用户名: 密码: 验证码:
水库水沙联合调度优化方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个水资源严重匮乏、水利发展相对滞后的国家,如何加快水利改革发展,最大限度的合理开发利用水资源是关系到社会、经济、生态环境系统可持续发展和人民生活水平提高的迫切问题。水库作为增加水利支撑保障能力、实现水资源科学配置的关键性工程,提高其运行管理水平是未来加快水利改革发展的重要举措。泥沙淤积与水库运用同步存在,泥沙淤积严重制约水库综合效益的发挥,威胁水库的使用寿命。为充分发挥水库的综合效益,必须综合考虑水库防洪、兴利和排沙减淤等目标,开展水库水沙联合调度优化方法与应用研究,这是目前水库运用管理模式的发展方向。
     与一般水库调度相比,水库水沙联合调度不仅要考虑水量的合理调配,还要对泥沙的蓄泄及时间做出合理的安排,对梯级水库而言还要考虑上下游水库的运用要求和上游梯级对下游水库的累积性调节作用。水库水沙联调涉及到水库调度和泥沙冲淤计算两个方面,这两个方面相互联系、相互影响,全面认识泥沙冲淤和水库防洪、发电等目标之间的对立统一关系,从理论上将泥沙冲淤计算和水库调度更好的结合起来,实现水沙联合调度,将进一步丰富水库调度和水库泥沙的基本理论,具有重要的理论意义和实际应用价值。
     水库水沙联合调度是一个典型的复杂大系统多目标问题。由于泥沙冲淤计算与水库调度计算是两种性质完全不同、决策时段差异甚大的系统,且梯级水库联合调度本身是一个具有大量约束条件、动态、复杂的最优化控制问题,其优化求解一直受到“维数灾”、“容易陷入局部最优解”等缺点的制约,因此在水库调度中考虑泥沙冲淤,构建能全面反映水沙综合效益的多目标决策模型,实现模型的联合求解,具有很大的难度。基于此,论文分别从水库优化调度、水库泥沙冲淤计算、水沙联调多目标决策模型的构建与求解以及非劣解的生成与评价决策、水沙调度实例等方面对水库水沙联合调度优化方法与应用进行了系统深入研究。取得了如下主要成果:
     (1)水库调度与泥沙冲淤规律研究。为从宏观和微观两个层面探索水库调度与泥沙冲淤之间的规律,首先分析了四种水库宏观运用方式对泥沙淤积速率、淤积分布以及淤积平衡形态三方面的影响,给出调水调沙的宏观运用框架;其次研究了汛限水位和蓄水时间调整对泥沙淤积的影响,得出蓄水时间只改变泥沙淤积速率,而汛限水位则会改变整个淤积平衡的结论;再者分析了三种水库宏观排沙方式的排沙机理,讨论其高效排沙方式;最后对初步平衡后的水库冲淤特点进行分析,总结出根据不同冲淤特点进行蓄水排沙的规律。
     (2)基于鲶鱼效应粒子群算法的水库优化调度。针对求解水库群优化调度问题时,粒子群优化算法容易陷入局部最优和后期收敛速度慢等缺点,将“鲶鱼效应”机制引入到粒子群算法中,提出基于鲶鱼效应粒子群算法,并给出其求解水库优化调度问题的实现步骤;该算法中的鲶鱼启发器实现了对种群多样性的动态跟踪和鲶鱼粒子的自动引入,通过鲶鱼粒子的驱赶和高素质动态调节作用激活进化中陷入惰性的群体并提高收敛速度;最后通过单库防洪优化调度和梯级水库发电优化调度两个实例证明了算法的可行性和高效率。
     (3)水库水沙联合多目标优化调度。针对水库调度涉及防洪、兴利、生态和排沙减淤等综合效益的多个目标,以一维泥沙冲淤计算数学模型为基础,整合目标和决策变量建立全面反映水沙综合效益的单库多目标决策模型;通过对多目标问题非劣解生成技术的深入研究,在介绍向量优化理论权重法和约束法特点的基础上,重点提出基于鲶鱼效应多目标粒子群算法,相比于向量优化理论,该方法计算效率高,能同时获得多个非劣解;最后通过三峡水库水沙优化调度实例证明了该算法的有效性和可行性,并与基于泥沙约束的三峡水库蓄水时间优化实例进行了对比分析。
     (4)梯级水库水沙联合调度多目标决策模型及求解方法。从梯级水库水沙联调的目的出发,分别建立梯级水库防洪、发电和泥沙冲淤计算子模型;在此基础上,构建梯级水库水沙联合调度多目标决策模型,该模型能较好的反映梯级水库间的水沙联系以及各目标利益之间的协调;为实现模型的求解,运用约束法将多目标决策模型转化为单目标优化模型,在给定的约束阈值下采用基于鲶鱼效应粒子群算法对单目标优化模型寻优,通过不断变换约束阂值水平生成问题的非劣解集;最后根据层次分析法计算的主观权重和熵权法计算的客观权重,结合理想点评价法,构建基于组合权重的理想点评价模型,该模型在一定程度上改善了单一赋权法的不足,使评价结果更符合客观实际。
     (5)溪洛渡-向家坝梯级水库水沙联合调度实例。以溪洛渡-向家坝梯级水库为研究对象,首先在分析梯级水库蓄水时间优化必要性和前提条件的基础上,研究梯级组合蓄水方案调整对发电、航运和泥沙淤积的影响,结果表明:梯级水库蓄水时间应以相互错开为有利蓄水发电原则,并且蓄水提前将增加泥沙淤积,蓄水推后则会减少泥沙淤积,梯级水库的蓄水调整将改变梯级水库的泥沙分配;然后,以计算期内梯级水库多年平均发电最大和库容淤损率最小为目标,建立溪洛渡-向家坝梯级水库水沙联调多目标决策模型,采用约束法获取其非劣解,非劣解分析表明发电量的增加以增加库容淤损率为代价:最后,采用不同的权重对非劣方案集进行评价决策,结果表明:权重不同,评价得到的最优方案不同,最优方案是一个考虑了发电量和库容淤损率的均衡水沙解,从而验证了方法和模型的可行性和有效性。
China is a country which is seriously lack of water resources and lagging of water conservancy development. So how to speed up the development of water conservancy reform and rationally utilize water resources to maximum limit are the urgent problems that related to the sustainable development of the society, economy and ecological environment system, and related to the improvement of people's living standards. As reservoir is the key project that can increase water conservancy support ability and realize the scientific allocation of water resources, improving the level of its operation and management is the important measure to accelerate the development of water conservancy reform in the future. Sediment deposition is synchronous with reservoir operation, which restricts the comprehensive benefits and threats to the service life of reservoir. So in order to give full play to the comprehensive benefits of reservoir, we must study on reservoir water-sediment coordinative operation which take comprehensive consideration of flood control and irrigation and sand sedimentation reduction of reservoir. This is the development direction of reservoir management pattern at present.
