用户名: 密码: 验证码:
纳米WC-TiC-Co硬质合金制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文用微米级WC粉、(Ti、W)C粉和Co粉为原材料(平均粒度为2.9μm),采用行星式高能球磨机球磨,工艺参数为:球料比为10:1、球磨转速为220r/min、真空气氛、湿磨介质为酒精。对经干燥、过筛处理的复合粉末在真空手套箱中做初步压制成型,再经过冷等静压压制,研究了压制工艺过程中的各个参数与压块密度之间的关系。最后在真空烧结炉中将试样做最终烧结成型,研究了烧结温度与线收缩率、硬度、强度之间的关系,并研究了试样的微观组织。通过上述研究和讨论分析,可以得出以下结论:
     1、用激光粒度测试仪测定复合粉末平均粒度,测试结果表明:球磨时间从0h逐渐增大在60h,WC-5TiC-10Co复合粉末平均粒度从2.95μm减小到了0.61μm,复合粉末粒度减小速率很快,粉末颗粒呈粒状或条状,并且粒度分布比较均匀;试验表明,球磨时间增大到60h以后,随着球磨时间的增加,WC-5TiC-10Co复合粉末的团聚越来越明显。用扫描电镜观察WC-5TiC-10Co复合粉末,结果表明其平均粒度小于50nm。
     2、加压速度对复合粉末压坯密度几乎不产生的影响,但是对压坯的合格率影响较大。在加压开始时,压头尚未压制粉末时采用较快的加压速度3.0mm/s,而在加压压制粉末成型过程中采用较慢的速度2.0mm/s的加压速度,即压制过程可以采用“先快后慢”的方式。同时研究发现,保压时间在2~3min比较合适,这不仅保证了较高的生产效率和合格率,同时也保证能够获得较高的压坯密度。
     3、在真空手套箱中初压压坯,再经冷等静压压制,由于冷等静压压制力传递的均匀性,使压坯的抗压强度达到130.5MPa。然而,一般模压压强达到354MPa时,压坯的抗压强度仅达到108.1MPa。冷等静压压制较好的消除了初始模压时残留于压坯中的大气孔,压坯的致密性得到了提高,密度达到7.3g/cm~3,相对密度达到57.2%;而一般模压压强达到426.9MPa时,密度达到7.1g/cm~3,相对密度达到55.3%。
     4、随着烧结温度的升高,烧结体的密度随之升高:烧结温度为1300℃时,密度达到10.9g/cm~3;烧结温度为1350℃时,密度达到11.9g/cm~3;烧结温度为1400℃时,密度达到12.3g/cm~3。在烧结温度1300~1400℃之间,纳米WC-TiC-Co硬质合金的硬度没有太大的变化:1300℃烧结,硬度为95.2 HRA;1350℃烧结,硬度为94.9 HRA;1400℃烧结,硬度为95.4HRA;然而,传统硬质合金YT5的硬度仅为89.5 HRA。纳米WC-5TiC-10Co硬质合金的硬度高于传统硬质合金。
     5、烧结温度由1300℃增大到1400℃时,烧结体密度由10.9g/cm~3增大到12.3g/cm~3(相对密度也达到95.4%),传统硬质合金YT5的烧结温度是1480℃,密度达到12.5g/cm~3(相对密度达到97.3%)。纳米WC-5TiC-10Co硬质合金达到完全致密化的温度低于传统硬质合金YT5的烧结温度。
     6、在光学金相显微镜下观察,纳米WC-5TiC-10Co硬质合金的组织是(TiW)C+WC+γ+η相。η相的存在,使纳米WC-5TiC-10Co硬质合金中的强度下降,因而应设法避免η相的出现。烧结纳米WC-5TiC-10Co硬质合金时,晶粒长大倾向大,实际得到的晶粒比较粗大,也导致了强度、韧性的降低,应该采取必要的细化晶粒的技术措施。
     7、纳米WC-5TiC-10Co硬质合金的抗弯试样断口从宏观形貌上看平齐而光亮,属于脆性断裂,断裂模式为沿晶断裂。抗弯试样断口的SEM照片显示了韧窝的存在,表明试样在断裂时发生了一定的塑性变形。
     8、通过对烧结机理的热化学和动力学分析研究发现,纳米WC-5TiC-10Co硬质合金的烧结机理仍然遵循液相烧结的基本原理,烧结过程分为三个阶段:第一个阶段为液相生成与颗粒重排阶段;第二个阶段为固相溶解和再析出阶段;最后为固相烧结阶段。
This paper has manufactured nanocrystalline WC-TiC-10Co composite powders generated by ball-mill in the ethanol with 220r/min rotation, and the ratio of balls and powders is10 to 1,with average particle of micrometer WC TiC and Co powder at2.96μm. With the nanocrystalline WC-TiC-10Co composite powder sifted, the nanocrystalline WC-TiC-10Co pressing-blocks were pressed by Die pressing and Cold isostatic pressing, and pressing stress , keeping time and density were studied. The pressing-block were sintered with different sintering technics, and the relation between sintering temperature, shrinkage rate and pressure strength, and researched their microstructure, research found:
