用户名: 密码: 验证码:
梯级水电站和水火电站群优化调度的PSO算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梯级水电站和含梯级水电站的水火电力系统的优化调度一直是学术和工程界研究的前沿和热点。近年来,我国加快了水电能源开发的进程,随着大规模梯级电站的不断开发和陆续投产,对梯级水电站进行联合优化调度是未来流域梯级水电站运行的既定方式。梯级水电站的联合优化调度需综合考虑水电站间串联约束、水库各用水部门间的错综复杂关系和水文径流与系统负荷的不确定性;含梯级水电站的水火电力系统的联合优化调度还需考虑水火电间电量分配关系。因此,它们的优化调度隶属于高维、强约束的非线性优化问题范畴,问题的求解成为制约联合调度的一个障碍。梯级水电的迅猛发展和联合调度所面临的障碍急迫需要寻找新的优化算法。本文结合系统工程、最优化理论、计算机科学和智能计算技术等理论和方法,对流域梯级水电站和水火电力系统联合优化调度的求解展开研究,取得了一些具有一定理论意义和实际应用效果的研究成果。主要创新性成果如下:
     (1)从流域公司的视角,构建了一个梯级总发电效益最大的优化调度模型。在动态自适应惯性权重PSO算法基础上引入最优向导集和全面学习思想,为调度问题的求解构建多向导粒子群算法。以我国西南某流域梯级电站为例,对算法的应用效果进行验证。与现有方法的比较表明该算法在进化后期探索能力强,能够找到更优的结果。进一步,将研究成果应用于澜沧江流域梯级水电站不同上网电价政策的比较。
     (2)针对水火电力系统优化调度问题,建立考虑电量平衡、水量平衡、梯级水电站串联约束和水火电力系统自身特性的复杂调度模型。在惯性权重线性递减PSO算法中引入变异和迁徙操作构建改进粒子群算法用于水火联调问题的求解。仿真结果表明,改进粒子群算法能获得较好的结果。
     (3)针对当前众多PSO算法在求解复杂约束优化问题时需采用较大规模的种群,从而面临耗时长、收敛慢的弊端,在系统总结、吸收多向导粒子群算法和改进粒子群算法特点和优势的基础上提出一个基于小种群的粒子群算法。该算法引入变异、迁徙和DE加速操作以增强小种群的多样性并提高收敛速度。为尽量避免罚函数法的使用,算法还对候选个体进行修复。采用经典水火电力系统案例对算法的求解效果进行验证,结果表明,小种群粒子群算法只需3-5个粒子即可求解复杂水火联调问题,并且无论在收敛速度、优化结果还是计算耗时上,它都比现有算法更具竞争力。
     (4)针对含梯级水电站的水火电力系统机组组合问题,建立了考虑煤耗成本与启动费用之和最小的水火电力系统机组组合优化模型。结合二进制粒子群算法,对小种群粒子群算法进行完善和扩展,构建基于小种群的混合粒子群算法求解机组组合问题。在电力系统机组组合问题上获得验证后,将算法应用于水火电力系统的机组组合优化的求解。
     (5)针对水火电力系统多目标调度,构建考虑煤耗成本、污染物排放、电量损耗、梯级总蓄能、调峰效益和生态影响的多目标优化调度模型。以最常见的水火电力系统环境经济调度问题为例,从两方面对优化问题求解展开研究:其一,将环境经济两目标调度问题转为单目标的环境经济组合调度问题,并采用小种群粒子群算法求解;其二,结合Pareto占优理论,构建基于小种群的多目标粒子群算法,对环境、经济两目标进行同时优化。在小种群多目标粒子群算法的效果获得验证后,将它应用于澜沧江流域梯级水电站多目标调度问题的求解。
The optimizations of cascaded hydropower stations and hydrothermal power systems with cascaded reservoirs have always been the forefront and hotspot of academic and engineering research. Especially in recent years, China is gradually accelerating the development process of hydropower. The large-scale cascaded hydropower stations are developed continuously and put into operation gradually. The joint optimal scheduling for cascaded hydropower stations will be the vested operation mode of the cascaded stations in future. The joint scheduling for cascaded stations must consider the intricate relationships among hydropower stations and departments of water utilization, and the uncertainty hydrological runoff and system load. The joint scheduling for hydrothermal power systems must consider the load dispatch among hydro and thermal plants additionally. All these make the scheduling issues be high-dimensional, strong constrained and nonlinear optimization problems. The solution of the optimization problems will be an obstacle of the joint optimal scheduling of cascaded hydropower stations. Finding a novel algorithm has been one of the most important issues due to the rapid development of cascaded hydropower stations and the obstacle faced. In this thesis, the optimal scheduling of cascaded hydropower stations and hydrothermal power systems with cascaded reservoirs are deeply studied by adopting systems engineering theory, optimization methods, computer science, and techniques of swam intelligence. Some conclusions with theoretical and practical value are obtained. The main innovation achievements are as follows:
     (1) A mathematical model which maximizes the total benefits of cascaded hydropower stations is established. Multi-guide particle swarm optimizer (MGPSO), which introduces a multi-guide set into the selection of flying leaders, is proposed to solve the optimization problem. This approach is verified through an application to the scheduling of the cascaded hydropower stations on some river in southwest China. Simulations show the algorithm's strong exploration ability in the later evolution stage. After being validated, MGPSO is applied to the comparisons among the different on-grid prices of cascaded hydropower stations in Lancang River Basin.