     Compared with the ordinary reservoir operation, reservoir water-sediment coordinative operation should consider not only the reasonable allocation of water, but also making reasonable arrangement of the storage and discharge time of sediment. For cascade reservoirs, operation requirements of upstream and downstream reservoirs and cumulative adjustment effect that upstream cascade do to downstream reservoirs should take into consideration. Reservoir water-sediment coordinative operation refers to the two aspects of reservoir operation and sediment deposition calculation, which mutual contacts and mutual influences. Comprehensive understanding the relationship between sediment deposition and targets such as flood control and power generation and theoretically combining sediment deposition calculation and reservoir operation that realize water-sediment coordinative operation will further enrich the basic theory of reservoir operation and sediment, it has important theoretical significance and practical application value.
     Reservoir water-sediment coordinative operation is a typical complex large system multi-objective problem. Due to reservoir operation calculation and sediment deposition calculation are two different systems of both properties and decision-making period, and the study on cascade reservoirs coordinative operation itself is a optimal control problem that has a lot of constraint conditions, dynamic and complicated nonlinear systems, whose optimal solution had been affected by the dimension disaster and the problem of local optimal solution, thus it has great difficulty to construct and jointly solve a multi-objective decision model that can comprehensively reflect comprehensive benefits of water-sediment coordinative operation in the optimal problem of water-sediment coordinative operation of reservoir. Based on this, the paper deeply researches on the method and application of reservoir water-sediment coordinative operation in system, the main content respectively contain reservoir operation, sediment deposition calculation, the construction and solution of the multi-objective decision model on the water-sediment coordinative operation, the generation of non inferior solutions, evaluation decision and case study of water-sediment coordinative operation. The major achievements are as following:
     (1) Research on regulation of reservoir operation and the scouring and silting of sediment deposition. In order to explore the regulation between the scouring and silting and reservoir operation from macro and micro aspects, firstly the influence of four types of macro mode reservoir operation on sediment deposition rate, deposition distribution and type of deposition balance is analyzed, which can give the macro use frame of water and sediment regulation. By studying in impact on sediment by limited water level and storage time adjustment, the conclusion is that storage time only changes the sediment deposition rate but limited water level can change the whole deposition balance. And the sediment ejection mechanism for three types of macro mode on reservoir sediment ejection is analyzed and the efficient way for sediment ejection is discussed. At last, the characteristics of sediment scouring after the initial deposition balance are discussed and the regulation of water storage and sediment ejection according to different characteristics of scouring and silting is summarized.
