用户名: 密码: 验证码:
功能性磁性纳米颗粒的制备及其在食品体系中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于功能性磁性纳米颗粒同时具有磁性核体材料的磁响应性和表面壳体材料的功能性,可以方便、快捷地在外加磁场的作用下从反应体系中分离纯化目标生物分子,因此,在生物工程、生物医药和食品工业等领域显示出广阔的应用前景。目前,探索磁性纳米颗粒的功能化修饰以及将这些纳米颗粒应用于复杂的生物体系是磁性纳米颗粒重要的研究方向。本论文针对蛋白质分离纯化及酶固定化研究中所面临的热点难点问题,开展了一系列研究工作,制备了新型的功能性磁性纳米颗粒,并将其应用于生物体系中,取得了一些创新性研究成果,主要研究内容和取得的研究成果如下:
     1.以聚乙二醇6000(PEG 6000)作为分散剂,羧甲基壳聚糖(CM-CTS)作为表面壳体材料,采用化学共沉淀方法,制备得到了功能性的超顺磁性纳米颗粒,简写为Fe_3O_4 (PEG+CM-CTS);Fe_3O_4 (PEG+CM-CTS)大小均一、粒径大约在15 nm左右,同时具有良好的水分散特性;以功能性Fe_3O_4 (PEG+CM-CTS)纳米颗粒为载体,通过静电相互作用,对水溶液及蛋清中的溶菌酶(Lyz)进行了分离纯化,经SDS?PAGE电泳对其纯度鉴定,结果表明:采用本研究制备所得的磁性载体纯化蛋清中的Lyz,所得Lyz电泳显示为单带,具有较高的纯度;由于其具有高效、低成本、高吸附容量以及易于分离等优点,Fe_3O_4 (PEG+CM-CTS)纳米颗粒在蛋清中Lyz的分离纯化应用中明显优于传统的溶菌酶分离纯化技术。
     2.采用傅里叶变换红外光谱(FTIR)技术、圆二色光谱(CD)技术和荧光光谱技术为表征手段,对Lyz在Fe_3O_4 (PEG+CM-CTS)纳米颗粒表面吸附以及洗脱过程中的构象变化进行了较为全面的分析,研究结果表明:超顺磁性Fe_3O_4 (PEG+CM-CTS)纳米颗粒可以使Lyz分子构象变得更加紧密;Lyz与Fe_3O_4 (PEG+CM-CTS)纳米颗粒之间生成了稳定的复合物,其可能作用位点在Trp 62和Trp108位点处;磷酸盐缓冲溶液PBS (20 mmol/L, pH 8.0, 0.2 mol/L NaCl), PBS (20 mmol/L, pH 8.0, 0.5 mol/L NaCl)对Lyz构象的影响较小,相比于自然状态下的Lyz,其活性保留率较高,分别为92.4%和89.5%,而醋酸缓冲溶液洗脱得到的Lyz其构象变化较大,活性保留率仅为24.7%;由于Fe_3O_4 (PEG+CM-CTS)纳米颗粒粒径较小,相比于同类材料粒径为微米级的颗粒相比,对蛋白质的构象具有较好的稳定作用,为Fe_3O_4 (PEG+CM-CTS)纳米颗粒在生物技术如酶的固定化和蛋白质的分离纯化等领域的应用奠定了坚实基础。
     3.此外,通过静电相互作用,胰蛋白酶成功固定化于Fe_3O_4 (PEG+CM-CTS)纳米颗粒表面,并将此固定化胰蛋白酶成功应用于蛋白质的快速酶解研究。FTIR和荧光光谱数据表明:Fe_3O_4 (PEG+CM-CTS)纳米颗粒可有效阻止胰蛋白酶分子结构的展开;相比于游离胰蛋白酶,固定化胰蛋白酶与底物的亲和力略有所降低,然而,固定化胰蛋白酶可以成功实现牛血清白蛋白(BSA)的快速、有效酶解,酶解操作过程简单,可以在外加磁场的作用下对固定化酶进行方便、快速地分离、定位及导向,同时,酶解时间大大缩短,从传统的12 hr(采用游离胰蛋白酶进行酶解)缩短到现在的15 min(固定化胰蛋白酶);以上结论显示:试验中制备的固定化胰蛋白酶有望在蛋白质组学研究中发挥重要作用,预计Fe_3O_4 (PEG+CM-CTS)纳米颗粒作为胰蛋白酶的固定化载体将具有巨大的应用潜能。
     4.研究中,分别以Cu (II)、Fe (III)和Zn (II)三种金属离子修饰Fe_3O_4 (PEG+CM-CTS)纳米颗粒制备得到了三种固定化金属亲和磁性纳米颗粒(IMANs),简写为IMAN @ Cu (II)、IMAN @ Fe (III)和IMAN @ Zn (II);制备所得的IMANs可以方便地用于Lyz的吸附研究;IMAN @ Cu (II)、IMAN @ Fe (III)和IMAN @ Zn (II)纳米颗粒对Lyz的最大吸附容量分别为185.19 mg/g、232.56 mg/g和200 mg/g;荧光光谱结果表明:IMAN @ Fe (III)和IMAN @ Zn (II)磁性载体可以最大限度的保持Lyz的构象稳定性,而不会导致Lyz的变性,而从IMAN @ Cu (II)纳米颗粒上洗脱得到的Lyz其构象发生了一定程度的变化。
     5.首次应用IMAN @ Fe (III)纳米颗粒作为分离纯化载体,对蛋黄中的卵黄高磷蛋白磷酸肽(PPPs)进行分离、富集研究,研究结果表明:IMAN @ Fe (III)纳米颗粒对PPPs的富集显示出较高特异性(N/P可由提纯前的39.49降低到5.52),具有操作简便、成本低廉,生产周期短,明显优于传统的富集方法,显示出较高的磷酸化肽选择性富集能力;此外,研究中制备所得的IMAN @ Fe (III)纳米颗粒不仅适用于蛋黄中PPPs的富集,同时势必在磷酸肽富集的蛋白质组学研究中发挥重要作用。
     总之,本论文针对蛋白质分离纯化、酶固定化以及PPPs的富集方面的热点难点问题,以新型的功能性磁性纳米颗粒为基础,为解决蛋清中Lyz的分离纯化,蛋黄中PPPs的富集,胰蛋白酶的固定化及其快速酶解提供了新颖有效的研究技术。
Since it possesses the magnetic responsively, as well as the functionality, the functional magnetic nanoparticles can be convenient, fast separation and purification of the target biomolecules from reaction system with the help of magnets, it has extensive application prospect in biotechnology, biomedicine, food industry, and so on. At present, exploring the functionalization of magnetic nanoparticles and its practical application is the important research direction for magnetic nanoparticles. This dissertation aimed at finding out new techniques in protein separation and enzyme immobilization which using the prepared novel magnetic nanoparticles as Nano carriers, the practical bio-system was chosen as the application system, and obtained some innovative research results. The main research results are as follows:
     1. Using polyethylene glycol 6000 (PEG 6000) as dispersant, the functional superparamagnetic nanoparticles which conjugated with carboxymethyl chitosan (CM-CTS) were developed (shorted as Fe_3O_4 (PEG + CM-CTS)); the obtained Fe_3O_4 (PEG + CM-CTS) with uniform size, its diameter was about 15 nm, furthermore, the dispersing behavior of Fe_3O_4 (PEG+CM-CTS) nanoparticles has obviously been improved in comparison with the naked Fe_3O_4; On this basis, through electrostatic interaction, the functional Fe_3O_4 (PEG+CM-CTS) nanoparticles was used as a novel magnetic absorbing carrier for the separation and purification of lysozyme from the aqueous solution and chicken egg white respectively, the purity of lysozyme which purified from chicken egg white was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS?PAGE), it indicated that: The lysozyme which purified from chicken egg white in a single step had higher purity; Considering that the Fe_3O_4 (PEG+CM-CTS) nanoparticles possesses the advantages of high efficiency, cost-effectiveness and excellent binding of a larger amount of lysozyme and easier separation from the reaction system, thus this type of superparamagnetic nanoparticles would bring advantages to the conventional separation techniques of lysozyme from chicken egg white.