     (2) A complex scheduling model for hydrothermal power systems is established with consideration of water balance of hydro reservoirs, system load balance, and physical limitations of generators and reservoirs. A modified PSO is developed to solve this optimization problem. In the proposed algorithm, a mutation operation acting on the selection of particles' personal best, and a migration operation which regenerates newly diverse population are introduced. The simulations show the modified PSO has fast convergence and the optimal solution obtained is more competitive.
     (3) A small population-based PSO (SPPSO) approach is proposed to solve the complex constrained hydrothermal scheduling problem. In this approach, small population (3-5 particles) instead of large population including hundred of particles is adopted in order to avoid more CPU time consumed and lower convergence speed. The operations of mutation, migration and DE-acceleration are incorporated into the SPPSO to enhance its competitive performance. In addition, a special repair procedure instead of penalty function approaches is also employed to handle the complex constraints of hydrothermal scheduling problem. Three hydrothermal test systems from literature are considered to test the proposed algorithm. The results have been reported through the comparisons with those obtained by other population-based evolutionary techniques. It is found that the proposed SPPSO can obtain more competitive solutions within faster convergence and shorter time consumed.
     (4) A mathematical model minimizing the total power production cost including both fuel and start-up cost is present for the short-term unit commitment of hydrothermal power systems. Aiming at the solution of this optimization problem, a small population-based hybrid particle swarm optimization (SPHPSO) approach is proposed basing on the improvement and expansion of the SPPSO. The hybrid algorithm employs the binary particle swarm optimization and the SPPSO to handle the variables of discrete unit status and continuous power, respectively. The SPHPSO is used to solve the hydrothermal unit commitment problem after it is validated in thermal unit commitment problem.
     (5) Aiming at multi-objective hydrothermal scheduling problems, a mathematical model with consideration of fuel cost, emissions of atmospheric pollutants, transmission losses, energy storage, peaking benefits and ecological impact of cascaded hydropower plants is built. In order to solve the short-term environmental economic hydrothermal scheduling problem, one of the famous multi-objective hydrothermal scheduling problems, two solution approaches are proposed. Multi-objective is coverted into a single objective through weight factors and penalty value factors firstly, and then the SPPSO is adopted to solve the converted optimization problem in one of the solution approaches. Small population-based multi-objective PSO basing on Pareto-domination theory (SPMPSO), which is extended from the above SPPSO, is presented aiming at optimizing the different objective simultaneously in the other solution approach. After it is verified in the famous hydrothermal test systems, the SPMPSO is applied to the multi-objective hydrogenation scheduling of the cascaded hydropower stations among Lancang River Basin.
引文
[1]国网北京经济技术研究院.流域梯级水电站上网电价机制研究.国网北京经济技术研究院,2006.
    [2]张双虎.梯级水库群发电优化调度的理论与实践:[博士学位论文].西安:西安理工大学图书馆,2007.
    [3]李英海.梯级水电站联合优化调度及其决策方法:[博士学位论文].武汉:华中科技大学图书馆,2009.
    [4]周玉琴.三峡梯级与清江梯级联合调度研究:[硕士学位论文].武汉:武汉大学图书馆,2005.
    [5]Shawwash Z K, Siu T K, Russell S O D. The B.C. Hydro short term hydro scheduling optimization model. IEEE Transactions on Power Systems.2000,15(3):1125-1131.
    [6]王金文,石琦,伍永刚等.水电系统长期发电优化调度模型及其求解.电力系统自动化.2002,26(24):22-25,30.
    [7]罗予如.梯级水电厂群短期经济运行的探讨.水力发电.2000,26(2):57-58.
    [8]Naccarino J R, Cheung R T, Briggs W et al. Real-time monitoring, optimization and control of a hydroelectric generation complex. IEEE Transactions on Power Systems. 1988,3(4):1769-1783.