     (2) Particle swarm optimization algorithm based on catfish effect for reservoir optimal operation. Aim at the shortcoming of particle swarm optimization algorithm that easy to fall into local optimum and slow convergence when solving reservoir optimal operation problem, catfish effect mechanism is introduced into it. So particle swarm optimization based on catfish effect is proposed and its implementation step of solving reservoir optimal operation problem is given. The catfish device in the algorithm realizes the dynamic tracing of particle diversity and automatically introduction of catfish particle, which can activate particles that get lazy in evolution. And the convergence rate is improved through driven effect and high-quality dynamic regulating of catfish particle. Finally the algorithm's feasibility and high efficiency are verified through the two examples that are single reservoir flood-control optimal operation and cascade reservoirs power generation optimal operation.
     (3) The multi-objective optimization of the reservoir water-sediment coordinative operation. In view of reservoir operation related to multiple objectives for comprehensive benefits, such as flood control, irrigation, ecological and sediment regulation, after integrating objectives and decision variables, the multi-objective decision-making model for single reservoir is established that can reflect the comprehensive water-sediment benefits basing on the calculation mathematics model of one-dimensional sediment scouring and silting. By deeply researching on generating technology of multi-objective problem's non inferior solution and introducing characteristics of weighting method and constraint method in vector optimization theory, multi-objective particle swarm optimization algorithm based on catfish effect is proposed. Compared with the vector optimization theory, it can compute more efficiency and gain multiple non inferior solutions at the same time. Finally, the validity and feasibility of the proposed algorithm are proved through the application of water-sediment optimal operation of Three Gorges Reservoir. And the comparation between the application of storage time optimization on sediment constraints of Three Gorges Reservoir and the above one is discussed.
     (4) The multi-objective decision-making model of water-sediment coordinative operation of cascade reservoirs and its solving method. In view of the purpose of cascade reservoirs water-sediment coordinative operation, the three calculation sub-models of flood control, power generation and sediment deposition are established. On this basis, the multi-objective decision-making model of water-sediment coordinative operation in cascade reservoirs is constructed, which can better reflect the links between water and sediment and coordination with every objective interest of cascade reservoirs. For the realization of the model solving, the multi-objective decision-making model is transformed into single objective optimization model by using the constraint method. With a given constraint threshold, the single objective optimization model can be solved by particle swarm optimization algorithm based on catfish effect. The non-inferior sets of the multi-objective problem can be achieved by changing constraint threshold level. At last, according to the subjective weight from analytic hierarchy process and objective weight from entropy method, and combined with the ideal point evaluation method, the evaluation model of ideal point based on combination weight is proposed, which remedies the defects of single-weighing to some extent and make evaluation result more objective.
     (5) The application of water-sediment coordinative operation of Xiluodu-Xiangjiaba cascade reservoirs. Take Xiluodu-Xiangjiaba cascade reservoirs as the research object. First of all, on the basis of analyzing the necessity and prerequisites of cascade reservoirs storage time optimization, the impact on power generation and navigation and sediment deposition for cascade reservoirs by combination storage time adjustment is researched. It shows that staggered cascade reservoirs storage time is beneficial for principles of storage and power generation, and storage time adjustment on cascade reservoirs will change the sediment distribution which means advanced storage time would increase sediment deposition and put-back storage time would decrease sediment deposition. Then, aim at the maximum annual average power generation and minimum storage capacity loss rate about sediment of cascade reservoirs in calculate period, the multi-objective decision model of water-sediment coordinative operation on Xiluodu-Xiangjiaba cascade reservoirs is built, and the non inferior solutions is obtained by constraint method. Finally, the non inferior solution sets are evaluated by using different weights. It shows that evaluation of the optimal solution is different if the weight is different and the optimal solution is a balanced one of of water and sediment multi-objective decision model. Case study verifies the feasibility and effectiveness of the method and model.