     2. An fundamental understanding of the conformational behaviors of lysozyme during the process of adsorption and desorption has been studied using Fourier transform infrared spectroscopy (FTIR), circular dichroic (CD) and fluorescence spectroscopy, and it indicated that: on the surface of Fe_3O_4 (PEG+CM-CTS) nanoparticles, the lysozyme would adopt a more compact conformation state; a complex between lysozyme and the Fe_3O_4 (PEG+CM-CTS) nanoparticles has been formed, Trp 62 and Trp108 mol/Light be the possible site of binding of lysozyme to Fe_3O_4 (PEG+CM-CTS) nanoparticles; Lysozyme which desorbed by PBS (20 mmol/L, pH 8.0, 0.2 mol/L NaCl) and PBS (20 mmol/L, pH 8.0, 0.5 mol/L NaCl) retain high fraction of its native structure with negligible effect on its activity, and about 92.4% and 89.5% activity were retained upon desorption from nanoparticles, however, lysozyme desorbed by acetic acid solution (0.2 mol/L, pH 4.0) showed significant conformational changes, only about 24.7% activity were retained; Due to the small diameter, the Fe_3O_4 (PEG+CM-CTS) magnetic nanoparticles has favorable properties to ensure highest level of conformational stabilization of protein compared to the larger particles of the same material, so it may find useful applications in biotechnology ranging from enzyme immobilization to protein purification.
     3. The immobilized trypsin which absorbed on the surface of the Fe_3O_4 (PEG+CM-CTS) nanoparticles was prepared and applied for fast and efficient proteolysis. FTIR and fluorescence spectroscopy data demonstrated that the magnetic Fe_3O_4 (PEG+CM-CTS) nanoparticles were capable of improving conformation stability of trypsin and preventing the trypsin unfolding; the immobilized trypsin, compared with native trypsin, has less affinity to the substrate, however, the immobilized trypsin could be used for fast and efficient Bovine Serum Albumin (BSA) digestion under very facile processes, thanks to the easy manipulation of the magnetic nanoparticles, as well as the greatly reduced digestion time (from 12 hr to 15 min); These results are expected to open up a new possible application of the trypsin-Fe_3O_4 (PEG+CM-CTS) conjugates in proteome research as well as a great potential use of such Fe_3O_4 (PEG+CM-CTS) nanoparticles as a superior nanosupport for the immobilization of trypsin.
     4. In the research, Fe_3O_4 (PEG+CM-CTS) nanoparticles were treated with Cu (II), Fe (III) and Zn (II) ions solutions to obtain immobilized metal affinity magnetic nanoparticles (IMANs) (short as IMAN @ Cu (II), IMAN @ Fe (III) and IMAN @ Zn (II)). The as-prepared IMANs were conveniently applied for lysozyme adsorption; The maximum equilibrium adsorption capacity of IMAN @ Cu (II), IMAN @ Fe (III) and IMAN @ Zn (II) nanoparticles to lysozyme were calculated to be 185.19 mg/g, 232.56 mg/g and 200 mg/g, respectively; Fluorescence analysis demonstrated that IMAN @ Zn (II) and IMAN @ Fe (III) nanoparticles may not cause the conformational change and denaturation for the lysozyme, but the lysozyme which desorbed from IMAN @ Cu (II) underwent some subtle change in comparison with the original lysozyme.
     5. IMAN @ Fe (III) were conveniently applied for phosvitin phosphopeptides (PPPs) enrichment for the first time, the research indicated that: IMAN @ Fe (III) nanoparticles showed greater specificity for PPPs enrichment (N/P can be reduced from 39.49 to 5.52); Since the separation process is convenient, economic and efficient, this type of IMAN @ Fe (III) nanoparticles would bring advantages to the conventional separation techniques of PPPs from chicken egg yolk; In addition, the chosen IMAN @ Fe (III) nanoparticles not only showing potential application in PPPs separation from chicken egg yolk, but also in phosphopeptides enrichment in proteomics research.
     In summary, the main contribution of the dissertation is that we initially synthesized the functional magnetic nanoparticles and successfully utilized them for protein separation and enzyme immobiliztation; we aimed at exploring and finding out new techniques in lysozyme separation from chicken egg white, PPPs enrichment from chicken egg yolk, trypsin immobilization and its efficient proteolysis.
引文
1. Shapira P, Youtie J, Kay L. National innovation systems and the globalization of nanotechnology innovation. J Technol Transf, 2011, 36(6):587—604.
    2. David C. Mowery. Nanotechnology and the US national innovation system: continuity and change. J Technol Transf, 2011, 36(6):697—711.
    3. Fam D W H, Palaniappan A l, Tok A I Y, et al. A review on technological aspects influencing commercialization of carbon nanotube sensors. Sens Actuat B, 2011,157 (1) 1—7.
    4. Tan A, Yildirimer L, Rajadas J, et al. Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomed, 2011, 6(6): 1101—1114.
    5. Tessonnier J P, Su D S. Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review. Chem SusChem, 2011, 4(7): 824—847.
    6. Zeng S W, Yong K T, Roy I, et al. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics, 2011, 6(3): 491—506.
    7. Selvan, S T. Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications. Biointerphase, 2010, 5(3): 110—115.
    8. Huang S H, Juang R S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles. J Nanopart Res, 2011, 13(10): 4411—4430.
    9. Laurent S, Forge D, Port M. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem Rev, 2008, 108(6): 2064—2110.
    10. Berry C C, Adam S G C. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys, 2003, 36(13): 198—206.
    11. Liu G, Wu H X, Zheng H R, et al. Synthesis and applications of (?)uorescent-magnetic-bifunctional dansylated Fe_3O_4@SiO2 nanoparticles. J Mater Sci, 2011, 46(18):5959—5968.
    12. Tartaj P, Morales M P, González-Carre(?)o T, et al. Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mat, 2005, 290-29(1): 28—34.
    13. Pankhurst Q A, Thanh N K T, Jones S K, et al. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D, 2009, 42(22): 1—15.
    14. Koneracka M, Antosova A, Zavisova V, et al. Characterization of Fe_3O_4 magnetic nanoparticles Modified with Dextran and Investigation of Their Interaction with Protein Amyloid Aggregates. ACTA Phys Pol A, 2010, 118(5): 983—985.
    15. Pankhurst Q A, Connolly J, Jones S K, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D, 2003, 36(13):167—181.
    16. Zhou Y T, Nie H L, Branford-White C, et al. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified withα-ketoglutaric acid. J Colloid Interf Sci, 2009, 330(1): 29—37.
    17. Lu A H, Salabas E L, Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew Chem Int Ed, 2007, 46 (8):1222—1244.
    18. Yang C, Wu J J, Hou Y L. Fe_3O_4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun, 2011(47):5130—5141.
    19. Jung J H, Lee J H, Shinkai S. Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev, 2011, DOI: 10.1039/c1cs15051k.
    20. Majewski P, Thierry B. Functionalized Magnetite Nanoparticles—Synthesis, Properties, and Bio-Applications. Crit Rev Solid State Mater Sci, 2007, 32 (3-4):203—215.
    21. Huang C L, Zhang H Y, Sun Z Y, et al. Porous Fe_3O_4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene. J Colloid Interf Sci, 2011, 364 (2):298—303.
    22. Cheng F Y, Su C H,Yang Y S, et al. Characterization of aqueous dispersions of Fe_3O_4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26 (7): 729—738.
    23. Wei H, Wang E. Fe_3O_4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Anal Chem, 2008, 80(6):2250—2254.
    24. Liu Z, Wang J, Xie D H, et al. Polyaniline-Coated Fe_3O_4 Nanoparticle–Carbon-Nanotube Composite and its Application in Electrochemical Biosensing. Small, 2008, 4(4):462—466.
    25. Chang Y C, Chen D H. Preparation and adsorption properties of monodisperse chitosan-bound Fe_3O_4 magnetic nanoparticles for removal of Cu (II) ions. J Colloid Interf Sci, 2005, 283 (2):446—451.
    26. Wang M, Song F, Wang S L, et al. Spectroscopy study of the immobilized cellulose of magnetic nanoparticles Fe_3O_4. Spectrosc spectanal, 2011, 26(5): 895—898.
    27. Lu X Y, Niu M, Qiao R R, et al. Superdispersible PVP– Coated Fe_3O_4 Nanocrystals Prepared by a“One-Pot”Reaction. J Phys Chem B, 2008, 112(46): 14390—14394.
    28. Huang Z B, Tang F Q. Preparation, structure, and magnetic properties of polystyrene coated by Fe_3O_4 nanoparticles. J Colloid Interf Sci, 2004, 275 (1): 142—147.
    29. Carla J. Meledandri, Jacek K, et al. Hierarchical Gold-Decorated Magnetic Nanoparticle Clusters with Controlled Size. ACS nano, 2011, 5(3):1747—1755.
    30. Gilles K, Kouassi. Magnetic and Gold-Coated Magnetic Iron Oxide Nanoparticles as Detection Tools: Preparation, Characterization, and Biosensing Applications. Current Nanosci, 2011, 7(4):510—523.