    [9]曾勇红,姜铁兵,张勇传.三峡梯级水电站蓄能最大长期优化调度模型及分解算法.电网技术.2004,28(10):5-8.
    [10]杨侃,陈雷.梯级水电站调度多目标网络分析模型.水利水电科技进展.1998,18(3):35-38.
    [11]黄强,沈晋.水库联合调度的多目标多模型及分解协调算法.系统工程理论与实践.1997,17(1):75-82.
    [12]覃晖,周建中,王光谦等.基于多目标差分进化算法的水库多目标防洪调度研究.水利学报.2009,40(5):513-519.
    [13]陈洋波,胡嘉琪.隔河岩和高坝洲梯级水电站水库联合调度方案研究.水利学报.2004,35(3):47-52.
    [14]吴玮,周建中,曹广晶等.DSM分时电价下梯级水电站短期优化运营的研究.水力发电.2005,31(7):17-20.
    [15]赵永龙,常晓青.电力市场模式下的水电调度探讨.中国电力.2000,(11).
    [16]凌世河.清江流域梯级水电厂联合优化调度的探讨.水电厂自动化.2003,(4):1-6.
    [17]Conejo A J, Arroyo J M, Contreras J et al. Self-scheduling of a hydro producer in a pool-based electricity market. IEEE Transactions on Power Systems.2002,17(4): 1265-1272.
    [18]丁军威,胡肠,夏清等.竞价上网中的水电优化运行.电力系统自动化.2002,26(3):19-23.
    [19]Habibollahzadeh H, Frances D, Sui U. A new generation scheduling program at Ontario Hydro. IEEE Transactions on Power Systems.1990,.5(1):65-73.
    [20]Yu Z, Sparrow F T, Bo wen B H. A new long-term hydro production scheduling method for maximizing the profit of hydroelectric systems. IEEE Transactions on Power Systems.1998,13(1):66-71.
    [21]Rux L M. An incremental economic dispatch method for cascaded hydroelectric power plants. IEEE Transactions on Power Systems.1993,8(3):1266-1273.
    [22]Binato S, Pereira M. Decentralized planning of hydroelectric power systems. IEEE Transactions on Power Systems.1995,10(1):492-498.
    [23]Nilsson O, Sjelvgren D. Hydro unit start-up costs and their impact on the short term scheduling strategies of Swedish power producers. IEEE Transactions on Power Systems.1997,12(1):38-44.
    [24]Lyra C, Ferreira L R M.A multiobjective approach to the short-term scheduling of a hydroelectric power system. IEEE Transactions on Power Systems.1995,10(4): 1750-1755.
    [25]郭文献,夏自强,王远坤等.三峡水库生态调度目标研究.水科学进展.2009,20(4):554-559.
    [26]梅亚东,杨娜,翟丽妮.雅砻江下游梯级水库生态友好型优化调度.水科学进展.2009,20(5):721-725.
    [27]胡和平,刘登峰,田富强等.基于生态流量过程线的水库生态调度方法研究.水科学进展.2008,19(3):325-332.
    [28]康玲,黄云燕,杨正祥等.水库生态调度模型及其应用.水利学报.2010,(02).
    [29]Bonaert A P, El-Abiad A H, Koivo A J. Optimal scheduling of hydro-thermal power systems. IEEE Transactions on Power Apparatus and Systems.1972, PAS-91(1): 263-270.
    [30]Tavares H, Soares S, Lyra C. Modelling and optimization of hydrothermal generation scheduling. IEEE Transactions on Power Apparatus and Systems.1984, PAS-103 (8): 2126-2133.
    [31]Luo G X, Habibollahzadeh H, Semlyen A. Short-term hydro-thermal dispatch detailed model and solutions. IEEE Transactions on Power Systems.1989,4(4):1452-1462.
    [32]Guan X, Luh P B, Yen H et al. Optimization-based scheduling of hydrothermal power systems with pumped-storage units. IEEE Transactions on Power Systems.1994,9(2): 1023-1031.
    [33]Gorenstin B G, Campodonico N M, Da Costa J P et al. Stochastic optimization of a hydro-thermal system including network constraints. IEEE Transactions on Power Systems.1992,7(2):791-797.
    [34]谢永胜,孙洪波.基于模糊来水量,模糊负荷的短期水火电调度.中国电机工程学报.1996,16(6):430-433.
    [35]Guan X, Ni E, Li R et al. An optimization-based algorithm for scheduling hydrothermal power systems with cascaded reservoirs and discrete hydro constraints. IEEE Transactions on Power Systems.1997,12(4):1775-1780.