引文
[1]中华人民共和国民政部.国家减灾办发布"2012年全国十大自然灾害事件’[EB/OL]. [2012-12-31].http://www.mca.gov.cn
    [2]国家发展改革委、水利部、住房城乡建设部.水利发展规划(2011-2015)[N].中国水利报,2012-06-29(A1)
    [3]谈广鸣.加快水电发展,开展水沙综合调度[J].中国水利,2011,(12):13
    [4]中国经济网.2011年中央一号文件《中共中央国务院关于加快水利改革发展的决定》[EB/OL]. [2011-1-29]. http://www.ce.cn
    [5]Mahmood K. Reservoir sedimentation-impact, extent, and mitigation[R]. World Bank Technical Paper Number 71,1987
    [6]韩其为,杨小庆.我国水库泥沙淤积研究综述[J].中国水利水电科学研究院学报,2003,1(3):169-177
    [7]陕西省水利科学研究所,清华大学水利工程系编.水库泥沙[M].北京:水利电力出版社,1979
    [8]中国水利学会泥沙专业委员会.泥沙手册[M].北京:中国环境科学出版社, 1989
    [9]Masse P. B. P. Les Reserves et La Regulation de L'Avenir dans L'a Vic Economique [D]. Hermann and Cie Paris,1946
    [10]Little J. D. C. The Use of Storage Water in a Hydroelectric System [J]. Oper. Res, 1955, (3):187-197
    [11]Becker L., Yeh W. W-G. Optimization of real time operation of a multiple reservoir system [J]. Water Resources Research,1974,10(6):1107-1112
    [12]Becker L., Yeh W. W-G., D. Fults. Operations Models for Central Valley Project [J], J. Water Resource. Plan. Manage.1976,102 (WR1):101-115
    [13]Bellman, Richard, Ernest. Dynamic Programming[M], Princeton University Press, Princeton, N.J.,1957
    [14]Can E. K., Houck, M. H.. Real-time Reservoir Operations by Goal Programming [J]. J. Water Resour. Plan. Manage.,1984,110(3):297-309
    [15]Roefs T. G., L. D. Bodin. Multireservoir Operation Studies [J]. Water Resour. Res., 1970,6(2):410-420
    [16]Larson R. E.. State Increment Dynamic Programming [M]. Elsevier, New York, 1968
    [17]Hedari M., V. T. Chow, et al. Discrete Differential Dynamic Programming Approach to Water Resources Systems Optimization [J]. Water Resour. Res.,1971,7(2): 273-282
    [18]Yeh W., and Trott W.. Optimization of water resources development:Optimization of capacity specification for components of regional, complex, integrated, multi-purpose water resources systems[R]. Los Angeles:Engineering ReP. Univ. of California,1972
    [19]Trott, WilliamJ., Yeh William W.G.. optimization of multiple reservoir system[J]. ASCE J Hydraulics Div,1973,99(HY10):1865-1884
    [20]Howson H. R.. A New Algorithm for the Solution of Multistage Dynamic Programming Problems[J]. Mathematical programming,1975,8(1):27-32
    [21]Mesarovic MD; Maeko D, TakaharaY. Theory of Hierarchical Multilevel Systems[M], New York:Academic Press,1970
    [22]El-Awar F., Labadie J., Ouarda T. Stochastic Differential Dynamic Programming for Multi-Reservoir System Control[J]. Stochastic Hydrology and Hydraulics.1998,12 (4):247-266
    [23]Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor:University of Michigan press,1975
    [24]Esat V., Hall M. J.. Water Resources System Optimization Using Genetic Algorithms[C].//Proc.,1st Int. Conf. on Hydroinformatics, Balkema, Rotterdam, The Netherlands,1994:225-231
    [25]Li Chen, James McPhee and William W.-G. Yeh. A diversified multi objective GA for optimizing reservoir rule curves[J]. Advances in Water Resources,2007,30: 1082-1093