    31. Zhang L, Dou Y H, Gu H C. Synthesis of Ag-Fe_3O_4 heterodimeric nanoparticles. J Colloid Interf Sci, 2006, 297(2): 660—664.
    32. Du G H, Liu Z L, Xia X, et al. Characterization and application of Fe_3O_4/SiO2 nanocomposites. J sol-gel sci techn, 2006, 39(3): 285—291.
    33.刘宏波.单分散磁性聚合物复合微球的制备及表面亲水性聚合物的修饰[D]:[博士学位论文].上海:复旦大学高分子科学系, 2008.
    34. Khalafalla SE, Reimers G W. Magnetic liquids [P].US:3843540.1974.
    35.胡大为,王燕民.合成四氧化三铁纳米粒子形貌的调控机理和方法[J].硅酸盐学报, 2008, 36(10) :1488—1492.
    36.黄菁菁,徐祖顺,易昌凤.化学共沉淀法制备纳米四氧化三铁粒子[J].湖北大学学报(自然科学版), 2007, 29(1):50—52.
    37. Jana N R, Chen Y F, Peng X G. Size-and shape controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater, 2004, 16(20):3931-3935.
    38.李嫣.蛋白质的磁性微球快速酶解与高效富集新方法研究[D]:[博士学位论文].上海:复旦大学化学系, 2008.
    39.龚涛.模板细乳液聚合法制备磁性复合微球及其在蛋白分离纯化中的应用[D]:[博士学位论文].上海:复旦大学高分子化学与物理, 2008.
    40. Woo K, Lee H J, Ahn J P, et al. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater, 2003, 15(20):1761—1764.
    41. Ervithayasupor V, Kawakami, Y. Synthesis and characterization of core-shell type Fe_3O_4 nanoparticles in poly (organosilsesquioxane). J Colloid Interf Sci, 332(2): 389—393.
    42. Willard M A, Kurihara L K, Carpenter E E, et al. Chemically prepared magnetic nanoparticles. Int Mater rev, 2004, 49(3-4): 125—170.
    43. Shamim N, Hong L, Hidajat K, et al. Thermosensitive polymer coated nanomagnetic particles for separation of bio-molecules. Sep PuriTechnol, 2007, 53(6):164—170.
    44. Feng W, Zhu S P, Ishihara K, et al. Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly (2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2005, 21(13):5980—5987.
    45. Chen X, Liu J H, Feng Z C, et al. Macroporous Chitosan/Carboxymethylcellulose Blend Membranes and Their Application for Lysozyme Adsorption. J Appl Polym Sci, 2005, 96 (4):1267—1274.
    46. Albert G III, Sangha O, Cady R E. Cellulase immobilization on Fe_3O_4 and characterization. Biotech Bioeng, 1989, 33(3): 321—326.
    47. Zhang Y, Liu J Y, Ma S, et al. Synthesis of PVP-coated ultra-small Fe_3O_4 nanoparticles as a MRI contrast agent.J Mater Sci: Mater Medicine, 2010, 21(4): 1205—1210.
    48. Li Y, Liu Y C, Tang J, et al. Fe_3O_4@Al2O3 magnetic core–shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J Chromatogr A, 2007, 1172 (16): 57—71.
    49. Dias AMGC, Hussain A, Marcos A S, et al. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol adv, 2011, 29(1): 142—155.
    50. Denizli A, Ozkan G, Ariea M Y. Preparation and characterization of magnetic Polymethylmethacrylate microbeads carrying ethylene diamine for removal of Cu (II), Cd(II), Pb(II), and Hg(II)from aqueous solutions. J Appl polym Sci, 2000, 78(1): 81—89.
    51. Zhang J G, Xu S Q, Kumacheva E. Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc, 2004, 126(25):7908—7914.
    52. Denkbas E B, Kilicay E, Birlikseven C, et al. Magnetic chitosan microspheres:Preparation and charaeterization. React Funct Polym, 2002, 50(3):225—232.
    53. Vesta C R, Zhang Z J. Atom transfer radical Polymerization synthesis and magnetic charaeterization of MnFeZO4/Polystyrene core/shell nanopartieles. J Am Chem Soc, 2002, 124(48):14312—14313.
    54. Caruso F, Susha A S, Giersig M. Magnetic core-shell Partieles: Preparation of magnetite multilayers on Polymer latex microspheres. Adv Mater, 1999, 11(11):950—953.
    55.严希康,朱留沙等.聚合物粒子在生物化学与生物医学中的应用[J].功能高分子学报,1997, 10(1):128—129.
    56. Yuan H, Yan F, Ma L,et al. Carboxyl- Functionalized Superparamagnetic Fe_3O_4/Poly(St-co-MPS)/SiO2 Composite Particles for Rapid and Sensitive Immunoassay. J Naosci nanotechnol, 2011, 11(3): 2232—2236.
    57. Sun J, Su Y J, Rao SQ, et al. Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles. J Chromatogr B, 2011, 879 (23): 2194—2200.
    58. Cui Y J, Li Y F, Yang Y, et al. Facile synthesis of amino-silane modified superparamagnetic Fe_3O_4 nanoparticles and application for lipase immobilization. J Biotechnol, 2010, 150(1): 171—174.
    59. Zhu A P, Yuan L H, Jin W J, et al. Polysaccharide surface modified Fe_3O_4 nanoparticles for camptothecin loading and release. Acta Biomater, 2009, 5 (5):1489—1498.
    60. WuY, Wang Y J, Luo G S, et al. In situ preparation of magnetic Fe_3O_4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. BioresTechnol, 2009,100 (14): 3459—3464.
    61. Samanta B, Yan H H, Fischer N O, et al. Protein-passivated Fe_3O_4 nanoparticles: low toxicity and rapid heating for thermal therapy. J Mater Chem, 2008, 18(11): 1204—1208.
    62. Dung T T, Danh T M, Hoa L T M, et al. Structural and magnetic properties of starch-coated magnetite nanoparticles. J experimental nanosci, 2009, 4(3): 259—267.
    63. Eike G, Rita M, Radostina G, et al. Activity of Immobilized Trypsin in the Layer Structure of Polyelectrolyte Microcapsules (PEMC). Macromol Biosci, 2007(7):1243—1249.
    64. Srivatsa V R, Kimberly W A, Leonidas G. B. Controlled Layer-By-Layer Immobilization of Horseradish Peroxidase. Biotechnol Bioeng, 1999, 65(4): 389—396.
    65. Liu X Q, Guan Y P, Shen R, et al. Immobilization of lipase onto micron-size magnetic beads. J Chromatogr B, 2005, 822 (1-2): 91—97.
    66. Lee J H, Kim Y S. Immobilization of Aminophenylboronic Acid on Magnetic Beads for the Direct Determination of Glycoproteins by Matrix Assisted Laser Desorption Ionization Mass Spectrometry. J Am Soc Mass Spectrom, 2005, 16 (9):1456—1460.
    67. Liu Z Min, Yang H F, Li Y, et al. Core–shell magnetic nanoparticles applied for immobilization of antibody oncarbon paste electrode and amperometric immunosensing. Sensor Actuat, 2006, 113 (2):956—962.
    68. Gulay B, Yagmur T, M. Yakup A. Immobilization ofβ-galactosidase onto magnetic poly (GMA–MMA) beads for hydrolysis of lactose in bed reactor. Cataly Commun, 2007, 8 (7): 1094—1101.
    69. Shan G B, Xing J M, Luo M F, et al. Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett, 2003, 25(23): 1977—1981.
    70. Zeng L, Luo K K, Gong Y F. Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J mol catal B-enzym, 2006, 38 (1): 24—30.
    71. Huang S H, Liao M H, Chen D H. Direct binding and characterization of lipase onto magnetic nanoparticles. Bitechnol Progr, 2003, 19 (3): 1095—1100.
    72. Gao X,Yu K M K, Tam K Y, et al. Colloidal stable silica encapsulated nano- magnetic composite as a novel bio-catalyst carrier. Chem commun, 2003 (24): 2998—2999.
    73. Liao M H, Chen D H. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol Lett, 2001, 23(20): 1723—1727.
    74. Koneracka M, Kopcansky P, Timko M, et al. Direct binding procedure of proteins and enzymes to fine magnetic particles. J mol catal B-enzym, 2002, 18(1-3): 13—18.
    75.邱广明,孙宗华.磁性高分子微球共价结合中性蛋白酶[J].生物医学工程学杂志,1995, 12(3): 209—213.
    76.刘瑶.葡聚糖磁性微球的制备及固定化木瓜蛋白酶的研究[D]:[硕士学位论文].武汉:华中师范大学分析化学, 2007.