    [36]Xi E, Guan X, Li R. Scheduling hydrothermal power systems with cascaded and head-dependent reservoirs. IEEE Transactions on Power Systems.1999,14(3): 1127-1132.
    [37]Basu M. Hopfield neural networks for optimal scheduling of fixed head hydrothermal power systems. Electric Power Systems Research.2003,64(1):11-15.
    [38]吴至复,曾鸣,刘宝华等.电力市场中的水火电优化调度模型及其应用.电网技术.2006,30(15):45-49.
    [39]Lakshminarasimman L, Subramanian S. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs. Energy Conversion and Management.2008,49(10):2513-2521.
    [40]Mandal K K, Basu M, Chakraborty N. Particle swarm optimization technique based short-term hydrothermal scheduling. Applied Soft Computing.2008,8(4):1392-1399.
    [41]Hota P K, Barisal A K, Chakrabarti R. An improved PSO technique for short-term optimal hydrothermal scheduling. Electric Power Systems Research.2009,79(7): 1047-1053.
    [42]Sifuentes W, Vargas A. Short-term hydrothermal coordination considering an AC network modeling. International Journal of Electrical Power and Energy Systems. 2007,29(6):488-496.
    [43]马瑞,贺仁睦,颜宏文等.考虑水火协调的多目标优化分组分段竞标模型.中国电机工程学报.2004,24(11):53-57.
    [44]Wang S J, Shahidehpour S M, Kirschen D S et al. Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation. IEEE Transactions on Power Systems.1995,10(3):1294-1301.
    [45]Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Transactions on Power Systems.2003,18(4): 1529-1537.
    [46]Yalcinoz T, Koksoy O. A multiobjective optimization method to environmental economic dispatch. International Journal of Electrical Power and Energy Systems. 2007,29(1):42-50.
    [47]Wang L, Singh C. Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm. Electric Power Systems Research.2007,77(12):1654-1664.
    [48]Agrawal S, Panigrahi B K, Tiwari M K. Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Transactions on Evolutionary Computation.2008,12(5):529-541.
    [49]Cai J, Ma X, Li Q et al. A multi-objective chaotic particle swarm optimization for environmental/economic dispatch. Energy Conversion and Management.2009,50(5): 1318-1325.
    [50]Wu L H, Wang Y N, Yuan X F et al. Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electric Power Systems Research.2010,80(9):1171-1181.
    [51]Basu M. An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling. Electric Power Systems Research.2004,69(2):277-285.
    [52]Mandal K K, Chakraborty N. Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution. Energy Conversion and Management.2009,50(1):97-104.
    [53]Sun C, Lu S. Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Systems with Applications.2010,37(6):4232-4241.
    [54]Lu S, Sun C, Lu Z. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Conversion and Management.2010,51(3):561-571.
    [55]Qin H, Zhou J, Lu Y et al. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling. Energy Conversion and Management.2010,51(4):788-794.
    [56]Lu Y, Zhou J, Qin H et al. A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling. Energy Conversion and Management.2011,52(5):2121-2134.
    [57]Windsor S J. Optimization model for reservoir flood control. Water Resources Research.1973,9(5):1103-1114.
    [58]Habibollahzadeh H, Luo G X, Semlyen A. Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology. IEEE Transactions on Power Systems.1989,4(2):530-537.
    [59]Da Guang W, Feng C. A preliminary flow algorithm of network flow programming ineconomic dispatching of cascade hydropower station, in:1998 International Conference on Power System Technology.1998.581-585.
    [60]Ohishi T, Soares S, De Carvalho M F. A short term hydrothermal scheduling approach for dominantly hydrosystems. IEEE Transactions on Power Systems.1991, 6(2):637-643.
    [61]Franco P, Carvalho M F, Soares S. A network flow model for short-term hydro-dominated hydrothermal scheduling problems. IEEE Transactions on Power Systems.1994,9(2):1016-1022.
    [62]Li C A, Jap P J, Streiffert D L. Implementation of network flow programming to the hydrothermal coordination in an energy management system. IEEE Transactions on Power Systems.1993,8(3):1045-1053.
    [63]Peng C, Buras N. Practical estimation of inflows into multireservoir system. Journal of Water Resources Planning and Management.2000,126(5):331-334.
    [64]Stedinger J R, Sule B F, Loucks D P. Stochastic dynamic programming models for reservoir operation optimization. Water Resources Research.1984,20(11): 1499-1509.
    [65]Arce A, Ohishi T, Soares S. Optimal dispatch of generating units of the Itaipu hydroelectric plant. IEEE Transactions on power systems.2002,17(1):154-158.