     1 The ratio of average particle at milling-time less than 60 hours is slowly 2.95μm to 0.61μm, and the particle uniformly distributing present grainy or strip. And it is clearly that some of the nanocrystalline WC-TiC-10Co composite powders are agglomerated, when milling time are more than 60h. The average particle size of nanocrystalline WC-TiC-10wt%Co composite powder generated by ball-mill in the ethanol is less than 50nm by SEM.
     2, Rate of pressing have no effect on the pressing-block density. When compressor didn't press the powder, the 3.0mm/s rate of pressing is equal to the ratio disrepair. And the 2.0mm/s rate of pressing is equal to the pressing-block density. The keeping-time is 2min, not oily efficiency is high, but also the pressing-block density is high.
     3 With pressing-block pressing in the glove vacuum box, the pressure strength of pressing-block pressed again at Cold isostatic pressing is 130.5MPa. But pressure strength of pressing-block commonly pressed is 108.1MPa, and pressing stress is 354MPa. With the press transferring uniformity by Cold isostatic pressing, the density of pressing-block is 7.3 g/cm~3, on account of rudimental hole cleared away by Cold isostatic pressing. But common pressing is 426.9MPa, the density of pressing-block is 7.1 g/cm~3, relative density is 55.3%
     4 With sintering temperature increasing, the density of sintering-block is increasing. The density is 10.9 g/cm~3 at sintering temperature of 1300℃. The density is 11.9 g/cm~3at sintering temperature of 1350℃. The density is 12.3 g/cm~3at sintering temperature of 1400℃. When the sintering temperature is among 1300-1400℃for nanocrystalline WC-TiC-10Co cemented carbide, the change of rigidity is little. The rigidity at sintering temperature 1300℃is 95.2 HRA. The rigidity is 94.9 HRA at sintering temperature 1350℃. The rigidity at sintering temperature 1400°C is 95.4HRA. But the rigidity for conventional cemented carbide is 89.5 HRA, so the rigidity for nanocrystalline WC-TiC-10Co cemented carbide is higher than for conventional cemented carbide.
     5 With sintering temperature among 1300℃to 1400℃, density of sintering-block increase from 10.9 g/cm~3 to g/cm~3(relative density 95.4%). With sintering temperature at 1480 for conventional cemented carbide, the density of sintering-block is 12.5g/cm~3(relative density at 97.3%). So sintering temperature for nanocrystalline WC-TiC-10Co cemented carbide is lower than for conventional cemented carbide.
     6 The structure for nanocrystalline WC-TiC-10Co cemented carbide by optical microscope are (TiW)C+ WC+γ+ηphase. The strength of nanocrystalline WC-TiC-10Co cemented carbide decline due to theηphase, theηphase avoid in the sinter. Crystal unconventionality grow up in the sinter bring on the strength declining, the essential technical measure were adopted for fine crystal.