    77.任广智,李振华,何炳林.磁性壳聚糖微球用于脲激酶的固定化研究I.磁性壳聚糖微球的制备和表征[J].离子交换与吸附, 2000, 16(4): 304—310.
    78.毕炜,王京兰,钱小红等.磷酸化蛋白质组研究中的富集策略[J].生物技术通讯, 2007, 18(3): 515-518.
    79.熊继先.磷酸化蛋白质组学新方法的研究与应用[D]:[博士学位论文].湖南:湖南师范大学生物化学与分子生物学系,2010.
    80. Porath J, Carlsson J, Olsson I, el al. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975, 258(5536):598—599.
    81. Li Y, Liu Y C, Tang J, et al. Fe_3O_4@Al2O3 magnetic core–shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J Chromatogr A, 2007 (1172): 57—71.
    82. Tan F, Zhang Y J, Mi W, et al. Enrichment of Phosphopeptides by Fe3+-Immobilized Magnetic Nanoparticles for Phosphoproteome Analysis of the Plasma Membrane of Mouse Liver. J Proteome Res, 2008,
    7(3):1078—1087.
    83. Choi S, Kim J, Cho K, et al. Sequential Fe_3O_4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2010, 24(10): 1467—1474.
    84. Hoang T, Roth U, Kowalewski K, et al. Highly Specific Capture and Direct MALDI MS Analysis of Phosphopeptides by Zirconium Phosphonate on Self-Assembled Monolayers. Anal Chem, 2010, 82 (1):219—228.
    85. Moser K, White F M. Phosphoproteomic Analysis of Rat Liver by High Capacity IMAC and LC MS/MS. J Proteome Res, 2006, 5(1): 98—104.
    86. Freeman M W, Arrott A, Watson J H L. Magnetism in medieine. J Appl Phys, 1960, 31(5): 404—405.
    87. Lubbe A S, Alexiou C, Bergemann C. Clinical Applications of Magnetic Drug Targeting. J Surg Res, 2001,
    95(2):200—206.
    88. McCarthy J R, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliver Rev, 2008, 60(11):1241—1251.
    89. Alexiou C, Jurgons R, Schmid R J, et al. Magnetic drug targeting - Biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J drug target, 2003, 11(3):
    139—149.
    90. Chertok B, Moffat B A, David A E, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterial, 2008, 29(4): 487—496.
    91. Chatterjee J, Haik Y, Chen C J. Size dependent magnetic properties of iron oxide nanopartieles. J Magn Magn Mater, 2003, 257(l):113—118.
    92. Pratsinis S E, Vemury S. Partiele formation in gases: A review. Powder Technol, 1996, 88(3):267—273.
    93. Wang T H, Lee W C. Immobilization of proteins on magnetic nanoparticles. Biotechnol Bioprocess Engn, 2003, 8(4):263—267.
    94. Wang G P, Song E Q, Xie H Y, et al. Biofunctionalization of fluorescent magnetic bifunctional nanospheres and their applications. Chem Commun, 2005 (34):4276—4278.
    95. Mine Y. Separation of Salmonella enteritidis from experimentally contaminated liquid eggs using a hen IgY immobilized immunomagnetic separation system. J Agric Food Chem, 1997, 45 (10):3723—3727.
    96. Horak D, Hochel I. Magnetic poly (glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food. E-Polymers, 2005, 61.
    97. Walton D J, Campbell C J, Richards P G, et al. Electrosynthetic immobilisation of proteins for bioanalysis. Adv Mater Opt Electron, 1998, 8(2):101—105.
    98. Coia G, Pontes-Braz L, Nuttall S D, et al. Panning and selection of proteins using ribosome display. J Immunol Method, 2001, 254(1-2):191—197.
    99. Cox J C, Ellington A D. Automated selection of anti-protein aptamers. Bioorg Med Chem, 2001, 9(10):2525—2531.
    100. Fan J, J G, Lu J G, et al. Use of water-dispersible Fe2O3 nanoparticles with narrow size distributions in isolating avidin. J Colloid Interface Sci, 2003, 266(1):215—218.
    101. Safarik I. Magnetic biospecific affinity adsorbents for lysozyme isolation. Biotechnol Tech, 1991, 5(2):111—114.
    102. Safarik I, Safarikova M. Batch isolation of hen egg white lysozyme with magnetic chitin. J Biochem Biophys Methods, 1993, 27(4):327—330.
    103. Odabasi M, Denizli A. Cibacron blue F3GA incorporated magnetic poly (2-hydroxyethyl methacrylate) beads for lysozyme adsorption. J Appl Polym Sci, 2004, 93(2):719—725.
    104. Goto M, Imamura T, Hirose T. Axial dispersion in liquid magnetically stabilized fluidized beds. J Chromatogr A, 1995, 690(1):1—8.
    105. Tong X D, Xue B, Sun Y. A novel magnetic affinity support for protein adsorption and purification. Biotechnol Progr, 2001, 17(1):134—139.
    106. Liao M H, Chen D H. Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent. Biotechnol Lett, 2002, 24(22):1913—1917.
    107. Xue B, Sun Y. Protein adsorption equilibria and kinetics to a poly (vinyl alcohol)-based magnetic affinity support. J Chromatogr A, 2001, 921(2):109—119.
    108. Tong X D, Sun Y. Application of magnetic agarose support in liquid magnetically stabilized fluidized bed for protein adsorption. Biotechnol Progr, 2003, 19(6):1721—1727.
    109. Yu Y H, Xue B, Sun Y, et al. The preparation of chitosan affinity magnetic nanoparticles and their adsorption properties for proteins. Acta Polym Sinica, 2000(3):340—344.
    110. Peng Z G, Hidajat K, Uddin M S. Adsorption and desorption of lysozyme on nano-sized magnetic particles and its conformational changes. Coll Surf B– Biointerf, 2004, 35(3-4):169—174.
    111.徐彩娜.卵黄高磷蛋白磷酸肽的酶解制备及其持钙功能特性研究[D]:[硕士学位论文].吉林:吉林大学食品科学, 2009.
    112. Inwook C, Jung C W, Heedon C, et al. E(?)ectiveness of phosvitin peptides on enhancing bioavailability of calcium and its accumulation in bones. Food Chem, 2005, 93 (4):577—583.
    113. Bertrand P, Ting C P, Mine Y, et al. Comparative Composition and Antioxidant Activity of Peptide Fractions Obtained by Ultrafiltration of Egg Yolk Protein Enzymatic Hydrolysates. Membranes, 2011, 1 (3):149—161.
    114.林松毅,刘静波,刘瑜等.利用二次回归正交组合设计法构建卵黄高磷蛋白磷酸肽提取工艺数学模型的研究[J].食品与机械, 2008, 24(4): 13—16.
    115. Losso J N, Nakai S A. Simple procedure for the isolation of phosvitin from chicken egg yolk. In Egg Uses and Processing Technologies: New Developments; Sim, J. S., Nakai, S., Eds.; Cab International: Oxon, U.K. 1994, 150—157.
    1. Mehra K S, Singh R, Bhatia RP, et al. Lysozyme in corneal ulcer. Ann Ophthalmol, 1975, 7(11):1470—1472.
    2. Das S, Banerjee S, Gupta J D. Experimental Evaluation of Preventive and Therapeutic Potentials of Lysozyme. Chemotherapy, 1992(38):350—357.
    3. Kovanyi G, Letnansky K. Urine and blood serum muramidase (lysozyme) in patients with urogenital tumors. Eur J cancer, 1971, 7(1): 25—31.
    4. Rudders R A, Bloch K J. Myeloma renal disease: evaluation of the role of muramidase (lysozyme). Am J med Sci, 1971, 262(2): 79—85.
    5. Hansen N E. Lysozyme in Haematology pathophysiology and clinical use. Scand J haemat, 1975, 14(3): 160—165.
    6. Geboes K, Van den Oord J J, Rutgeerts P, et al. Immunohistochemical identification of lysozyme in pseudopyloric gland metaplasia in Crohn's disease. Hepato-gastroenterol, 1983, 30(4): 158—160.
    7. Hughey V L, Johnson E A. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Appl environ microb, 1987, 53(9): 2165—2170.
    8. Hughey V L, Wilger P A, Johnson E A. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods. Appl environ microb, 1989, 55(3): 631—638.
    9. Masschalck B, Michiels C W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol, 2003, 29(3): 191—214.
    10. Malicki A, Trziszka T, Szpak M, et al.Technological and microbiological aspects of the lysozyme effect on poultry meat durability. Przem Chem, 2004, 90(5): 904—906.