    [66]张高峰.梯级水电系统短期优化调度与自动发电控制研究:[博士学位论文].武汉:华中科技大学图书馆,2004.
    [67]Wood A J, Wollenberg B. Power Generation, Operation, and Control with CD. Wiley India Pvt. Ltd.,2006.
    [68]马光文,刘金焕,李菊根.流域梯级水电站联合优化运行.北京:中国电力出版 社,2008.
    [69]Snyder W L, Powell H D, Rayburn J C. Dynamic programming approach to unit commitment. IEEE Transactions on Power Systems.1987,2(2):339-348.
    [70]Hobbs W J, Hermon G, Warner S et al. An enhanced dynamic programming approach for unit commitment. IEEE Transactions on Power Systems.1988,3(3):1201-1205.
    [71]Soares S, Lyra C, Tavares H. Optimal generation scheduling of hydrothermal power systems. IEEE Transactions on Power Apparatus and Systems.1980, PAS-99(3): 1107-1118.
    [72]Sifuentes W S, Vargas A. Hydrothermal scheduling using benders decomposition: Accelerating techniques. IEEE Transactions on Power Systems.2007,22(3): 1351-1359.
    [73]Salam M S, Nor K M, Hamdam A R. Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Transactions on Power Systems.1998,13(1):226-235.
    [74]Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems.2004,19(1):620-628.
    [75]Liang R H, Ke M H, Chen Y T. Coevolutionary algorithm based on Lagrangian method for hydrothermal generation scheduling. IEEE Transactions on Power Systems.2009,24(2):499-507.
    [76]Cohen A I, Yoshimura M. A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Apparatus and Systems.1983, PAS-102(2):444-451.
    [77]Senjyu T, Shimabukuro K, Uezato K et al. A fast technique for unit commitment problem by extended priority list. IEEE Transactions on Power Systems.2003,18(2): 882-888.
    [78]Senjyu T, Miyagi T, Saber A Y et al. Emerging solution of large-scale unit commitment problem by stochastic priority list. Electric Power Systems Research. 2006,76(5):283-292.
    [79]Carrion M, Arroyo J M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems. 2006,21(3):1371-1378.
    [80]刘双全.梯级水电系统发电优化调度研究及应用:[博士学位论文].武汉:华中科技大学图书馆,2009.
    [81]Kazarlis S A, Bakirtzis A G, Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems.1996,11(1):83-92.
    [82]Orero S O, Irving M R. A genetic algorithm modelling framework and solution technique for short term optimal hydrothermal scheduling. IEEE Transactions on Power Systems.1998,13(2):501-518.
    [83]Yong-Gang W, Chun-Ying H, Ding-Yo W. A diploid genetic approach to short-term scheduling of hydro-thermal system. IEEE Transactions on Power Systems.2000, 15(4):1268-1274.
    [84]Kumar S, Naresh R. Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. International Journal of Electrical Power and Energy Systems.2007,29(10):738-747.
    [85]Chen L, Chang F J. Applying a real-coded multi-population genetic algorithm to multi-reservoir operation. Hydrological Processes.2007,21(5):688-698.
    [86]Yang P C, Yang H T, Huang C L. Solving the unit commitment problem with a genetic algorithm through a constraint satisfaction technique. Electric Power Systems Research.1996,37(1):55-65.
    [87]Senthil K V, Mohan M R. Solution to security constrained unit commitment problem using genetic algorithm. International Journal of Electrical Power and Energy Systems.2010,32(2):117-125.
    [88]Pavez-Lazo B, Soto-Cartes J. A deterministic annular crossover genetic algorithm optimisation for the unit commitment problem. Expert Systems with Applications. 2011,38(6):6523-6529.
    [89]Dhillon J S, Dhillon J S, Kothari D P. Real coded genetic algorithm for stochastic hydrothermal generation scheduling. Journal of Systems Science and Systems Engineering.2011,20(1):87-109.
    [90]马光文,王黎.遗传算法在水电站优化调度中的应用.水科学进展.1997,8(3):275-280.
    [91]王大刚,程春田.基于遗传算法的水电站优化调度研究.华北水利水电学院学报.2001,22(1):5-10.
    [92]畅建霞,黄强.基于改进遗传算法的水电站水库优化调度.水力发电学报.2001,20(3):85-90.
    [93]王少波,解建仓,孔珂.自适应遗传算法在水库优化调度中的应用.水利学报.2006,37(4):480-485.
    [94]Liang R H, Hsu Y Y. A hybrid artificial neural network-differential dynamic programming approach for short-term hydro scheduling. Electric Power Systems Research.1995,33(2):77-86.