     7 Seen from macro view, the break furface of nanocrystalline WC-TiC-10Co cemented carbide looks flat and brightess, belongs to brittleness rupture, and the mode of rupture is along crystal rupture. SEM photographs of nanocrystalline WC-TiC-10Co cemented carbide bending resistance specimen has apparent model nest, which shows that the sample occurs definite madel distortion.
     8 Sintering mechanism for nanocrystalline WC-TiC-10Co cemented carbide by thermochemistry and dynamics analyzed follow all the same sintering liquid theory. The sintering processes were three phases. First phase is liquide growing and grain recompositio. Second phase is solid dissolve and separate out. Then phase is sintering solid.
引文
[1] 株洲硬质合金厂编著。硬质合金的使用。北京:冶金工业出版社,1973:1~152。
    [2] Spriggs G E. A history of fine grained hardmetal. Int J of Refractory Metal & Hard Materal, 1995, 13: 241~255.
    [3] 邵刚勤.超细晶粒WC硬质合金的研制动态[J].武汉工业大学学报,1999。21(6):18-30
    [4] K. Jia. Microstructure Hardness and Toughness of Nanostructured and Conventional WC-Co Composites. Nanostructured Materials. 1998, 10(5): 975-980
    [5] B. K. Kim. Structure and Properties of Nanophase WC/CO/VC/TaC Hardmetal. Nanostructured Materials. 1997, 9: 233-238
    [6] 邵刚勤.超细晶粒WC硬质合金的研制动态.武汉工业大学学报.1999,21(6):07-10。
    [7] Purnesh Seegopaul. Nanodyne Advances Ultrafine WC-Co Powders, Metal Powder Report. 1996, (4): 17-21
    [8] PeterK. Johnson. Nanodyne Incorporated, The International Journal of Power Metallurgy, 1998, 34(7): 8-12
    [9] Zhengui Yao. Nanosized WC-Co Holds Promise for the Future. Metal Powder Report. 1998, (3): 27-32s d
    [10] 王辉平,胡茂中。纳米技术与硬质合金。中国钨业,2001,16(2):30-32
    [11] Kear B H, Mccandlish E. Nanostructure materials, 1993[3]: 19
    [12] Fukatsu T, Kobori K, Ueki M. Micro-grained cemented carbide with high strength[J]. Refractory Metals & Hard Materials, 1991, 10: 57-60.
    [13] Dow finds cost effective route to fine WC powders[J]. Metal Powder Report, 1997, 12: 27-31.
    [14] McCandlish L E, Kear B H, Kim B K. Chemical processing of nanophases WC-Co composite powder[J]. Materials Science and Technology, 1990, 6: 953-957.
    [15] Peter K, Nanodyne Incorporated[J]. The International Journal of Powder Metallurgy, 1998, 34(7): 8-10.
    [16] Nanodyne starts construction of 500 tones/year WC-Co plant[J]. MetaI Powder Report, 1997, 11
    [17] 马学鸣,赵龄.机械合金化制备WC—Co纳米硬质合金[J].上海大学学报(自然版),1998,4(2):156.
    [18] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,166.
    [19] 黎文献,唐蝶.用机械合金化制备超纫WC—Co-Cr3C2复合粉末[J].中国有色金屑学报,1998,8(增1):90.
    [20] 张立,黄伯云.纳米WC—Co复合粉的烧结特征[J].硬质合金,2001,18(2):65.
    [21] Joanna R, Groza. Sintering of nana crystalline powders[J]. International journal of powder metallurgy, 1999, 35(7): 59.
    [22] D. Agrawal, J. Chene, P. Seegopaul and L. Cao. Crain growth control in microwave sintering of ultra fine WC—Co composite powder compact[J]. Powder Metallurgy, 2000, 43(1): 15.