    [26]Metroplis N, Rosenbluth A, Rosenbluth M etal. Equation of state calculations by fast computing machines[J]. Journal of Cherimal Physics,1953,21:1087-1092
    [27]Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing[J]. Science,1983, (220):671-680
    [28]Ramesh S. V. Teegavarapu, Slobodan P. Simonovic. Optimal Operation of Reservoir Systems using Simulated Annealing [J]. Water Resources Management.2002,16(5): 401-428
    [29]Dorigo M, Gambardella L M. Ant algorithms for discrete optimization[J]. Artificial Life,1999,5(2):137-172
    [30]Kennedy J, Eberhart R C. Particle swarm optimization [A].Proceeding of the 1995 IEEE international conference on Neural Network [C]. Perth, Australia,1995,(4): 1942-1948
    [31]P.K. Hota, A.K. Barisal, R. Chakrabarti. An improved PSO technique for short-term optimal hydrothermal scheduling[J]. Electric Power Systems Research,2009, (79): 1047-1053
    [32]吴澹浦.年调节水库的最优运用[J].科学记录,1960,(2):81
    [33]谭维炎,黄守信,刘健民等.初期运行水电站的最优年运行计划--动态规划方法 的应用[J].水利水电技术,1963,(2):21-26
    [34]施熙灿.考虑保证率约束的马氏决策规划在水电站水库优化调度中的应用[J].水力发电学报,1982,(2):11-21
    [35]董子敖,闫建生等.改变约束法和国民经济效益最大准则在水电站水库优化调度中的应用[J].水力发电学报,1983,(2):1-11
    [36]鲁子林.电子计算机在洪水预报水库调度中的应用[M].北京:水利电力出版社,1983
    [37]张勇传,傅昭阳.水库优化调度中的几个理论问题[A].优化理论在水库调度中的应用[C].长沙:湖南科学技术出版社,1985:28-40
    [38]王厥谋.丹江口水库防洪优化调度模型简介[J].水利水电技术,1985,(8):54-58
    [39]张玉新,冯尚友.多维决策的多目标动态规划及其应用[J].水利学报,1986,(7):1-10
    [40]张玉新,冯尚友.多目标动态规划逐次迭代算法[J].武汉水利电力学院学报,1988,(6):73-81
    [41]张勇传,邴凤山等.水库优化调度的模糊数学方法[A].优化理论在水库调度中的应用[C].长沙:湖南科学技术出版社,1985:130-140
    [42]王本德,张力.综合利用水库洪水模糊优化调度[J].水利学报,1993,(1):35-40
    [43]纪昌明.离散微分动态规划法在混联式水电站群动能指标优化中的应用[A].1983年全国水电中青年科技干部学术交流会议论文选集[C].北京:水利水电出版社,1985
    [44]纪昌明,冯尚友.混联式水电站群动能指标和长期调度最优化[J].武汉水利电力学院学报,1984,(3):88-95
    [45]吴保生,陈惠源.多库防洪系统优化调度的一种解算方法[J].水利学报,1991,(11):35-40
    [46]王仁权,王金文,伍永刚.福建梯级水电站群短期优化调度模型及其算法[J].云南水力发电,2002,18(1):52-53
    [47]张勇传.水电站水库群优化调度方法的研究[J].水力发电,1981,(11):48-52
    [48]胡振鹏,冯尚友.大系统多目标递阶分析“分解—聚合”方法[J].系统工程学报,1988,3(1):57-64
    [49]邵东国.多目标水资源系统自优化实时调度模型研究[J].系统工程,1998,(9):19-24
    [50]叶秉如等.水电站库群的年最优调度[A].优化理论在水库调度中的应用[C].长沙:湖南科学技术出版社,1985:65-73
    [51]黄守信,方淑秀等.两个无水力联系水库的优化调度[A].优化理论在水库调度中的应用[C],长沙:湖南科学技术出版社,1985:85-89
    [52]董子敖,阎建生.计入径流时间空间相关关系的梯级水库群优化调度的多层次法[J].水电能源科学,1987,5(1):29-40
    [53]杨侃,陈雷.梯级水电站群调度多目标网络分析模型[J].水利水电科技进展,1998,18(3):35-38,66
    [54]马光文,王黎,WALTERS G A.水电站优化调度的FP遗传算法[J].系统工程理论与实践,1996,(11):77-81
    [55]马光文,王黎,WALTERS G A.水电站群优化调度的FP遗传算法[J].水力发电学报,1996,15(4):21-28
    [56]张双虎,黄强,孙廷容.基于并行组合模拟退火算法的水电站优化调度研究[J].水力发电学报,2004,23(4):16-19
    [57]徐刚,马光文,梁武湖等.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400
    [58]徐刚,马光文,涂扬举.蚁群算法求解梯级水电厂日竞价优化调度问题[J].水利学报,2005,36(8):978-981
    [59]李崇浩,纪昌明,李文武.微粒群算法在水电站厂内经济运行中的应用研究[J].水利水电技术,2006,37(1):88-91
    [60]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J],水力发电学报,2006,25(2):94-98
    [61]李崇浩,纪昌明,李文武.改进微粒群算法及其在水库优化调度上的应用[J],中国农村水利水电,2006,(2):54-56
    [62]纪昌明,吴月秋,张验科.混沌粒子群优化算法在水库防洪优化调度中的应用[J].华北电力大学学报(自然科学版),2008,35(6):103-107
    [63]李安强,王丽萍,蔺伟民等.免疫粒子群算法在梯级电站短期优化调度中的应用[J].水利学报,2008,39(4):426-432
    [64]谢维,纪昌明,吴月秋等.基于文化粒子群算法的水库防洪优化调度[J].水利学报,2010,41(4):452-459