    [95]Naresh R, Sharma J. Hydro system scheduling using ANN approach. IEEE Transactions on Power Systems.2000,15(1):388-395.
    [96]Naresh R, Sharma J. Short term hydro scheduling using two-phase neural network. International Journal of Electrical Power and Energy Systems.2002,24(7):583-590.
    [97]Sharma V, Jha R, Naresh R. Optimal multi-reservoir network control by two-phase neural network. Electric Power Systems Research.2004,68(3):221-228.
    [98]Dieu V N, Ongsakul W. Enhanced merit order and augmented Lagrange Hopfield network for hydrothermal scheduling. International Journal of Electrical Power and Energy Systems.2008,30(2):93-101.
    [99]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics.1996,26(1):29-41.
    [100]Song Y H, Chou C S, Stonham T J. Combined heat and power economic dispatch by improved ant colony search algorithm. Electric Power Systems Research.1999.52(2): 115-121.
    [101]Huang S J. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches. IEEE Transactions on Energy Conversion. 2001,16(3):296-301.
    [102]徐刚,马光文,梁武湖等.蚁群算法在水库优化调度中的应用.水科学进展.2005,16(3):397-400.
    [103]徐刚,马光文,涂扬举.蚁群算法求解梯级水电厂日竞价优化调度问题.水利学报.2005,36(8):978-981.
    [104]王德智,董增川,丁胜祥.基于连续蚁群算法的供水水库优化调度.水电能源科学.2006,24(2):77-79.
    [105]谢红胜.梯级电站群短期优化调度模型与定价方案选择:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [106]谢红胜,吴相林,陈阳等.分时电价下梯级水电站间短期优化调度仿真.华中科技大学学报:自然科学版.2008,36(3):114-117.
    [107]谢红胜,吴相林,陈阳等.梯级水电站短期优化调度研究.水力发电学报.2008,27(6):1-7.
    [108]Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute-Publications-TR.1995.
    [109]Storn R. Designing nonstandard filters with differential evolution. IEEE Signal Processing Magazine.2005,22(1):103-106.
    [110]Mandal K K, Chakraborty N. Differential evolution technique-based short-term economic generation scheduling of hydrothermal systems. Electric Power Systems Research.2008,78(11):1972-1979.
    [111]Lakshminarasimman L, Subramanian S. Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proceedings Generation, Transmission and Distribution.2006,153(6):693-700.
    [112]Yuan X, Zhang Y, Wang L et al. An enhanced differential evolution algorithm for daily optimal hydro generation scheduling. Computers and Mathematics with Applications.2008,55(11):2458-2468.
    [113]Lu Y, Zhou J, Qin H et al. An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem. Energy Conversion and Management.2010,51(7):1481-1490.
    [114]袁晓辉,苏安俊,聂浩等.差分进化算法在电力系统中的应用研究进展.华东电力.2009,37(2):243-249.
    [115]王文川,徐冬梅,邱林等.差分进化算法在水电站优化调度中的应用.水电能源科学.2009,27(3):162-164.
    [116]卢有麟,周建中,覃晖等.基于自适应混合差分进化算法的水火电力系统短期发电计划优化.电网技术.2009,33(13):32-36.
    [117]杨鸿铎,张志刚,黄伟军.差分进化算法及其在水电站厂内经济运行中的应用.中国农村水利水电.2009,(7):113-115.
    [118]Kennedy J, Eberhart R. Particle swarm optimization.in:Proceedings of IEEE International Conference on Neural Networks,1995.1995.1942-1948.
    [119]余炳辉,王金文,权先璋等.求解水火电力系统短期发电计划的粒子群优化算法研究.水电能源科学.2005,23(6):84-87.
    [120]杨道辉,马光文,严秉忠等.粒子群算法在水电站日优化调度中的应用.水力发电.2006,32(3):73-75.
    [121]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究.水力发电学报.2006,25(2):94-98.
    [122]武新宇,程春田,廖胜利等.两阶段粒子群算法在水电站群优化调度中的应用.电网技术.2006,30(20):25-28.
    [123]张双虎,黄强,吴洪寿等.水电站水库优化调度的改进粒子群算法.水力发电学报.2007,26(1):1-5.
    [124]罗云霞,王万良,周慕逊.基于自适应粒子群算法的梯级小水电群优化调度研究. 水力发电学报.2008,27(4):7-10.
    [125]李安强,王丽萍,蔺伟民等.免疫粒子群算法在梯级电站短期优化调度中的应用.水利学报.2008,39(4):426-432.
    [126]Yu B, Yuan X, Wang J. Short-term hydro-thermal scheduling using particle swarm optimization method. Energy Conversion and Management.2007,48(7):1902-1908.