    11.王飞.新型的绿色饲料添加剂―溶菌酶[J].广东饲料, 2002, 11(6):31—36.
    12.刘莹,孙荣丹,杨翔华等.溶菌酶的应用现状[J].饲料工业, 2006, 27(6):19—25.
    13.吴诚,文利新,丁小波.溶菌酶在畜牧业中的应用[J].广东畜牧兽医科技, 2007,32(1):19—21.
    14. Westmacott D, Perkins H R. Effects of lysozyme on Bacillus cereus 569: rupture of chains of bacteria and enhancement of sensitivity to autolysins. J gen microbiol, 1979, 115(1): 1—11.
    15. Li M, Zhang G F, Su Z G. Dual gradient ion-exchange chromatography improved refolding yield of lysozyme. J Chromatogr A, 2002, 959 (1-2):113—120.
    16. Jiang C M, Wang M C, Chang W H, et al. Isolation of lysozyme from hen egg albumen by alcohol-insoluble cross-linked pea pod solid ion-exchange chromatography. J Food Sci, 2001, 66(8):1089—1092.
    17. Mayani M, Filipe C D M, Ghosh R. Cascade ultrafiltration systems-Integrated processes for purification and concentration of lysozyme. J Membrane Sci, 2010, 347(1-2): 150—158.
    18. Lee E Y, Woo G J, Park J. Separation of antimicrobial hen egg white lysozyme using ultrafiltration. Food Sci Biotechnol, 2003, 12(4): 371—375.
    19. Zhang G Q, Cao Q, Li N, et al. Tris (hydroxymethyl) aminomethane-modified magnetic microspheres for rapid affinity purification of lysozyme. Talanta, 2011, 83 (5):1515—1520.
    20. Uygun D A, Karagozler A A, Akgol S,et al. Magnetic hydrophobic affinity nanobeads for lysozyme separation. Mat Sci Eng C-Mater Biolog Appl, 2009, 29(7): 2165—2173.
    21. Safarik I, Sabatkova Z, Tokar O, et al. Magnetic cation exchange isolation of lysozyme from native hen egg white. Food Technol Biotech, 2007, 45(4): 355—359.
    22. Huang S H, Juang R S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J nanopart Res, 2011, 13(10): 4411—4430.
    23. Kouassi G K. Magnetic and Gold-Coated magnetic Iron Oxide Nanoparticles as Detection Tools: Preparation, Characterization, and Biosensing Applications. Curr Nanosci, 2011, 7(4): 510—523.
    24. Chen L G, Wang T,Tong J. Application of derivatized magnetic materials to the separation and thepreconcentration of pollutants in water samples.Trac-Trend anal chem, 2011, 30(7): 1095—1108.
    25. Tai Y L, Wang L, Fan G Q, et al. Recent research progress on the preparation and application of magnetic nanospheres. Polym Int, 2011, 60(7): 976—994.
    26. Lee J, Isobe T, Senna M. Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. J Colloid Interf Sci,1996, 177(2): 490—494.
    27. Lee C M, Jeong H J, Kim S L, et al. SPION-loaded chitosan–linoleic acid nanoparticles to target hepatocytes.Int J Pharm, 2009, 371 (1-2):163—169.
    28. Hsu S H, Chang Y B, Tsai C L, et al. Characterization and biocompatibility of chitosan nanocomposites.Colloid Surface B, 2011, 85(2): 198—206.
    29. Keong L C, Halim A S. In Vitro Models in Biocompatibility Assessment for Biomedical-Grade Chitosan Derivatives in Wound Management. Int J mol Sci, 2009, 10(3): 1300—1313.
    30. Xu C N, Pan H, Jiang H L, et al. Biocompatibility evaluation of N, O-hexanoyl chitosan as a biodegradable hydrophobic polycation for controlled drug release. J mater Sci-mater M, 2008, 19(6): 2525—2532.
    31. Zhou L M, Wang Y P, Liu Z R, et al. Adsorption Properties of Cu2+, Cd2+ and Ni2+ by Modified Magnetic Chitosan Microspheres. Acta Phys-Chim Sin, 2007, 23 (12): 1979—1984.
    32. Liang Y Y, Zhang L M. Bioconjugation of Papain on Superparamagnetic Nanoparticles Decorated with Carboxymethylated Chitosan. Biomacromol, 2007, 8 (5): 1480—1486.
    33. Gupta A K, Curtis A S G. Lactoferrin and certdoplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomatetials, 2004, 25(15):3029—3040.
    34. Quan L, Cao Q, Li Z Y, et al. Highly efficient and low-cost purification of lysozyme: A novel tris (hydroxymethyl) aminomethane immobilized affinity column. J Chromatogr B, 2009, 877(7):594—598.
    35.张鑫,李鑫钢,姜斌.四氧化三铁纳米粒子合成及表征[J].化学工业与工程, 2006, 23(1): 45—48.
    36.黄菁菁,徐祖顺,易昌凤.化学共沉淀法制备纳米四氧化三铁粒子[J].湖北大学学报, 2007, 29(1): 50—52.
    37. Koneracka M, Zavisova V, Timko M, et al. Magnetic properties of encapsulated magnetite in PLGA nanospheres. Acta phys pol A, 2008 (113):595—598.
    38. Zhang J, Yu D M, Chen W, et al. Preparation of poly (styrene–glucidylmethacrylate)/Fe3O4 composite microspheres with high magnetite contents. J Magn Magn Mater, 2009, 321 (6):572—577.
    39. Y(?)lmaz M, Bayramo
    48. Blanco R, Arai A, Grinberg N, et al. Role of association on protein adsorption isotherms :β-lactoglobulin a adsorbed on a weakly hydrophobic surface. J Chromatogr A, 1989, 482 (1): 1—12.
    49. Odaba(?)i M, Say R, Denizli A. Molecular imprinted particles for lysozyme purification.Mater Sci Eng C, 2007, 27 (1): 90—99.
    50. Ba(?)ar N, Uzun L, Güner A, et al. Lysozyme purification with dye-affinity beads under magnetic field. Int J biol Macromol, 2007, 41 (3):234—242.
    1. Wang J, Jensen U,Jensen G V, et al. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano letter, 2011, 11(11):4985—4991.
    2.彭彬.蛋白质功能和构象的关系分析[J].农产品加工, 2010(12):65—69.
    3. Damberger F F, Christen B, Perez D R, et al. Cellular prion protein conformation and function. PNAS, 2011, 108(42): 17308—17313.
    4.张潭.变性剂诱导的蛋白Lyz分子去折叠和重折叠过程各稳定构象态的分布和过渡[D]:[硕士学位论文].西安:西北大学细胞生物学系, 2010.
    5.马林,魏志强,黄爱民等.光谱法研究尿素对水溶液中血红蛋白构象的影响[J].物理化学学报, 2009,25(9):1816—1822.
    6. Billsten P, Carlsson U, Jonsson B H, et al. Conformation of Human Carbonic Anhydrase II Variants Adsorbed to Silica Nanoparticles. Langmuir, 1999, 15 (19):6395—6399.
    7. Larsericsdotter H, Oscarsson S, Buijs J. Thermodynamic Analysis of Proteins Adsorbed on Silica Particles: Electrostatic Effects. J Colloid Interface Sci, 2001, 237 (1):98—103.
    8. Shamim N, Liang H, Hidajat K, et al. Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interf Sci, 2008, 320 (1):15—21
    9. Peng Z G, Hidajat K, Uddin MS. Adsorption and desorption of lysozyme on nano-sized magnetic particles and its conformational changes. Colloid Surface B, 2004, 35 (3-4):169—174.
    10. Haynes C A, Norde W. Structures and stabilities of adsorbed proteins. J Colloid Interface Sci, 1995, 169 (2):313—328.
    11. Hobora D, Imabayashi S I, Kakiuchi T N. Preferential adsorption of horse heart cytochrome c on nanometer-scale domains of a phase-separated binary self-assembles monolayer of 3-mercaptopropionic acid and 1-hexadecanethiol on Au (III). Nano Lett, 2002, 2 (9):1021—1025.
    12. Roach P, Farrar D, Perry C C. Surface Tailoring for Controlled Protein Adsorption: Effect of Topography at the Nanometer Scale and Chemistry. J am Chem Soc, 2006, 128 (12):3939—3945.
    13. Chen L, Guo C, Guan Y P, et al. Isolation of lactoferrin from acid whey by magnetic affinity separation. Sep Purif Technol, 2007, 56 (2):168—174.
    14. Datta D, Bhattacharjee S, Nath A, et al. Separation of ovalbumin from chicken egg white using two-stage ultrafiltration technique. Sep Purif Technol, 2009, 66 (2):353—361.
