervous system, J. Infect. Dis.,129 (1974) 304-309.
    [57]J. Blomberg, E. Lycke, K. Ahlfors, T. Johnsson, S. Wolontis, G. von Zeipel, New enterovirus type associated with epidemic of aseptic meningitis and/or hand, foot, and mouth disease, Lancet,2 (1974) 112.
    [58]L.M. Shindarov, M.P. Chumakov, M.K. Voroshilova, S. Bojinov, S.M. Vasilenko, I. Iordanov, et al, Epidemiological, clinical and pathomorphologi-cal characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71, J. Hyg. Epidemiol. Microbiol. Immunol.,23 (1979) 284-295.
    [59]Y. Ishimaru, S. Nakano, K. Yamaoka, S. Takami, Outbreaks of hand, foot, and mouth disease by enterovirus 71:high incidence of complication disorders of central nervous system, Arch. Dis. Child.,55 (1980) 583-588.
    [60]G. Nagy, S. Takatsy, E. Kukan, I. Mihaly, I. Domok, Virological diagnosis of enterovirus type 71 infective:experiences gained during an epidemic of acute CNS diseases in Hungary in 1978, Arch. Virol.,71 (1982) 217-227.
    [61]G.L. Gilbert, K.E. Dickson, M.J. Waters, M.L. Kennett, S.A. Land, M. Sned-don, Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement, Pediatr. Infect. Dis. J.,7 (1988) 484-488.
    [62]J.P. Alexander, L. Baden, M.A. Pallansch, L.J. Anderson, Enterovirus 71 in-fections and neurologic disease-United States,1977-1991, J. Infect. Dis.,169 (1994) 905-908.
    [63]E.E. da Silva, M.T. Winkler, M.A. Pallansch, Role of enterovirus 71 in acute flaccid paralysis after the eradication of poliovirus in Brazil, Emerg. Infect. Dis., 2 (1996) 231-233.
    [64]L.G. Chan, U.D. Parashar, M.S. Lye, F.G.L. Ong, S.R. Zaki, J.P. Alexander, et al, Deaths of children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia:clinical and pathological characteristics of the disease, Clin. Infect. Dis.,31(2000) 678-683.
    [65]L.Y. Chang, Y.C. Huang, T.Y. Lin, Fulminant neurogenic pulmonary oedema with hand, foot and mouth disease, Lancet,352 (1998) 367-368.
    [66]T.N. Wu, S.F. Tsai, S.F. Li, T.F. Lee, T.M. Huang, M.L. Wang, et al, Sen-tinel surveillance of enterovirus 71, Taiwan,1998, Emerg. Infect. Dis.,5 (1998) 458-460.
    [67]L.Y. Chang, T.Y. Lin, K.H:Hsu, Y.C. Huang, K.L. Lin, C. Hsueh, et al, Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease, Lancet,354 (1999) 1682-1686.
    [68]M. Ho, E.R. Chen, K.H. Hsu, S. J. Twu, K.T, Chen, S.F. Tsai, et al, An epidem-ic of enterovirus 71 infection in Taiwan, N. Engl. J. Med.,341 (1999) 929-935.
    [69]R. Dolin, Enterovirus 71 —emerging infections and emerging questions, N. Engl. J. Med.,341 (1999) 984-985.
    [70]China on alert as virus spreads,网址:http://news.bbc.co.uk/1/hi/world/asia-pacific/7381741.stm.
    [71]Suhaimi, Nur Dianah:HFMD:1000 cases a week is unusual, says doc, Singa-pore:The Sunday Times (Straits Times).1-2,20 April 2008.
    [72]Viet Nam News:HFMD cases prompt tighter health screening at airport,网址: http://vietnamnews.vnagency.com.vn/showarticle.php?num=01HEA150508.
    [73]张国梁,李泽庚,董莉莉,童家兵,手足口病中医病因病机的认识概况,22(2010)567-570.
    [74]徐西林,小儿手足口病的中西医结合治疗与护理,现代中西医结合杂志,19(2010)1525-1526.
    [75]K.T. Goh, S. Doraisingham, J.L. Tan, G.N.Lim, S.E.Chew, An outbreak of hand, foot, and mouth disease in Singapore, B. World Health Organ.,60 (1982) 965-969.
    [76]M. Urashima, N. Shindo, N. Okabe, Seasonal models of Herpangina and hand-foot-mouth Disease to simulate annual fluctuations in urban warming in Tokyo, Jpn. J. Infect. Dis.,56 (2003) 48-53.
    [77]L.Y. Chang, C.C. King, K.H. Hsu, H.C. Ning, K.C. Tsao, C.C. Li, Risk fac-tors of enterovirus 71 infection and associated hand, foot, and mouth dis-ease/herpangina in children during an epidemic in Taiwan. Pediatrics. (2002), Article ID 12042582,6 pages.
    [78]李建明,谢靖婧,何颜霞,胡毅文,敖飞健,刘映霞,手足口病的临床特征及中枢神经系统并发症高危因素分析,中国小儿急救医学,16(2009)142-144.
    [79]徐文体,高璐,张颖,徐海丽,张丽萍,寇兆强,天津市手足口病患儿危险因素的病例对照研究,中华流行病学杂志,30(2009)100-101.
    [80]吴孟泉,赵凯,基于ARIMA模型的2009年山东省手足口病疫情分析及预测,鲁东大学学报(自然科学版),27(2011)71-75.
    [81]潘浩,胡家瑜,吴寰宇等,GM(1,1)灰色模型和ARIMA模型在上海市手足口病发病率预测应用中的比较研究,中华疾病控制杂志,5(2011)445-448.
    [82]安庆玉,周毅恒,姚伟,某市手足口病发病数预测三种方法比较,中国卫生统计,28(2011)314-315.