    [127]Yuan X, Wang L, Yuan Y. Application of enhanced PSO approach to optimal scheduling of hydro system. Energy Conversion and Management.2008,49(11): 2966-2972.
    [128]Jeong Y W, Park J B, Jang S H et al. A new quantum-inspired binary PSO: Application to unit commitment problems for power systems. IEEE Transactions on Power Systems.2010,25(3):1486-1495.
    [129]汪新星,张明.基于改进微粒群算法的水火电力系统短期发电计划优化.电网技术.2004,28(12):16-19.
    [130]Sinha N, Chakrabarti R, Chattopadhyay P K. Fast evolutionary programming techniques for short-term hydrothermal scheduling. IEEE Transactions on Power Systems.2003,18(1):214-220.
    [131]Lau T W, Chung C Y, Wong K P et al. Quantum-inspired evolutionary algorithm approach for unit commitment. IEEE Transactions on Power Systems.2009,24(3): 1503-1512.
    [132]Hadji M M, Vahidi B. A solution to the unit commitment problem using imperialistic competition algorithm. IEEE Transactions on Power Systems.2012,27(1):117-124.
    [133]Rajan A, Christober C. Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach. International Journal of Electrical Power and Energy Systems.2011,33(4):939-946.
    [134]Ebrahimi J, Hosseinian S H, Gharehpetian G B. Unit commitment problem solution using shuffled frog leaping algorithm. IEEE Transactions on Power Systems.2011, 26(2):573-581.
    [135]赵鸣雁,程春田,李刚.水库群系统优化调度新进展.水文.2005,25(6):18-23.
    [136]董子敖,阎建生.计入径流时间空间相关关系的梯级水库群优化调度的多层次法.水电能源科学.1987,5(1):29-40.
    [137]林翔岳,许丹萍,潘敏贞.综合利用水库群多目标优化调度.水科学进展.1992,3(2):112-119.
    [138]陈洋波,王先甲,冯尚友.考虑发电量与保证出力的水库调度多目标优化方法.系统工程理论与实践.1998,18(4):95-101.
    [139]朱仲元,朝伦巴根,杜丹等.多目标遗传算法在确定串联水库系统优化运行策略中的应用.灌溉排水学报.2004,23(6):71-74.
    [140]Kim T, Heo J H, Jeong C S. Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms. Hydrological Processes.2006,20(9): 2057-2075.
    [141]Reddy M J, Kumar D N. Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resources Management.2006,20(6):861-878.
    [142]Reddy M J, Kumar D N. Multiobjective differential evolution with application to reservoir system optimization. Journal of Computing in Civil Engineering.2007, 21(2):136-146.
    [143]Chen L, Mcphee J, Yeh W. A diversified multiobjective GA for optimizing reservoir rule curves. Advances in Water Resources.2007,30(5):1082-1093.
    [144]Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation.2004,8(3): 256-279.
    [145]Reddy M J, Nagesh Kumar D. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes.2007, 21(21):2897-2909.
    [146]杨俊杰,周建中,方仍存等.基于自适应网格的多目标粒子群优化算法.系统仿真学报.2008,20(21):5843-5847.
    [147]杨俊杰,周建中,方仍存等.MOPSO算法及其在水库优化调度中的应用.计算机工程.2007,33(18):249-250.
    [148]Baltar A M, Fontane D G. Use of multiobjective particle swarm optimization in water resources management. Journal of Water Resources Planning and Management.2008, 134(3):257-265.
    [149]Li Y, Zhou J, Zhang Y et al. Novel multiobjective shuffled frog leaping algorithm with application to reservoir flood control operation. Journal of Water Resources Planning and Management.2010,136(2):217-226.
    [150]Cheng C T, Wang W C, Xu D M et al. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resources Management.2008,22(7): 895-909.
    [151]宋洋,钟登华,钟炜等.面向电力市场的梯级水电站联合优化调度研究.水力发电学报.2007,26(3):22-28.
    [152]张永永,黄强,畅建霞.基于模拟退火遗传算法的水电站优化调度研究.水电能 源科学.2008,25(6):102-104.
    [153]Bakare G A, Venayagamoorthy G K, Aliyu U O. Reactive power and voltage control of the Nigerian grid system using micro-genetic algorithm.in:IEEE Power Engineering Society General Meeting,2005.2005.1916-1922.
    [154]Huang T, Mohan A S. Micro-particle swarm optimizer for solving high dimensional optimization problems (μPSO for high dimensional optimization problems). Applied Mathematics and Computation.2006,181(2):1148-1154.