    15. Chen W Y, Liu Z C, Lin P H, et al. The hydrophobic interactions of the ion-exchanger resin ligands with proteins at high salt concentrations by adsorption isotherms and isothermal titration calorimetry. Sep Purif Technol, 2007, 54 (2):212—219.
    16. Feng W, Zhu S P, Ishihara K, et al. Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2005, 21(13): 5980—5987.
    17. Lin J S, Lin Y S, Kuo S T, et al. Purification of soybean amylase by superparamagnetic particles. Food Chem, 2009, 117 (1):94—98.
    18. Huang S H, Liao M H, Chen D H. Fast and efficient recovery of lipase by polyacrylic acid-coated magnetic nano-adsorbent with high activity retention. Sep Purif Technol, 2006, 51 (2):113—117.
    19. Blake C C F, Koenig D F, Mair G A, et al. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature, 1965(206):756—761.
    20. Moghadam T T, Ranjbar B, Khajeh K, et al. Interaction of lysozyme with gold nanorods: conformation and activity investigations. Int J Biol Macromol, 2011, 49 (4):629—636.
    21.秦身钧,王建滨,姚宏伟,等.计算机辅助解析FTIR定量研究蛋白质构象的应用进展[J].河北师范大学学报(自然科学版), 2006, 30(3):331—335.
    22. Raftery M A, Huestis W H, Millett F. Use of 19 F-nuclear magnetic resonance spectroscopy for detection of protein conformation changes: application to lysozyme, ribonuclease and hemoglobin. Cold Spring Harbor symposia on quantitative biology, 1972(36): 541—550.
    23. Pezolet M, Bonenfant S, Dousseau F, et al. Conformation of wheat gluten proteins. Comparison between functional and solution states as determined by infrared spectroscopy. FEBS letter, 1992, 299(3): 247—250.
    24. Laporte L, Stultz J, Thomas G J. Solution conformations and interactions of alpha and beta subunits of the Oxytricha nova telomere binding protein: investigation by Raman spectroscopy. Biochem, 1997, 36(26):8053—8059.
    25. Wang S Y, Xu X L, Liu Q L, et al. The application of fluorescence spectroscopy in the study on protein conformation. Prog Chem, 2001, 13(4): 257—260.
    26. Hanzawa H, Shimada I, Kuzuhara T, et al. lH nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. Fed Europ Biochem Societ, 1990, 269(2):413—420.
    27. Wilson K J, McNamee M G, Peticolas W L. The time dependent UV resonance Raman spectra,conformation, and biological activity of acetylcholine analogues upon binding to acetylcholine binding proteins. J biomol struct dyn, 1991, 9(3):489—509.
    28. Wardell M R, Abrahams J P, Bruce D, et al. Crystallization and preliminary X ray diffraction analysis of two conformations of intact human antithrombin. J molecul biol, 1993, 234(4): 1253—1258.
    29. Stearns J A, Guidi M; Boyarkin O Vet al. Conformation-specific infrared and ultraviolet spectroscopy of tyrosine-based protonated dipeptides. J chem phys, 2007, 127(15): 111—118.
    30. Tao Z J, Shen Z M, Yang J T. Conformation of the Abortifacient Protein Pinellin: A Circular Dichroic Study. J Protein Chem, 1993, 12(4), 387—391.
    31. Themistou E, Singh I, Shang C W, et al. Application of Fluorescence spectroscopy to Quantify Shear-Induced protein conformation Change. Biophys J, 2009, 97(9): 2567—2576.
    32. Jana S, Chaudhuri T K,Deb J K. Effects of guanidine hydrochloride on the conformation and enzyme activity of streptomycin adenylyltransferase monitored by circular dichroism and Fluorescence spectroscopy. Biochem Moscow, 2006, 7(11): 1230—1237.
    33. Michael Jackson, Henry H M. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Biochem, 1995 (30): 95—120.
    34. Sun J, Su Y J, Rao S Q,et al. Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles. J Chromatogr B, 2011, 879 (23):2194—2200.
    35. Wan Y H, Lu J R, Cui Z F. Separation of lysozyme from chicken egg white using ultrafiltration. Sep Purif Technol, 2006, 48 (2):133—142.
    36. Odaba(?)i M, Say R, Denizli A. Molecular imprinted particles for lysozyme purification. Mater Sci Eng C, 2007, 27 (1):90—99.
    37. Chen X, Liu J H, Feng Z C, et al. Macroporous Chitosan/Carboxymethylcellulose Blend Membranes and Their Application for Lysozyme Adsorption. J appl polym sci, 2005, 96 (4):1267—1274.
    38. (?)ncel (?), Uzun L, Garipcan B, et al. Synthesis of Phenylalanine-Containing Hydrophobic Beads for Lysozyme Adsorption. Ind Eng Chem Res, 2005, 44(18):7049—7056.
    39. Witold K, Surewicz H H, Mantsch D C. Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry, 1993, 32 (2):389—394.
    40. Chakraborti S, Chatterjee T, Joshi P, et al. Structure and Activity of Lysozyme on Binding to ZnO Nanoparticles. Langmuir, 2010, 26(5):3506—3513.
    41. Xu Z, Liu X W, Ma Y S, et al. Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles. Environ Sci Pollut Res, 2010, 17 (3):798—806.
    42. Chen Y, Flowers K, Calizo M, et al. The role of protein binding in the poisoning of gold nanoparticle catalysts. Colloid Surf B, 2010, 76 (1):241—247.
    43. Evans-Nguyen K M, Tolles L R, Gorkun O V, et al. Interactions of Thrombin with Fibrinogen Adsorbed on Methyl-, Hydroxyl-, Amine-, and Carboxyl-Terminated Self-Assembled Monolayers. Biochemistry, 2005, 44(47):15561—15568.
    44. Sivaraman B, Fears KP, Latour R A. Investigation of the Effects of Surface Chemistry and Solution oncentration on the Conformation of Adsorbed Proteins Using an Improved Circular Dichroism Method. Langmuir, 2009, 25(5):3050—3056.
    45. M(?)ller M, Denicola A. Study of Protein-Ligand Binding by Fluorescence. Biochem Mol Biol Educ, 2002, 30 (5):309—312.
    46. Yamamoto T, Kobayashi T, Yoshikiyo K, et al. A 1H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin. J Mol Struc, 2009, 920 (1-3):264—269.
    47. Imoto T, Forster L S, Rupley J A, et al. Fluorescence of Lysozyme: Emissions from Tryptophan Residues 62 and 108 and Energy Migration. Proc Nat Acad Sci, 1971, 69(5):1151—1155.
    48. Greenfield N, Fasman G D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 1969 (8):4108—4116.
    49. Xu M, Ermolenkov V V, Uversky V N, et al. Hen egg white lysozyme fibrillation: a deep-UVresonance Raman spectroscopic study. J Biophoton, 2008, 1 (3): 215—229.
    1.李林.蛋白质组学的进展[J].生物化学与生物物理进展, 2000, 27(3): 227—231.
    2. Wang L S,Chen G Q. Current advances in the application of proteomics in apoptosis research. Sci China Life Sci, 2011, 54(3): 209—219.
    3. Ruiz-Romero C, Blanco F J. Mitochondrial proteomics and its application in biomedical research. Mol Biosyst, 2009, 5(10):1130—1142.
    4. Fuyu G, Cornelius E U, Lawrence R S, et al. Differentiation and identification of recombinant human erythropoietin and darbepoetinalfa in equine plasma by LC-MS/MS for doping control. Anal Chem, 2008, 80 (10):3811—3817.
    5. Yao G P, Deng C H, Zhang X M,et al. Efficient Tryptic Proteolysis Accelerated by Laser Radiation for Peptide Mapping in Proteome Analysis. Angew Chem, 2010, 122(44):8361—8365.
    6. Canas B, Lopez-Ferrer D, Ramos-Fernandez A, et al. Mass spectrometry technologies for proteomics. Brief Funct Genomic Proteomic, 2006, 4 (4): 295—320.
    7. Klibanov A M. Immobilized enzymes and cells as practical catalysts. Science, 1983, 19 (4585):722—727.
    8. Yu D H, Van A, Pierre, et al. Enzyme immobilized Magnetic Nanoparticles for In-Line Capillary Electrophoresis and Drug Biotransformation Studies: Application to Paracetamol. Comb chem high T Scr, 2010, 13(6): 455—460.
    9. Spross, Jens, Sinz, et al. Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics. Anal bioanal chem, 2009, 395(6):1583—1588.
    10. Nie Y L, Wang W H. Immobilized Enzyme Reactor in On-line LC and Its Application in Drug Screening. Chromatogr Suppl, 2009, 69 (1): 5—12.