    [23] Hayashi Koji, et al. Hard alloy and its production. 1999, JP11—1 52535
    [24] Porat R, Berger S, Rosen A. Sintering behavior and mechanical properties of nanocrvstalline WC—Co. Materials science forum, 1996, 225
    [25] Tamotsu Fukatsu, Keiichi Kobori, Mitsuo Ueki. Micrograined cemented carbide with high strength. Inter J Refra Metal Hard Mater, 1991, 10: 57
    [26] 周链,程吉乎.微波烧结WC—Co细晶硬质合金的工艺与性能[J].中国有色金屑学报,1999,9(3):465.
    [27] Seegopaul P, et al. Production capability and powder processing methods for nanostructure. WC-C powders[Z]. Materials Progress Report, 1996, 4: 17.
    [28] Kin B K, Ha G H, Lee D W, Sintering and microstructure of nanophase WC/Co hardmetals[J]. Journey of Materials Processing Technology, 1997, 63: 317-321.
    [29] Azcona A, Ordonez J M, Sanchez FC. Hot isostatic pressing of ultrafine tungsten carbide-cobalt hardmetals[J]. Journal of Materials Science, 2002, 37: 4189-4195.
    [30] Laptev A V, Ponomarev S S, Ochkas L F. Structural features and properties of alloy 84%WC-16%Co, obtained by hot pressing in the solid and liquid phase Ⅰ-effect of the temperature at which the specimens are prepared on their density and structure[J]. Powder Metallurgy and Metal Ceramics, 2000, 39(11-12)608-618.
    [31] Cha S I, Hong S H, Kim B K. Spark plasma sintering behavior of nanocrystalline WC-10Co cenmented carbide powders[J]. Mater Sci Eng A, 2003, A351: 31-38.
    [32] Yamamoto Y, Ikuhara Y, Watenabe T, etal. High resolution microscopy study in Cr3C2-doped WC-Co[J], Journal of Materials Science, 2001, 36: 3885-3890.
    [33] Lay S, Hamar Thibault S, Lackner A. Location of VC, CrC doped WC-CO cermets by HREM and EELS[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20: 61-69.
    [34] Kim B K, Ha G H, Lee G G, et al. Structure and properties of nanophase WC/Co/VC/TaC hardmetal[J]. Nanostructures Materials, 1997, 9: 233-236.
    [35] Arenas F, de Arenas I B, Ochoa J, et al. Influence of VC on the microstructure and mechanical properties of WC-Co sintered cemented carnides[J], International Journal of Refractory Metals & Hard Materials, 1999, 17: 91-97.
    [36] Wu En-xi(吴恩熙),Lei Yi-wen(雷贻文).Effect of inhibitor on ultrafine grained cemented carbides[J](超细硬质合金中晶粒长大抑制剂的作用[J]).Cemented Carbide(硬质合金),2002,19(3):136-139.
    [37] Wu Yin-fang(邬荫芳).Manufacture of“both high”ultrafine cemented carbide[J](“双高“超细合金的研制[J]).Cemented Carbide(硬质合金),2000,17(4):214-220.
    [38] 刘寿荣.WC-Co硬质合金的性能与成分和显微结构的关系.理化检验-物理手册,2003,39,92):70~74.
    [39] 申带秀,李沐山.国内外硬质合金技术进展.稀有金属与硬质合金,1995,3(120).
    [40] 刘冬生,肖西卫.纳米硬质合金及其在钻探工程中的应用前景.粉末冶金 工业,2004,14(2):32~34.
    [41] 周建华.凿岩工具用硬质合金新牌号的研制与应用.凿岩机械气动工具,2003(2):3~6.
    [42] 殷作虎.提高硬质合金韧性新工艺研究.机械设计与制造工程,1999.28(3):38-39.
    [43] 张汉林,王柱.超细硬质合金的制备.硬质合金,1997,14(3):151-155.
    [44] 刘文.硬质合金发展现状.四川有色金属,1993,4:12~14.