    [83]F.C.S. Tiing, J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, In Proceedings of Second Asia In-ternational Conference on Modeling and Simulation, Kuala Lumpur, Malaysia, 13-15 May 2008.
    [84]苏细容,刘胜,具有年龄结构和隔离措施的手足口病SEIQR模型,科学技术与工程,9(2009)5311-5315.
    [85]郭静,金水高,基于复杂网络的手足口病传播模型研究,中国卫生统计,26(2009)14-17.
    [86]周海峰,王益澄,手足口病的分段SEI.S模型及其防控措施-以浙江省宁波市为例,临床医学信息学,23(2010)1771-1772.
    [87]J.L. Liu, Threshold dynamics for a HFMD epidemic model with periodic trans-mission rate, Nonlinear Dyn.,64 (2011) 89-95.
    [88]Y.J. Ma, M.X. Liu, Q. Hou, J.Q. Zhao, Modeling seasonal HFMD with the recessive infection in Shandong, China, Math. Biosci. Eng.,10 (2013) 1159-1171.
    [89]J.D. Murray, Mathematical Biolody I:An Introduction, Springer Press,2001, pp.507.
    [90]廖晓听,稳定性理论、方法和应用,武汉:华中理工大学出版社,1999.
    [91]张锦炎,冯贝叶,常微分方程几何理论与分支问题,北京:北京大学出版社,2000.
    [92]马知恩,周义仓,常微分方程定性与稳定性方法,北京:科学出版社,2007.
    [93]苏育才,姜翠波,张跃辉,矩阵理论,北京:科学出版社,2006.
    [94]方保镕,周继东,李医民,矩阵论,北京:清华大学出版社,2004.
    [95]J.K. Hale, S.M.V. Lunel, Introduction to functional differential equations, Springer-Verlag,1993.
    [96]Y. Kuang, Delay differential equations with applications in population dynam-ics, New York:Academic Press,1993.
    [97]李森林,温立志,泛函微分方程,湖南:湖南科学技术出版社,1987.
    [98]徐远通,泛函微分方程与测度微分方程,广州:中山大学出版社,1988.
    [99]叶俊,赵衡秀,概率论与数理统计,北京:清华大学出版社,2005.
    [100]谢邦昌,赵雅婷,邬宏潘,耿直,生物统计学,北京:中国统计出版社,2003.
    [101]V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick determin-istic epidemic model, Math. Biosci.,42 (1978) 43-61.
    [102]W.M. Liu, S.A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol..,23 (1986) 187-204.
    [103]S.G. Ruan, W.D. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equations,188 (2003) 135-163.
    [104]R.S. Liu, J.H. Wu, H.P. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Method. M.,8 (2007)153-164.
    [105]J.A. Cui, Y.H. Sun, H.P. Zhu, The impact of media on the control of infectious diseases, J. Differ. Equations,20 (2008) 31-53.
    [106]J.A. Cui, X. Tao, H.P. Zhu, An SIS infection model incorporating media cov-erage, Rocky Mt. J. Math.,38 (2008) 1323-1334.
    [107]W.M. Liu, S.A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol.,23 (1986) 187-204.
    [108]J. Dushoff, W. Huang, C. Castillo-Chavez, Backwards bifucations and catas-trophe in simple models of fatal diseases, J. Math. Biol.,36 (1998) 227-248.
    [109]P. Van den Driessche, J. Watmough, A simple SIS epidemic model with a backward bifurcation, J. Math. Biol.,40 (2000) 525-540.
    [110]J. Arino, C.C. Mccluskey, P. van den Driessche, Global results for an epidem-ic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math.,64 (2003) 260-276.
    [111]M. Martcheva, H.R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol.,46 (2003) 385-424.
    [112]H. Inaba, H. Sekine, A mathematical model for Chagas disease with infection-age-dependent infectivity, Math. Biol.,190 (2004) 39-69.
    [113]张芷芬,丁同仁,黄文灶,董镇喜,微分方程定性理论,北京:科学出版社,1985.
    [114]韩茂安,顾圣士,非线性系统的理论和方法,北京:科学出版社,2001.
    [115]王高雄,周之铭,朱思铭,常微分方程,北京:高等教育出版社,1999.
    [116]K. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol.,35 (1996) 240-260.
    [117]张太雷,几类传染病动力学模型研究,新疆大学博士学位论文,2008.
    [118]J.K. Hale, Theory of functional differential equations, Springer-Verlag, New York, Heidelberg, Berlin,1977.
    [119]X. Yang, L.S. Chen, J.F. Chen, Permanence and positive periodic solution for single-species nonautonomous delay diffusive model, Comput. Math. Appl.,32 (1996) 109-116.
    [120]X.A. Zhang, Y.D. Zhao, U.N. Avidan, Partial immunity and vaccination for influenza, J. Comput. Biol.,17 (2010) 1689-1696.
    [121]G.W. Snedecor, W.G. Cochran, Statistical Methods,8th ed.; Iowa State Uni-versity Press, Ames.1989.
    [122]R.A. Desharnais, L.Liu, Stable demographic limit cycles in a laboratory pop-ulations of tribolium castaneum, J. Animal. Ecol.,56 (1987) 885-906.
    [123]W.G. Aiello, H.I. Freedman, A time delay model of single-species growth with stage structure, Math. Biosci.,101 (1990) 139-153.
    [124]J.R. Bence, R.M. Nisbet, Space-limited recruitment in open systems:The importance of time delays, Ecology.,70 (1989) 1434-1441.
    [125]马杨军,刘茂省,赵金庆,王弯弯,具有隐形传染的手足口病模型分析,数学的实践与认识,42(2012)205-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700