    11. Kubitzki T, Noll T, Lütz S. Immobilisation of bovine enterokinase and application of the immobilised enzyme in fusion protein cleavage. Bioprocess Biosyst Eng, 2008, 31 (3):173—182.
    12. Zhang D, Zhang K, Yao Y L, et al. Multilayer Assembly of Prussian Blue Nanoclusters and Enzyme-Immobilized Poly(toluidine blue) Films and Its Application in Glucose Biosensor Construction. Langmuir, 2004, 20 (17): 7303—7307.
    13. Liang J F, Li Y T, Yang V C. Biomedical Application of Immobilized Enzymes. J Pharm Sci, 2000, 89(8): 979—989.
    14. Goradia D, Cooney J, Hodnett B K, et al. The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. J mol catal B-enzym, 2005, 32 (5-6):231—239.
    15. Liu C G, Desai K G H, Chen X G, et al. Preparation and Characterization of Nanoparticles Containing Trypsin Based on Hydrophobically Modified Chitosan. J Agric Food Chem, 2005, 53 (3):1728—1733.
    16. Tong X D, Xue B, Sun Y. A Novel Magnetic Affinity Support for Protein Adsorption and Purification. Biotechnol Prog, 2001, 17 (1):134—139.
    17. Liu X Q, Guan Y P, Shen R, et al. Immobilization of lipase onto micron-size magnetic beads. J Chromatogr B, 2005, 822 (1-2):91—97.
    18. Lee B, Lopez-Ferrer D, Kim B C, et al. Rapid and efficient proteins digestion using trypsin-coated Magnetic Nanoparticles under pressure cycles. Proteomics, 2011, 11 (2): 309—318.
    19. Liu Z M, Yang H F, Li Y F, et al. Core–shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode and amperometric immunosensing. Sensor Actuat B, 2006, 113 (2):956—962.
    20. Shan G B, Xing J M, Luo M F, et al. Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett, 2003, 25 (23): 1977—1981.
    21. Hong J, Xu D M, Gong P J, et al. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels. Micropor Mesopor Mat, 2008, 109 (1-3): 470—477.
    22. Bayramoglu G, Tunali Y, Arica M Y. Immobilization ofβ-galactosidase onto magnetic poly (GMA–MMA) beads for hydrolysis of lactose in bed reactor. Catal Commun, 2007, 8 (7):1094—1101.
    23. Kaushik A, Solanki P R, Ansari A A, et al. Iron Oxide-Chitosan Nanobiocomposite for Urea Sensor. Sensor Actuat B Chem, 2009, 138 (2):572—580.
    24. Lee C M, Jeong H J, Kim S L, et al. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes. Int J Pharm, 2009, 371 (1-2):163—169.
    25. Chang Y C, Chen D H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. J Colloid Interf Sci, 2005 (283): 446—451.
    26. Tiourina O P, Sukhorukov G B. Multilayer alginate/protamine microsized capsules: encapsulation ofα-chymotrypsin and controlled release study. Int J Pharm, 2002, 242 (1-2):155—161.
    27. Sun J, Su Y J, Rao S Q,et al. Separation of lysozyme using Superparamagneticcarboxymethyl Chitosan nanoparticles. J Chromatogr B, 2011, 879 (23):2194—2200.
    28. Schwert G W, Takenaka Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys Acta, 1955 (16):570—575.
    29. Deng Y H, Deng C H, Qi D,et al. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Adv Mater, 2009, 21(13):1377—1382.
    30. Li Y, Xu X, Deng C, et al. Immobilization of Trypsin on Superparamagnetic Nanoparticles for Fast and Effective Proteolysis. J Proteome Res, 2007, 6 (9): 3849—3855.
    31. Jackson M, Mantsch H H.The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit Rev Biochem Mol, 1995, 30 (2): 95—120.
    32. Kang K, Kan C Y, Yeung A, et al. The Properties of Covalently Immobilized Trypsin on Soap-Free P(MMA-EA-AA) Latex Particles. Macromol Biosci, 2005, 5 (4): 344—351.
    33. Yao C H , Li Q, Hu W B, et al. Immobilization of trypsin on sub-micron skeletal polymer monolith. Anal ChimActa, 2011, 692 (1-2): 131—137.
    34. Eldin M S M, Portaccio M, Diano N, et al. Influence of the microenvironment on the activity of enzymess immobilized on Teflon membranes grafted byγ-radiation. J Mol Catal, 1999, 7 (5-6): 254—261.
    35. Arica MY, Hasirci V. Immobilization of glucose oxidase: a comparison of entrapment and covalent bonding. J Chem Technol Biotechnol, 1993, 58 (3):287—292.
    36. Qiao L, Liu Y, Hudson S P, et al. A Nanoporous Reactor for Efficient Proteolysis. Chem Eur J, 2008, 14 (1):151—157.
    37. Sakai-Kato K, Kato M, Toyooka T. On-line trypsin-encapsulated enzymes reactor by the sol-gel method integrated into capillary electrophoresis. Anal Chem, 2002, 74 (13):2943—2949.
    1. Porath J. Immobilized metal ion affinity chromatography. Protein expres purif, 1992, 3(4):263—281.
    2. Belew M, Porath J. Immobilized metal ion affinity chromatography. Effect of solute structure, ligand density and salt concentration on the retention of peptides. J chromatogr A, 1990, 516(2):333—354.
    3. Mateo C, Fernandez-Lorente G, Pessela BCC et al. Affinity chromatography of polyhistidine tagged enzymes - New dextran-coated immobilized metal ion Affinity chromatography matrices for prevention of undesired multipoint adsorptions. J chromatogr A, 2001, 915(1-2):97—106.
    4. Sun X S, Chiu J F , He Q Y, et al. Application of Immobilized metal affinity chromatography in proteomics. Expert rev proteomic, 2005, 2(5):649—657.
    5. Feng S, Pan C S, Jiang X G, et al. Fe3+ Immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomic, 2007, 7(3): 351—360.
    6. Xu F, Wang Y J,Wang X D, et al. A novel hierarchical nanozeolite composite as sorbent for protein separation in Immobilized metal-ion affinity chromatography. Adv mater, 2003, 15(20): 1751—1759.
    7. Glynou K, Ioannou P C,Christopoulos T K . One-step purification and refolding of recombinant photoprotein aequorin by Immobilized metal-ion affinity chromatography. Protein expres purif, 2003, 27(2): 384—390.
    8. Zhang C M, Reslewic S A,Glatz C E. Suitability of Immobilized metal affinity chromatography for protein purification from canola. Biotech bioeng, 2000, 68 (1): 52—58.
    9. Gutierrez R , del Valle, EMM,Galan, MA. Immobilized metal-ion affinity chromatography: Status and trends. Sep purify rev, 2007, 36(1):71—111.
    10. Ren D Y, Penner N A, Slentz B E. Evaluating Immobilized metal affinity chromatography for the selection of histidine-containing peptides in comparative proteomics. J proteome res, 2003, 2(3):321—329.
    11.王燕,李蓉,陈国亮等.铜离子固定金属亲和色谱在生物大分子中的应用[J].化学通报, 2008(11):838—845.
    12. Szczepaniak S A, Jemielity J, Zuberek J, et al. Bisphosphonate mRNA cap analog attached to sepharose or affinity chromatography of decapping enzymes. Nucleic acids symp ser, 2008, 2004 (52): 295—296.
    13 Lu A H, Salabas E L, Ferdi Sch. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed, 2007, 46(8):1222—1244.
    14. Liu S S, Chen H M, Lu X H, et al. Facile Synthesis of Copper(II)Immobilized on Magnetic Mesoporous Silica Microspheres for Selective Enrichment of Peptides for Mass Spectrometry Analysis. Angew Chem Int Ed, 2010, 122 (41):7719—7723.
    15. Lee K B, Park S, Mirkin C A. Multicomponent magnetic nanorods for biomolecular separations. Angew Chem Int Ed, 2004, 116(23):3110—3112.
    16. Hong S, Leroueil P R, Janus E K, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjugate Chem, 2006, 17 (3):728—734.
    17. Ma Z Y, Liu X Q, Guan Y P, et al. Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins. Colloids and Surfaces A: Physicochem Eng Aspects, 2006, 275 (1-3):87—91.
    18. Li Y C, Lin Y S, Tsai P J, et al. Nitrilotriacetic Acid-Coated Magnetic Nanoparticles as Affinity Probes for Enrichment of Histidine-Tagged Proteins and Phosphorylated Peptides. Anal Chem, 2007, 79(19):7519—7525.