    [45] Shao G O, Wu B L, et al. Nanocrystalline grains & superfine particles of tungsten carbiode-cabalt powder. Innovative processing/synthedid: ceramics, glasses, Compositeds Ⅳ Bansal N P, Singh J P, eds, The American ceramic society, USA, 2000: 375
    [46] H Young seop kim. The effects of gain size and porosity on the elastic modulus of namocrystallinematerials. Namostructuredmaterials, 1999, 11(3): 361~367.
    [47] M. Sherif Ei-eSkandaraany. Structure and properties of namocrystallin TiC full-density bulk ally consolidated from mechanically reacted powders. Journal of alloys and compounds, 2000, 305: 225~238.
    [48] Koch CC. Research on metastable structure using energy ball milling at north Carolina state University[J]. Mater trans JIM, 1995, 36(2): 85.
    [49] Forrester J, S, et al. The chemical kinetics of mechanical alloying[J]. Metall & mater trans, 1995, 26A(3); 275.
    [50] 孙剑飞,张法明.纳米WC-Co复合粉末的制备工艺及其烧结特性[J].稀有金属与硬质合金,2002,30(1):33~34.
    [51] C. Suryanaaryana. Mechanical alloying and milling. Progress in materials science, 2001, 46: 1~184
    [52] 曹嘉新,王兴庆。硬质合金生产工艺对其性能和组织的影响。铸造工程·造型材料,2001,9:39
    [53] 乔玉林.纳米微粒的润滑与自修复技术.北京:国防工业出版社,2005
    [54] 张敬畅,曹维良,于定新等。超临界流体干燥法制备纳米级TiO2的研究。无机材料学报,1999,14,(1)29~36
    [55] 宁桂玲,吕秉玲。纳米微粒的干燥及其研究进展。化工进展,1999,(5):22~25
    [56] 康明,孙蓉,谢克难等。纳米碳酸钙干燥方式的研究。四川大学学报(工程科学报),2004,31(1):57~60
    [57] 方湘怡,黄丽清,赵军武等。超临界干燥法制备TiO2微粒。西安交通大学学报,1998,32(8):108-111
    [58] 陈彩凤,陈志刚。超声场中湿法制备纳米粉末的原理和方法。机械工程材料,2003,27(4):32~33
    [59] 杨华明,黄承焕,宋晓岚等。微波合成无机纳米材料的研究进展。材料导报,2003,17(11):36~39
    [60] 叶志强,陈纪忠。超临界流体快速膨胀法制备超细微粒。化学反应工程于工艺,2002,18(4):344~352
    [61] 国伟林,王西奎,宋广智。超声化学法制备纳米TiO2。中国粉体技术,2002,8(4):22~23
    [62] 李春喜,王子镐。超声技术在纳米材料制备中的应用。化学通报,2001,(5):268~272
    [63] 高海燕,曹顺华,机械合金化制备纳米晶硬质合金粉的进展。粉体冶金技术,2003,21(6):355~358
    [64] 张丽英,林涛。超细晶粒硬质合金复合粉的成形特征,粉末冶金技术,2002,20(1):3-7。
    [65] 李风尘,超细分体技术.北京:国防工业出版社,2000:277—279
    [66] Herring C. Effect of change of scale on sintering Phenomena J Applphys. 1950, 21: 301
    [67] Zhao J. Harmer M P. Effect of pose distribution on microstructure development first and second-generation Poces. J Am Ceram Soc, 1998, 71(7): 5
    [68] Brookes K. Leading Europe in extruded carbide. MPR, 2002, 57: 26
    [69] Roberts P R, Ferguson B L. Extrusion of metal powder Int Mater Rev, 1991, 36: 62
    [70] 余建芳.硬质合金棒材的质量与使用的螺旋挤压机的尺寸和性能研究。硬 质合金,2001,2:13
    [71] 林信平,曹顺华,李炯义,纳米硬质合金用成形剂设计的探讨,中国钨业,2003,18(6):34-37