    [65]杨子俊,王丽萍,谢维等.基于文化粒子群算法的水库发电调度图绘制[J].水力发电,2010,36(1):35-37
    [66]胡国强,贺仁睦.基于协调粒子群算法的水电站水库优化调度[J].华北电力大学学报,2006,33(5):15-18
    [67]王志良,贾建华.混合粒子群算法在水库优化调度中的应用[J].东北水利水电,2007,25(278):1-3
    [68]向波,纪昌明,罗庆松.免疫粒子群算法及其在水库优化调度中的应用[J].河海大学学报(自然科学版),2008,36(2):198-202
    [69]李春安,季利.黄河三门峡水利枢纽四十年运用回顾与展望[J].泥沙研究,2001,(2):1-4
    [70]陈文彪,曾志诚.珠江流域水库泥沙问题刍议[J].人民珠江,1997,(5):26-28
    [71]李天全.青铜峡水库泥沙淤积[J].大坝与安全,1998,(4):21-27
    [72]张金良.黄河水库水沙联合调度问题研究[D].天津:天津大学,2004
    [73]万新宇,包为民.基于相似性的三门峡水库水沙调度研究[D].南京:河海大学,2008
    [76]姜乃森.多沙河流水库三角洲的淤积计算方法[A].水利水电科学研究论文集[C].北京:中国工业出版社,1963:96
    [77]张威.水库三角洲淤积及其近似计算[J].人民长江,1964,(2):39-51
    [78]韩其为.悬移质不平衡输沙的研究[A].河流泥沙国际学术会议论文集[C].中国:光华出版社,1980,(3):793-800
    [79]陕西省水利科学研究所河渠研究室、清华大学水利工程系泥沙研究编.水库泥沙[M].水利电力出版社,1979
    [80]周建军,林秉南.双汛限水位调度方案对三峡工程通航条件的影响[J].中国三峡建设,2002,(6):4-9
    [81]童思陈.河道型水库泥沙淤积及长期利用调控模式研究[R].北京:清华大学,2005
    [82]M.A. Churchill. Discussion of "Analysis and Use of Reservoir Sedimentation Data" by L.C. Gottschalk[C].//Proc, Federal Inter-agency Sdimentation Conference Denver, Colorado,1947:139-140
    [83]张启舜,张振秋.水库冲淤形态及其过程的计算[J].泥沙研究,1982,(1):1-13
    [84]水利水电科学研究院.水库淤积问题的研究[M].北京:水利电力出版社,1959
    [85]窦国仁.潮汐水流中的悬沙运动及冲淤计算[J].水利学报,1963,(4):13-23
    [86]韩其为,黄煜龄.水利泥沙冲淤过程及电子计算机的应用[M].水利水电工程应用电子计算机资料汇编,北京:水利电力出版社,1977
    [87]韩其为.水库长期使用研究[M].长江水利水电科学研究院,1978
    [88]韩其为.非均匀悬移质不平衡输沙的研究[J].科学通报,1979,(17):804-808
    [89]韩其为,何明民.水库淤积与河床演变的(一维)数学模型[J].泥沙研究,1987,(3):14-29
    [90]Gee, D.Michael. Role of calibration in application of HEC-6[A]. Second bridge engineering conference [C]. Minneapolis, MN, USA,1984,2:252-49
    [91]杨国录,菲力蒲,白莱德等.冲积河流一维泥沙数学模型[J].泥沙研究,1989,(4):41-53
    [92]Ziegler C K, Nisbet B S. Long-term simulation of fine-graded sediment transport in large reservoir[J]. Journal of Hydraulic Engineering, ASCE,1995,121(11):773-781
    [93]陈界仁,汤立群,陈国祥等.水库二维水流泥沙数学模型及应用[J].河海大学学报,1998,26(5):6-12
    [94]陈界仁,沙捞·巴里,陈国祥.二维水库水流泥沙数值模拟[J].河海大学学报,2000,8(5):11-15
    [95]Fang H W, Wang G Q. Three-Dimensional Mathematical Models of Suspended Sediment Transport[J]. Journal of Hydraulic Engineering, ASCE,2000,126(8): 578-592
    [96]翟宜峰,李鸿雁,刘寒冰.人工神经网络与遗传算法在多泥沙洪水预报中的应用[J].泥沙研究,2003,(2):7-13
    [97]练继建,胡明罡,刘媛媛.多沙河流水库水沙联调多目标规划研究[J].水力发电学报,2004,(2):12-16
    [98]李义天,李荣.具有河网水沙运动特点的人工神经网络模型[J].水利学报,2001,(11):1-7
    [99]张金良,刘媛媛,练继建.模糊神经网络对汛期三门峡水库泥沙冲淤量的计算[J].水力发电学报,2004,23(2):39-43
    [100]李义天,李荣,黄伟.基于神经网络的水沙运动预报模型与回归模型比较及应用[J].泥沙研究,2001,2(1):30-37
    [101]李辉.水沙过程预测及水库多目标优化调度研究[D].天津:天津大学,2008
    [102]练继建,刘媛媛,胡明罡等.基于改进BP网络对三门峡水库泥沙冲淤量的计算[J].天津大学学报,2004,(10):882-885
    [103]彭杨.水库水沙联合调度方法研究及应用[D].武汉:武汉大学,2002
    [104]张玉新,冯尚友.水库水沙联合调度多目标规划模型及其应用研究[J].水利学报,1988,(9):19-27
    [105]杜殿勖,朱厚生.三门峡水库水沙综合调节优化调度运用的研究[J].水力发电学报,1992,(2):12-23
    [106]张玉新,冯尚友.水库水沙联调的多目标规划模型及应用[J].水利学报,1988,(9):19-27
    [107]向波,纪昌明,彭杨等.基于免疫粒子群算法的水沙调度模型研究[J].水力发电学报,2010,29(1):97-101
    [108]刘素一.水库水沙优化调度的研究及应用[D].武汉:武汉水利电力大学,1995
    [109]彭杨,李义天,张红武.水库水沙联合调度多目标决策模型[J].水利学报, 2004,(4):1-7
    [110]吴巍,周孝德,王新宏等.多泥沙河流供水水库水沙联合优化调度的研究与应用[J].西北农林科技大学学报(自然科学版),2010,38(12):221-229