    19.王燕,李蓉,陈国亮等.铜离子固定金属亲和色谱在生物大分子中的应用[J].化学通报, 2008(11):838—844.
    20. Krishnani K K, Meng X, Christodoulatos C, et al. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater, 2008,153 (3):1222—1234.
    21. Nakamoto K, Huang D R, Wang R Y, Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed . Chemical Industry Press, Beijing, 1991.
    22. Sharma S, Agarwal G l P. Interactions of Proteins with Immobilized Metal Ions. Role of Ionic Strength and pH.J Colloid Interf Sci, 2001,243 (1):61—72.
    23. Moniera M, Ayadb D M, Wei Y, et al. Adsorption of Cu (II), Co (II), and Ni (II) ions by modified magnetic chitosan chelating resin. J Hazard Mater, 2010,177 (1-3):962—970.
    24. Zhou L M, Liu Z R, Liu J H, et al. Adsorption of Hg (II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination, 2010, 258 (1-3):41—47.
    25. Ma W, Ya F Q, Han M, et al. Characteristics of equilibrium, kinetics studies for adsorption of (?)uoride on magnetic-chitosan particle. J Hazard Mater, 2007, 143 (1-2): 296—302.
    26. Ba(?)ar N, Uzun L, Güner A, et al. Lysozyme purification with dye-affinity beads under magnetic field. Int J biol Macromol, 2007, 41 (3):234—242.
    27. Alt(?)nta(?) E B, Tüzmenb N, Candan N, et al. Use of magnetic poly (glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system. J Chromatogr B, 2007,853 (1-2):105—113.
    28. Ar(?)ca M Y, Denizli A. Performance of different metal-dye chelated affinity adsorbents of poly(2-hydroxyethyl methacrylate) in lysozyme separation.Sep Sci Technol, 2000,35 (14):2243—2257.
    29. Peng Z G, Hidajat K, Uddin M S. Adsorption and desorption of lysozyme on nano-sized magnetic particles and its conformational changes. Colloid Surface B, 2004, 35 (3-4):169—174.
    1. Jiang B, Mine Y. Preparation of novel functional oligophosphopeptides from hen egg yolk phosvitin. J Agric Food Chem, 2000, 48(4): 990—994.
    2. Young, D, Nau, F, Pasco, M, et al. Identification of Hen Egg Yolk-Derived Phosvitin Phosphopeptides and Their Effects on Gene Expression Profiling against Oxidative Stress-Induced Caco-2 Cells. J Agric Food Chem, 2011, dx.doi.org/10.1021/jf202092d.
    3. Katyama S., Ishikawa S-I, Fan M Z, et al. Oligophosphopeptides Derived from Egg Yolk Phosvitin Up-regulateα-Glutamylcysteine Synthetase and Antioxidant Enzymes against Oxidative Stress in Caco-2 Cells. J Agric Food Chem, 2007, 55(8): 2829—2835.
    4. Samaraweera H, Zhang WG, Lee EJ, et al. Egg Yolk Phosvitin and Functional Phosphopeptides–Review. J Food Sci, 2011.doi: 10.1111/j.1750-3841.2011.02291.x.
    5. Goulas A, Triplett E L, Taborsky G. Oligophosphopeptides of Varied Structural Comptexity Derived from the Egg Phosphoprotein, Phosvitin. J Protein Chem, 1996, 15(1): 1—9.
    6. Choi I, Jung C, Choi H, et al. E(?)ectiveness of phosvitin peptides on enhancing bioavailability of calcium and its accumulation in bones. Food Chem, 2005, 93(4): 577—583.
    7. Jiang B, Mine Y. Phosphopeptides derived from hen egg yolk phosvitin: effect of molecular size on the calcium-binding properties. Biosci Biotech Biochem, 2001, 65(5): 1187—1190.
    8. Castellani O, Guérin-Dubiard C, David-Briand, E, et al. In(?)uence of physicochemical conditions and technological treatments on the iron binding capacity of egg yolk phosvitin. Food Chem, 2004, 85(4): 569—577.
    9. Inwook C, Jung C W, Heedon C, et al. E(?)ectiveness of phosvitin peptides on enhancing bioavailability of calcium and its accumulation in bones. Food Chem, 2005, 93 (4):577—583.
    10. Bertrand P, Ting C P, Mine Y, et al. Comparative Composition and Antioxidant Activity of Peptide Fractions Obtained by Ultrafiltration of Egg Yolk Protein Enzymatic Hydrolysates. Membranes, 2011, 1 (3):149—161.
    11.林松毅,刘静波,刘瑜等.利用二次回归正交组合设计法构建卵黄高磷蛋白磷酸肽提取工艺数学模型的研究[J].食品与机械, 2008, 24(4): 13—16.
    12. Losso J N, Nakai S A. Simple procedure for the isolation of phosvitin from chicken egg yolk. In Egg Uses and Processing Technologies: New Developments; Sim, J. S., Nakai, S., Eds.; Cab International: Oxon, U.K. 1994, 150—157.
    13. Porath J, Carlsson J, Olsson I, el a1.Metal chelate affinity chromatography, a new approach to protein fractionation. Nature,1975, 258(5536):598—599.
    14. Seeley E H, Riggs L D,Regnier F E. Reduction of non-specific binding in Ga (III) Immobilized metal affinity chromatography for phosphopeptides by using endoproteinase glu-C as the digestive enzyme. J Chromtogr B, 2005, 817(1): 81—88.
    15. Ichikawa N, Mizuno M. Functional expression of hexahistidine-taggedβ-subunit of yeast F1-ATPase and isolation of the enzyme by immobilized metal affinity chromatography. Protein Expres Purif, 2004, 37(1): 97—101.
    16. Chaga G, Widersten M, Andersson L.Engineering of a metal coordinating site into human glutathione transferase M1-1 based on immobilized metal ion affinity chromatography of homologous rat enzymes. Protein Eng, 1994, 7(9): 1115—1119.
    17. Byra A, Dworniczak K, Szumilo T. Immobilized metal ions affinity chromatography in enzyme fractionation. Acta biochimica Polonica, 1991, 38(1): 101—105.
    18. Mateo C, Fernandez-Lorente, G, Pessela, B C C. Affinity chromatography of polyhistidine taggedenzymes - New dextran-coated immobilized metal ion affinity chromatography matrices for prevention of undesired multipoint adsorptions. J Chromtogr A, 2001, 915(1-2): 97—106.
    19. Arvidsson P, Plieva F M, LozinskyV I. Direct chromatographic capture of enzyme from crude homogenate using Immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J Chromtogr A, 2003, 986(2):275—290
    20. Tan F, Zhang YJ, Mi W, et al. Enrichment of Phosphopeptides by Fe3+-Immobilized Magnetic Nanoparticles for Phosphoproteome Analysis of the Plasma Membrane of Mouse Liver. J Proteome Res, 2008, 7(3):1078—1087.
    21.刘小丽.卵黄高磷蛋白的提取及其磷酸肽的制备[D]:[硕士学位论文].西安:西北大学,2003.
    22. Jens A, Nissen. Determination of the degree of hydrolysis of the food protein in hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem, 1979, 27(6):1256—1262.
    23.刘瑜.卵黄高磷蛋白磷酸肽的制备技术及其功能特性的研究[D]:[硕士学位论文].长春:吉林大学生物与农业工程学院, 2007.
    24. Goulas A, Triplett E L, Taborsky G. Oligophosphopeptides of varied structural complexity derived from the egg phosphoprotein, phosvitin. J protein chem, 1996, 15 (1):15—21.
    25. Castellani O, Martinet V, Briand E D, et al. Egg yolk phosvitin: preparation of metal-free purified protein by fast protein liquid chromatography using aqueous solvents. J chromatogr B, 2003, 791 (1-2):273—284.
    26.冯凤琴,许时婴,王璋.生理活性物质酪蛋白磷酸肽功能及应用[J].食品与发酵工业, 1996, 22 (5):73—76.
    27. Elwakeel K Z. Removal of Cr (VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination, 2010(250):105—112.
    28. Chen X, Liu J H, Feng Z H, et al. Macroporous Chitosan/Carboxymethylcellulose Blend Membranes and Their Application for Lysozyme Adsorption. J Appl Polym Sci, 2005, 96(4):1267—1274.
    29. Oncel S, Uzun L, Garipcan B, et al. Synthesis of Phenylalanine-Containing Hydrophobic Beads for Lysozyme Adsorption. Ind Eng Chem Res, 2005, 44 (18):7049—7056.
    30. Ho Y S, McKay G. Sorption of dyes and copper ions onto biosorbents. Process Biochem, 2003, 38 (7):1047—1061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700