    [155]Cabrera J C F, Coello C A C. Handling constraints in particle swarm optimization using a small population size. in:6th Mexican International Conference on Artificial Intelligence, MICAI 2007.2007.41-51.
    [156]Das T K, Jetti S R, Venayagamoorthy G K. Optimal design of a SVC controller using a small population based PSO. in:Proceedings of IEEE Swarm Intelligence Symposium.2006.156-161.
    [157]Das T K, Venayagamoorthy G K, Aliyu U O. Bio-inspired algorithms for the design of multiple optimal power system stabilizers:SPPSO and BFA. IEEE Transactions on Industry Applications.2008,44(5):1445-1457.
    [158]Wong K P, Li A, Law T. Advanced constrained genetic algorithm load flow method. IEE Proceedings Generation, Transmission and Distribution.1999,146(6):609-616.
    [159]Ting T O, Wong K P, Chung C Y. Hybrid constrained genetic algorithm/particle swarm optimisation load flow algorithm. IET Generation, Transmission and Distribution.2008,2(6):800-812.
    [160]Kennedy J, Eberhart R C.A discrete binary version of the particle swarm algorithm. in:IEEE International Conference on Systems, Man, and Cybernetics,1997.1997. 4104-4108.
    [161]Zhao B, Guo C X, Bai B R et al. An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power and Energy Systems. 2006,28(7):482-490.
    [162]Ting T O, Rao M, Loo C K.A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems. 2006,21(1):411-418.
    [163]Lee T Y, Chen C L. Unit commitment with probabilistic reserve:An IPSO approach. Energy Conversion and Management.2007,48(2):486-493.
    [164]Yuan X, Nie H, Su A et al. An improved binary particle swarm optimization for unit commitment problem. Expert Systems with Applications.2009,36(4):8049-8055.
    [165]Lau T W, Chung C Y, Wong K P et al. Quantum-inspired evolutionary algorithm approach for unit commitment. IEEE Transactions on Power Systems.2009,24(3): 1503-1512.
    [166]Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems.2004,19(1):620-628.
    [167]Yuan X, Su A, Nie H et al. Application of enhanced discrete differential evolution approach to unit commitment problem. Energy Conversion and Management.2009, 50(9):2449-2456.
    [168]Jeong Y W, Park J B, Shin J R et al. A thermal unit commitment approach using an improved quantum evolutionary algorithm. Electric Power Components and Systems. 2009,37(7):770-786.
    [169]Damousis I G, Bakirtzis A G, Dokopoulos P S. A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems. 2004,19(2):1165-1172.
    [170]Ebrahimi J, Hosseinian S H, Gharehpetian G B. Unit commitment problem solution using shuffled frog leaping algorithm. IEEE Transactions on Power Systems.2011, 26(2):573-581.
    [171]Hadji M M, Vahidi B. A solution to the unit commitment problem using imperialistic competition algorithm. IEEE Transactions on Power Systems.2012,27(1):117.
    [172]Rajan A, Christober C. Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach. International Journal of Electrical Power and Energy Systems.2011,33(4):939-946.
    [173]Kulkarni P S, Kothari A G, Kothari D P. Combined economic and emission dispatch using improved backpropagation neural network. Electric Machines and Power Systems.2000,28(1):31-44.
    [174]Lu S, Sun C, Lu Z. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Conversion and Management.2010,51(3):561-571.
    [175]Sun C, Lu S. Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Systems with Applications.2010,37(6):4232-4241.
    [176]Mandal K K, Chakraborty N. Short-term combined economic emission scheduling of hydrothermal systems with cascaded reservoirs using particle swarm optimization technique. Applied Soft Computing.2011,11(1):1295-1302.
    [177]Lu S, Sun C. Quadratic approximation based differential evolution with valuable trade off approach for bi-objective short-term hydrothermal scheduling. Expert Systems with Applications.2011,38(11):13950-13960.
    [178]Mandal K K, Chakraborty N. Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution. Energy Conversion and Management.2009,50(1):97-104.
    [179]Mandal K K, Chakraborty N. Daily combined economic emission scheduling of hydrothermal systems with cascaded reservoirs using self organizing hierarchical particle swarm optimization technique. Expert Systems with Applications.2012, 39(3):3438-3445.
    [180]Coello C A C, Pulido G T. Multiobjective optimization using a micro-genetic algorithm, in:Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001).2001.274-282.
    [181]Cabrera J, Coello C. Micro-MOPSO:a multi-Objective particle swarm optimizer that uses a very small population size. Multi-Objective Swarm Intelligent Systems.2010, 261:83-104.
    [182]Yen G G, Leong W F. Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans.2009,39(4):890-911.
    [183]郑金华.多目标进化算法及其应用.北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700