    [111]甘富万,李义天,邓金运等.水库排沙调度优化模型[J].水科学进展,2009,20(6):863-869
    [112]LI Hui, LIAN Jijian. Multi-Objective Optimization of Water-Sedimentation-Power in Reservoir Based on Pareto-Optimal Solution[J]. Transaction Tianjin University, 2008, (14):282-288
    [113]田刚,向波,朱登军.理想点法在水库水沙优化调度中的应用[J].华北水利水电学院学报,2009,(2):15-17
    [114]朱厚生,邱林.黄河上游梯级水库水沙调节优化调度[J].系统工程理论与实践,1990,(6):54-60
    [115]白晓华,李旭东,周宏伟等.汾河流域梯级水库群水沙联合调节计算[J].水电能源科学,2002,20(3):51-54
    [116]李国英.基于水库群联合调度和人工扰动的黄河调水调沙[J].水利学报,2006,(12):1439-1446
    [117]万毅.黄河梯级水库水电沙一体化调度研究[D].天津:天津大学,2008
    [118]廖义伟.黄河水库群水沙资源化联合调度管理的若干思考[J].中国水利水电科学研究院学报,2004,2(1):1-7
    [119]万新宇,包为民,荆艳东.黄河水库调水调沙研究进展[J].泥沙研究,2008,(2):77-82
    [120]Su YQ, Li XP, Qu SJ. Regulation of water and sediment by reservoirs:The cause of "secondary perched river" in the lower Yellow River[C]//. Proceedings of the ninth international symposium on river sedimentation. Yichang, PEOPLES R CHINA.2004,4:665-669
    [121]Shang HX; Li Y. Effect of regulation of flow and sediment by the Xiaolangdi Reservoir on deposition in the lower Yellow River[C]//. Proceedings of the ninth international symposium on river sedimentation. Yichang, PEOPLES R CHINA. 2004,4:655-658
    [122]方国华,黄显峰.多目标决策理论、方法及其应用[M].北京:科学出版社,2011
    [123]朱鉴远.控制泥沙淤积的主要措施——水库泥沙调度[J].四川水利,1997,(3):6-10
    [124]韩其为.长期使用水库的平衡形态及冲淤变形研究[J].人民长江,1978,(2):18-36
    [125]陕西水利科学研究所,清华大学水利工程系泥沙研究室.水库泥沙[M].北京: 水利电力出版社,1979.2
    [126]陈建,李义天,孙东坡等.水库调度方式对三峡水库泥沙淤积的影响[J].武汉大学学报(工学版),2008,(5):18-22
    [127]陈建.水库调度方式与水库泥沙淤积关系研究[D].武汉:武汉大学,2007
    [128]焦恩泽,林炳文.多沙河流水库淤积的几个问题[R].郑州:黄河水利委员会水利科学研究所,1978
    [129]赵建.鲶鱼效应[M].北京:中国纺织出版社,2006
    [130]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008
    [131]吴月秋,纪昌明,王丽萍等.基于混沌粒子群算法的水电站水库优化调度[J].人民黄河,2008,30(11):96-98
    [132]张炯,刘天琪,苏鹏等.基于遗传粒子群混合算法的机组组合优化[J].电力系统保护与控制,2009,37(9):25-29
    [133]黄若霖,王宽,詹开翅.基于自适应免疫粒子群优化算法的配电网状态估计[J].电力系统保护与控制,2009,37(11):54-57
    [134]刘伟,梁新兰,安晓龙.基于蜜蜂进化型粒子群算法的电力系统无功优化[J].电力系统保护与控制,2010,38(7):16-21
    [135]谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134
    [136]Higashitani M, Ishigame A, Yasuda K. Particle swarm optimization considering the concept of predator-prey behavior[C].//Proc of Congress on Evolutionary Computation. Vancouver Canada:IEEE,2006:1541-1544
    [137]水利部长江流域规划办公室.综合利用水库调度[M].北京市:水利电力出版社,1990
    [138]范家骅,杜国翰.水库泥沙问题[J].水利学报,1985,(6):22-29
    [139]周建中,李英海,肖舸等.基于混合粒子群算法的梯级水电站多目标优化调度[J].水利学报,2010,10(41):1212-1219
    [140]徐安,赵思宏,寇英信等.基于混合粒子群优化的多目标决策新方法[J].火力与指挥控制,2010,35(1):77-80
    [141]谢鉴衡.河流模拟[M].北京:水利电力出版社,1990.4
    [142]杨国录.河流数学模型[M].北京:海洋出版社,1993.10
    [143]韩其为.水库淤积[M].北京:科学出版社,2003.8
    [144]U. S. Army Corps of Engineers. Hec-6 Scour and Deposition in Rivers and Reservoirs,1976
    [145]张瑞瑾.河流泥沙动力学[M].北京:水利电力出版社,1989
    [146]吴伟明.一维、平面二维及其嵌套泥沙数学模型的研究与应用[D].武汉:武汉 水利电力大学,1997
    [147]陈森林.水电站水库运行与调度[M].北京:中国电力出版社,2008
    [148]纪昌明,刘方,喻杉等.基于鲶鱼效应粒子群算法的梯级水库群优化调度[J].电力系统保护与控制,2011,39(19):63-68
    [149]Ji Changming, Liu Fang, Zhang Xinming. Particle swarm optimization based on catfish effect for flood optimal operation of reservoir [C]//. Proceedings-2011 7th International Conference on Natural Computation, ICNC 2011. Shanghai, China, 2011(2):1197-1201