    [72] 黎樵桑,谢致薇,李瑜。纳米硬质合金粉末压制过程研究,粉末冶金技术,1999,17(2):94-98。
    [73] 曹立宏,欧阳。硬质合金WC-Co超细粉末的制备研究。硅酸盐学报,1996,24(5):604-607。
    [74] 张丽英,林涛,徐晓娟,吴成义。超细晶粒硬质合金复合粉的成形特征。粉末冶金技术,2002,20(1):3-7。
    [8] 王冲,邵刚勤,段兴龙。纳米复合WC—Co粉末成型与烧结研究进展,硅酸盐通报,2005,1:97-100。
    [75] 黄培云。粉末冶金原理。北京:冶金工业出版社。1982
    [76] L.Bartha,I.Kotsis,L.LaczkO,P.HaMat。不同气氛中WC—Co纳米粉的高温反应[J]。国外难溶金属与硬质材料,2003.19(2):44-47。
    [77] 祝宝军.曲选辉,陶颖.粉末注射成形热塑-热固粘结剂的开发研制[J].2003,9,20(3):149
    [78] 王忆民.“高温粉末”WC和气压烧结对YG8硬质合金性能的影响[J].硬质合金,2005,22(2):86-89
    [79] 王尚志,刘文利.硬质合金小件毛坯复合压制工艺研究.稀有金属与硬质合金,1995,121:17
    [80] 黄建民,吕海波。微细晶粒WC—Co硬质合金低压热等静压处理。硬质合余,1996,13(3):142-145。
    [81] Wirmark G, Dunlop G L. Phase transformations in the binder phase of Co-W-Ccemented carbibes. In: Viswanadham R K eds; Science of Hard Materials; New York; Plimum Press, 1983, 315
    [82] Liu shourong. γ-phase in WC-Co cemented carbides. Transaction of Nonferrous Metals Societyof China, 1993, 3(2): 56
    [83] 何建民.王利杰,刘寿荣,梁福起.Co相变的X射线衍射研究.金属学报.1994,30(1):B45—48
    [84] 吴冲浒.WC-Co系硬质合金Co相的熔点[J].硬质合金.1999,11,16(4):201-205
    [85] 王社权。影响超细硬质合金性能的几个因素[J]。硬质合金。2000,17(1)。
    [86] 张卫兵.WC、Co质量对超细硬质合金性能影响的研究[J].硬质合金,2003,9,20(3):157-160
    [87] 高勇,唐振方.纳米WC—Co复合材料制备及烧结过程[J].硬质合金,2000,17(1):18.
    [88] Joanna R, Graza. Sintering of nanocrystalline powders[J]. Internation journal of powder metallurgy, 1则,35(7):59.
    [89] Rajendra K. sadangi, Larry E. McCandlishand Bernard H. etal. Grain growthing inhibition in liquid phase sintered nanophase WC—Co alloy[J]. International iournal of powder metallurgy, 1999, 35(1): 27.
    [90] 钱开友,王兴庆.纳米硬质合金制备工艺的研究与发展[J].上海大学学报(自然版),2001,7(2):133.
    [91] Michael S, Wolf—Dieter S, Erich Z. On the formation of very large WC crystals during sintering of ultrafine WC—Co alloys. International Journal of Refractory Metals & Hard Materials. 2002, 20: 41~50
    [92] 邵刚勤,段兴龙,谢济仁,等.WC—Co非金属—金属纳米复合结构的形成与控制.硅酸盐学报,2002,30(1):40~44
    [93] 邵刚勤,段兴龙,谢济仁,等.无相碳化钨—钴纳米复合粉末的工业化制各方法.中国专利,991165977.1999—08—13
    [94] Shao G Q, Duan X L, Wu B L, et al. Continuous reduction carburisation mechanism of precursor—derived nanocrystalline WC—Co. In: Singh J P, Bansal N P, Ustundag E, eds. Advances in Ceramic Matrix Compo sites Ⅵ. Ohio: The American Ceramic Society, 2000. 207~217。
    [95] Shao G Q, Duan X L, Xie J R, et al. Sintering of nanocrystalline WC—Co composite powder. Reviews on Advanced Materials Science. 2003, 5(4): 281~286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700