    [150]Chankong V & Haimes Y. Y.. Multiobjective Decision Making:Theory and Methodology. New York:North-Holland,1983
    [151]Coello C A C. An Updated survey of evolutionary multi objective optimization techniques:State of the art and future trends[C].//In:Proceedings of the 1999 Congress on Evolutionary Computation.Washington D C,1999:3-13
    [152]Coello C A C. Twenty Years of Evolutionary Multi-objective Optimization:A Historical View of the Field[C].//IEEE Computational Intelligence Magazine, 2006,1(1):28-36
    [153]Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multi-objective Optimization[J]. Evolutionary Computation,1995,3(1):1-16
    [154]Zadeh L. A.. Optimality and Non-Scalar-Valued Performance Criteria[C].//IEEE. Tran.1963 AC-8
    [155]Hu X, Eberhart R, Shi Y H. Partiele Swarm with Extended Memory for Multiobjeetive Optimization.In:Proc of the IEEE Swarm Intelligence Symposium. Indianapolis, USA,2003:193-197
    [156]Parsopoulos K E, VrahatisM N. Partiele Swarm Optimiation Method in Multi-Objective Problems[C].//In:Proc of the ACM Symposium Ion Applied Computing. Madrid, Spain,2002:603-607
    [157]Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetie Algorithms[C].//In:Proc of the 1st International Conference on Genetie Algorithm. Hillsdale, USA:Lawrence Erlbaum Associates,1985:93-100
    [158]Tripathi P K, Pal S K. Adaptive multi-objective particle swarm optimization algorithm[C].//IEEE Congress on Evolutionary Computation, Singapore, Singapore,2007:2281-2288
    [159]胡广浩,毛志忠,何大阔.基于两阶段领导的多目标粒子群优化算法[J].控制与决策,2010,25(3):404-415
    [160]冯尚友.多目标决策理论方法与应用[M].武汉:华中理工大学出版社,1990
    [161]李义天,甘富万,邓金运.三峡水库9月分旬控制蓄水初步研究[J].水力发电学报,2006,25(1):61-66
    [162]彭杨,李义天,谢葆玲等.三峡水库汛后提前蓄水方案研究[J].水力发电学报,2002,(3):12-20
    [163]屈敏,高岳林,江巧永.基于Pareto邻域交叉算子的多目标粒子群优化算法[J].计算机应用,2011,31(7):1789-1792
    [164]裴胜玉,周永权.基于Pareto最优解集的多目标粒子群优化算法[J].计算机工程与科学,2010,32(11):85-88
    [165]C.Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[C].//IEEE Transactions on Evolutionary Computation, 2004,8(3):256-279
    [166]Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization[C].//Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA,2003:26-33
    [167]杨春花,许继军,董玲燕.金沙江下游梯级水库配合三峡水库联合防洪调度效果分析[J].长江科学院院报,2010,27(10):5-9
    [168]韩其为,何明民.三峡水库修建后下游长江冲刷及其对防洪的影响[J].水利发电学报,1995,(3):34-46
    [169]王晖,陈丽,陈垦等.多指标综合评价方法及权重系数的选择[J].广东药学院学报,2007,(10):583-589
    [170]刘思峰,党耀国.预测方法与技术[M].北京:高等教育出版社,2005.
    [171]金菊良,魏一鸣.复杂系统广义智能评价方法与应用[M].北京:科学出版社,2008
    [172]程明熙.处理多目标决策问题的二项系数加权和法[J].系统工程理论与实践,1983,(4):23-26
    [173]贾正源,赵亮.基于熵权未确知测度模型的电能质量综合评价[J].电力系统保护与控制,2010,38(15):33-37
    [174]张小泓.基于变异系数法的灰色关联模型在节水灌溉工程投标方案优选中的应用[J].节水灌溉,2009,(8):54-56
    [175]曾光明,王薇,谢更新等.改进GA法在水污染控制系统多目标规划中的应用[J].湖南大学学报(自然科学版),2004,31(3):29-34
    [176]王汉斌,杨鑫.一种基于AHP-RS的组合权重确定方法[J].中国安全生产科学技术,2010,(12):155-160
    [177]李丹勋,毛继新,杨胜发等.三峡水库上游来水来沙变化趋势研究[M].北京:科学出版社,2010
    [178]冯尚友.水资源系统工程[M].武汉:武汉科学技术出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700